Search results for: chemically enhanced
1484 Lipidomic Profiling of Chlorella sp. and Scenedesmus abundans towards Deciphering Phospholipids and Glycolipids under Nitrogen Limited Condition
Authors: J. Singh, Swati Dubey, R. P. Singh
Abstract:
Microalgal strains can accumulate greatly enhanced levels of lipids under nitrogen-deficient condition, making these as one of the most promising sustainable sources for biofuel production. High-grade biofuel production from microalgal biomass could be facilitated by analysing the lipid content of the microalgae and enumerating its dynamics under varying nutrient conditions. In the present study, a detailed investigation of changes in lipid composition in Chlorella species and Scenedesmus abundans in response to nitrogen limited condition was performed to provide novel mechanistic insights into the lipidome during stress conditions. The mass spectroscopic approaches mainly LC-MS and GC-MS were employed for lipidomic profiling in both the microalgal strains. The analyses of lipid profiling using LC-MS revealed distinct forms of lipids mainly phospho- and glycolipids, including betaine lipids, and various other forms of lipids in both the microalgal strains. As detected, an overall decrease in polar lipids was observed. However, GC-MS analyses had revealed that the synthesis of the storage lipid i.e. triacylglycerol (TAG) was substantially stimulated in both the strains under nitrogen limited conditions. The changes observed in the overall fatty acid profile were primarily due to the decrease in proportion of polar lipids to TAGs. This study had enabled in analysing a detailed and orchestrated form of lipidomes in two different microalgal strains having potential for biodiesel production.Keywords: biofuel, GC-MS, LC-MS, lipid, microalgae
Procedia PDF Downloads 3721483 Evaluation of Different Fertilization Practices and Their Impacts on Soil Chemical and Microbial Properties in Two Agroecological Zones of Ghana
Authors: Ansong Richard Omari, Yosei Oikawa, Yoshiharu Fujii, Dorothea Sonoko Bellingrath-Kimura
Abstract:
Renewed interest in soil management aimed at improving the productive capacity of Sub Saharan Africa (SSA) soils has called for the need to analyse the long term effect of different fertilization systems on soil. This study was conducted in two agroecological zones (i.e., Guinea Savannah (GS) and Deciduous forest (DF)) of Ghana to evaluate the impacts of long term (> 5 years) fertilization schemes on soil chemical and microbial properties. Soil samples under four different fertilization schemes (inorganic, inorganic and organic, organic, and no fertilization) were collected from 20 farmers` field in both agroecological zones. Soil analyses were conducted using standard procedures. All average soil quality parameters except extractable C, potential mineralizable nitrogen and CEC were significantly higher in DF sites compared to GS. Inorganic fertilization proved superior in soil chemical and microbial biomass especially in GS zone. In GS, soil deterioration index (DI) revealed that soil quality deteriorated significantly (−26%) under only organic fertilization system whereas soil improvement was observed under inorganic and no fertilization sites. In DF, either inorganic or organic and inorganic fertilization showed significant positive effects on soil quality. The high soil chemical composition and enhanced microbial biomass in DF were associated with the high rate of inorganic fertilization.Keywords: deterioration index, fertilization scheme, microbial biomass, tropical agroecological zone
Procedia PDF Downloads 4071482 Protein Stabilized Foam Structures as Protective Carrier Systems during Microwave Drying of Probiotics
Authors: Jannika Dombrowski, Sabine Ambros, Ulrich Kulozik
Abstract:
Due to the increasing popularity of healthy products, probiotics are still of rising importance in food manufacturing. With the aim to amplify the field of probiotic application to non-chilled products, the cultures have to be preserved by drying. Microwave drying has proved to be a suitable technique to achieve relatively high survival rates, resulting from drying at gentle temperatures, among others. However, diffusion limitation due to compaction of cell suspension during drying can prolong drying times as well as deteriorate product properties (grindability, rehydration performance). Therefore, we aimed to embed probiotics in an aerated matrix of whey proteins (surfactants) and di-/polysaccharides (foam stabilization, probiotic protection) during drying. As a result of the manifold increased inner surface of the cell suspension, drying performance was enhanced significantly as compared to non-foamed suspensions. This work comprises investigations on suitable foam matrices, being stable under vacuum (variation of protein concentration, type and concentration of di-/polysaccharide) as well as development of an applicable microwave drying process in terms of microwave power, chamber pressure and maximum product temperatures. Performed analyses included foam characteristics (overrun, drainage, firmness, bubble sizes), and properties of the dried cultures (survival, activity). In addition, efficiency of the drying process was evaluated.Keywords: foam structure, microwave drying, polysaccharides, probiotics
Procedia PDF Downloads 2621481 Structural, Magnetic, Dielectric and Electrical Properties of Gd3+ Doped Cobalt Ferrite Nanoparticles
Authors: Raghvendra Singh Yadav, Ivo Kuřitka, Jarmila Vilcakova, Jaromir Havlica, Lukas Kalina, Pavel Urbánek, Michal Machovsky, Milan Masař, Martin Holek
Abstract:
In this work, CoFe₂₋ₓGdₓO₄ (x=0.00, 0.05, 0.10, 0.15, 0.20) spinel ferrite nanoparticles are synthesized by sonochemical method. The structural properties and cation distribution are investigated using X-ray Diffraction (XRD), Raman Spectroscopy, Fourier Transform Infrared Spectroscopy and X-ray photoelectron spectroscopy. The morphology and elemental analysis are screened using field emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray spectroscopy, respectively. The particle size measured by FE-SEM and XRD analysis confirm the formation of nanoparticles in the range of 7-10 nm. The electrical properties show that the Gd³⁺ doped cobalt ferrite (CoFe₂₋ₓGdₓO₄; x= 0.20) exhibit enhanced dielectric constant (277 at 100 Hz) and ac conductivity (20.17 x 10⁻⁹ S/cm at 100 Hz). The complex impedance measurement study reveals that as Gd³⁺ doping concentration increases, the impedance Z’ and Z’ ’ decreases. The influence of Gd³⁺ doping in cobalt ferrite nanoparticles on the magnetic property is examined by using vibrating sample magnetometer. Magnetic property measurement reveal that the coercivity decreases with Gd³⁺ substitution from 234.32 Oe (x=0.00) to 12.60 Oe (x=0.05) and further increases from 12.60 Oe (x=0.05) to 68.62 Oe (x=0.20). The saturation magnetization decreases with Gd³⁺ substitution from 40.19 emu/g (x=0.00) to 21.58 emu/g (x=0.20). This decrease follows the three-sublattice model suggested by Yafet-Kittel (Y-K). The Y-K angle increases with the increase of Gd³⁺ doping in cobalt ferrite nanoparticles.Keywords: sonochemical method, nanoparticles, magnetic property, dielectric property, electrical property
Procedia PDF Downloads 3561480 Paleoproductivity during the Younger Dryas off Northeastern Luzon, Philippines
Authors: Jay Mar D. Quevedo, Fernando P. Siringan, Cesar L. Villanoy
Abstract:
The influence of the Younger Dryas (YD) event on primary production off the northeast shelf of Luzon, Philippines is examined using sediment cores from two deep sea sites north of the Bicol shelf and with varying relative influence from terrestrial sediment input and the Kuroshio Current. Core A is immediately west of the Kuroshio feeder current and is off the slope while Core B is from a bathymetric high located almost west of Core A. XRF-, CHN- and LOI- derived geochemical proxies are utilized for reconstruction. A decrease in sediment input from ~12.9 to ~11.6 kyr BP corresponding to the YD event is indicated by the proxies, Ti, Al, and Al/Ti, in both cores. This is consistent with the drier climate during this period. Primary productivity indicators in the cores show opposing trends during the YD; Core A shows an increasing trend while Core B shows a decreasing trend. The decreasing trend in Core B can be due to a decrease in terrestrial nutrient input due to a decrease in precipitation. On the other hand, the increasing trend in Core A can be due to a swifter Kuroshio Current caused by a swifter and more southerly NEC bifurcation which in turn is due to a southerly shift of the ITCZ during YD. A stronger Kuroshio feeder would have enhanced upwelling induced by steeper sea surface across the current and by more intense cyclonic gyres due to flow separation where the shelf width suddenly decreases north of the Bicol Shelf.Keywords: paleoproductivity, younger dryas, Philippines, northeastern Luzon
Procedia PDF Downloads 3111479 Tide Contribution in the Flood Event of Jeddah City: Mathematical Modelling and Different Field Measurements of the Groundwater Rise
Authors: Aïssa Rezzoug
Abstract:
This paper is aimed to bring new elements that demonstrate the tide caused the groundwater to rise in the shoreline band, on which the urban areas occurs, especially in the western coastal cities of the Kingdom of Saudi Arabia like Jeddah. The reason for the last events of Jeddah inundation was the groundwater rise in the city coupled at the same time to a strong precipitation event. This paper will illustrate the tide participation in increasing the groundwater level significantly. It shows that the reason for internal groundwater recharge within the urban area is not only the excess of the water supply coming from surrounding areas, due to the human activity, with lack of sufficient and efficient sewage system, but also due to tide effect. The research study follows a quantitative method to assess groundwater level rise risks through many in-situ measurements and mathematical modelling. The proposed approach highlights groundwater level, in the urban areas of the city on the shoreline band, reaching the high tide level without considering any input from precipitation. Despite the small tide in the Red Sea compared to other oceanic coasts, the groundwater level is considerably enhanced by the tide from the seaside and by the freshwater table from the landside of the city. In these conditions, the groundwater level becomes high in the city and prevents the soil to evacuate quickly enough the surface flow caused by the storm event, as it was observed in the last historical flood catastrophe of Jeddah in 2009.Keywords: flood, groundwater rise, Jeddah, tide
Procedia PDF Downloads 1161478 Effect of Lactic Acid Bacteria Inoculant on Fermentation Quality of Sweet Sorghum Silage
Authors: Azizza Mala, Babo Fadlalla, Elnour Mohamed, Siran Wang, Junfeng Li, Tao Shao
Abstract:
Sweet sorghum is considered one of the best plants for silage production and is now a more important feed crop in many countries worldwide. It is simple to ensile because of its high water-soluble carbohydrates (WSC) concentration and low buffer capacity. This study investigated the effect of adding Pediococcus acidilactici AZZ5 and Lactobacillus plantarum AZZ4 isolated from elephant grass on the fermentation quality of sweet sorghum silage. One commercial bacteria Lactobacillus Plantarum, Ecosyl MTD/1(C.B.)), and two strains were used as additives Pediococcus acidilactici (AZZ5), Lactobacillus plantarum subsp. Plantarum (AZZ4) at 6 log colony forming units (cfu)/g of fresh sweet sorghum grass in laboratory silos (1000g). After 15, 30, and 60 days, the silos for each treatment were opened. All of the isolated strains enhanced the silage quality of sweet sorghum silage compared to the control, as evidenced by significantly (P < 0.05) lower ammonia nitrogen (NH3-N) content and undesirable microbial counts, as well as greater lactic acid (L.A.) contents and lactic acid/acetic acid (LA/AA) ratios. In addition, AZZ4 performed better than all other inoculants during ensiling, as evidenced by a significant (P < 0.05) reduction in pH and ammonia-N contents and a significant increase in lactic acid contents.Keywords: fermentation, lactobacillus plantarum, lactic acid bacteria, pediococcus acidilactic, sweet sorghum
Procedia PDF Downloads 941477 Application to Monitor the Citizens for Corona and Get Medical Aids or Assistance from Hospitals
Authors: Vathsala Kaluarachchi, Oshani Wimalarathna, Charith Vandebona, Gayani Chandrarathna, Lakmal Rupasinghe, Windhya Rankothge
Abstract:
It is the fundamental function of a monitoring system to allow users to collect and process data. A worldwide threat, the corona outbreak has wreaked havoc in Sri Lanka, and the situation has gotten out of hand. Since the epidemic, the Sri Lankan government has been unable to establish a systematic system for monitoring corona patients and providing emergency care in the event of an outbreak. Most patients have been held at home because of the high number of patients reported in the nation, but they do not yet have access to a functioning medical system. It has resulted in an increase in the number of patients who have been left untreated because of a lack of medical care. The absence of competent medical monitoring is the biggest cause of mortality for many people nowadays, according to our survey. As a result, a smartphone app for analyzing the patient's state and determining whether they should be hospitalized will be developed. Using the data supplied, we are aiming to send an alarm letter or SMS to the hospital once the system recognizes them. Since we know what those patients need and when they need it, we will put up a desktop program at the hospital to monitor their progress. Deep learning, image processing and application development, natural language processing, and blockchain management are some of the components of the research solution. The purpose of this research paper is to introduce a mechanism to connect hospitals and patients even when they are physically apart. Further data security and user-friendliness are enhanced through blockchain and NLP.Keywords: blockchain, deep learning, NLP, monitoring system
Procedia PDF Downloads 1331476 Podcasting: A Tool for an Enhanced Learning Experience of Introductory Courses to Science and Engineering Students
Authors: Yaser E. Greish, Emad F. Hindawy, Maryam S. Al Nehayan
Abstract:
Introductory courses such as General Chemistry I, General Physics I and General Biology need special attention as students taking these courses are usually at their first year of the university. In addition to the language barrier for most of them, they also face other difficulties if these elementary courses are taught in the traditional way. Changing the routine method of teaching of these courses is therefore mandated. In this regard, podcasting of chemistry lectures was used as an add-on to the traditional and non-traditional methods of teaching chemistry to science and non-science students. Podcasts refer to video files that are distributed in a digital format through the Internet using personal computers or mobile devices. Pedagogical strategy is another way of identifying podcasts. Three distinct teaching approaches are evident in the current literature and include receptive viewing, problem-solving, and created video podcasts. The digital format and dispensing of video podcasts have stabilized over the past eight years, the type of podcasts vary considerably according to their purpose, degree of segmentation, pedagogical strategy, and academic focus. In this regard, the whole syllabus of 'General Chemistry I' course was developed as podcasts and were delivered to students throughout the semester. Students used the podcasted files extensively during their studies, especially as part of their preparations for exams. Feedback of students strongly supported the idea of using podcasting as it reflected its effect on the overall understanding of the subject, and a consequent improvement of their grades.Keywords: podcasting, introductory course, interactivity, flipped classroom
Procedia PDF Downloads 2651475 Micro-Arc Oxidation Titanium and Post Treatment by Cold Plasma and Graft Polymerization of Acrylic Acid for Biomedical Application
Authors: Shu-Chuan Liao, Chia-Ti Chang, Ko-Shao Chen
Abstract:
Titanium and its alloy are widely used in many fields such as dentistry or orthopaedics. Due to their high strength low elastic modulus that chemical inertness and bio inert. The micro-arc oxidation used to formation a micro porous ceramic oxide layer film on Titanium surface and also to improve the resistance corrosion. For improving the biocompatibility, micro-arc oxidation surfaces bio-inert need to introduce reactive group. We introduced boundary layer by used plasma enhanced chemical vapor deposition of hexamethyldisilazane (HMDS) and organic active layer by UV light graft reactive monomer acrylic acid (AAc) therefore we can immobilize Chondroitin sulphate on surface easily by crosslinking EDC/NHS. The surface properties and composition of the modified layer were measured by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) and water contact angle. Water contact angle of the plasma-treated Ti surface decreases from 60° to 38°, which is an indication of hydrophilicity. The results of electrochemical polarization analysis showed that the sample plasma treated at micro-arc oxidation after plasma treatment has the best corrosion resistance. The result showed that we can immobilize chondroitin sulfate successful by a series of modification and MTT assay indicated the biocompatibility has been improved in this study.Keywords: MAO, plasma, graft polymerization, biomedical application
Procedia PDF Downloads 2591474 Non-Reacting Numerical Simulation of Axisymmetric Trapped Vortex Combustor
Authors: Heval Serhat Uluk, Sam M. Dakka, Kuldeep Singh, Richard Jefferson-Loveday
Abstract:
This paper will focus on the suitability of a trapped vortex combustor as a candidate for gas turbine combustor objectives to minimize pressure drop across the combustor and investigate aerodynamic performance. Non-reacting simulation of axisymmetric cavity trapped vortex combustors were simulated to investigate the pressure drop for various cavity aspect ratios of 0.3, 0.6, and 1 and for air mass flow rates of 14 m/s, 28 m/s, and 42 m/s. A numerical study of an axisymmetric trapped vortex combustor was carried out by using two-dimensional and three-dimensional computational domains. A comparison study was conducted between Reynolds Averaged Navier Stokes (RANS) k-ε Realizable with enhanced wall treatment and RANS k-ω Shear Stress Transport (SST) models to find the most suitable turbulence model. It was found that the k-ω SST model gives relatively close results to experimental outcomes. The numerical results were validated and showed good agreement with the experimental data. Pressure drop rises with increasing air mass flow rate, and the lowest pressure drop was observed at 0.6 cavity aspect ratio for all air mass flow rates tested, which agrees with the experimental outcome. A mixing enhancement study showed that 30-degree angle air injectors provide improved fuel-air mixing.Keywords: aerodynamic, computational fluid dynamics, propulsion, trapped vortex combustor
Procedia PDF Downloads 861473 Novel Hybrid Ceramic Nanocomposites Fabricated by Rapid Sintering Technology
Authors: Iftikhar Ahmad, Abulhakim Almajid
Abstract:
Alumina (Al2O3) is an attractive structural ceramic however; brittleness turns Al2O3 down for advanced applications. Development of multi-phase phase ceramics systems is promising to curtail the brittleness and the incorporation of strong/elastic graphene, as third phase, into dual phase (Al2O3-SiC) is striking for mechanical upgrading purpose. Thin graphene nanosheets (GNS) were prepared by thermal exfoliation process and reinforced into dual phase ceramic system. The hybrid nanocomposite was consolidated by novel HF-IH (high-frequency induction heating) sintering furnace at 1500 °C under 50 MPa in vacuum conditions. Structural features and grain size of the resulting nanocomposite were analyzed by SEM and TEM whilst the mechanical properties were assessed by microhardness and nanoindentation techniques. The fracture toughness of the hybrid nanocomposites was appraised by direct crack measurement method. Electron microscopic investigations confirmed the preparation of thin (< 10 nm) graphene nanosheets (GNS). HF-IH sintering route condensed the three-phase (GNS-Al2O3-SiC) hybrid nanocomposite system to > 99% relative densities. SEM of the hybrid nanocomposites fractured surfaces revealed even distribution of the nanocomposite constituents and changed in fracture-mode. Structurally, 88% grain reduction into hybrid nanocomposite was also obtained. Mechanically, enhanced fracture toughness (50%) and hardness (53%) were also achieved for hybrid nanocomposites were attained against bench marked monolithic Al2O3.Keywords: alumina, graphene, hybrid nanocomposites, rapid sintering
Procedia PDF Downloads 3801472 Design and Fabrication of ZSO Nanocomposite Thin Film Based NO2 Gas Sensor
Authors: Bal Chandra Yadav, Rakesh K. Sonker, Anjali Sharma, Punit Tyagi, Vinay Gupta, Monika Tomar
Abstract:
In the present study, ZnO doped SnO2 thin films of various compositions were deposited on the surface of a corning substrate by dropping the two sols containing the precursors for composite (ZSO) with subsequent heat treatment. The sensor materials used for selective detection of nitrogen dioxide (NO2) were designed from the correlation between the sensor composition and gas response. The available NO2 sensors are operative at very high temperature (150-800 °C) with low sensing response (2-100) even in higher concentrations. Efforts are continuing towards the development of NO2 gas sensor aiming with an enhanced response along with a reduction in operating temperature by incorporating some catalysts or dopants. Thus in this work, a novel sensor structure based on ZSO nanocomposite has been fabricated using chemical route for the detection of NO2 gas. The structural, surface morphological and optical properties of prepared films have been studied by using X-ray diffraction (XRD), Atomic force microscopy (AFM), Transmission electron microscope (TEM) and UV-visible spectroscopy respectively. The effect of thickness variation from 230 nm to 644 nm of ZSO composite thin film has been studied and the ZSO thin film of thickness ~ 460 nm was found to exhibit the maximum gas sensing response ~ 2.1×103 towards 20 ppm NO2 gas at an operating temperature of 90 °C. The average response and recovery times of the sensor were observed to be 3.51 and 6.91 min respectively. Selectivity of the sensor was checked with the cross-exposure of vapour CO, acetone, IPA, CH4, NH3 and CO2 gases. It was found that besides the higher sensing response towards NO2 gas, the prepared ZSO thin film was also highly selective towards NO2 gas.Keywords: ZSO nanocomposite thin film, ZnO tetrapod structure, NO2 gas sensor, sol-gel method
Procedia PDF Downloads 3401471 Performance Analysis of 5G for Low Latency Transmission Based on Universal Filtered Multi-Carrier Technique and Interleave Division Multiple Access
Authors: A. Asgharzadeh, M. Maroufi
Abstract:
5G mobile communication system has drawn more and more attention. The 5G system needs to provide three different types of services, including enhanced Mobile BroadBand (eMBB), massive machine-type communication (mMTC), and ultra-reliable and low-latency communication (URLLC). Universal Filtered Multi-Carrier (UFMC), Filter Bank Multicarrier (FBMC), and Filtered Orthogonal Frequency Division Multiplexing (f-OFDM) are suggested as a well-known candidate waveform for the coming 5G system. Themachine-to-machine (M2M) communications are one of the essential applications in 5G, and it involves exchanging of concise messages with a very short latency. However, in UFMC systems, the subcarriers are grouped into subbands but f-OFDM only one subband covers the entire band. Furthermore, in FBMC, a subband includes only one subcarrier, and the number of subbands is the same as the number of subcarriers. This paper mainly discusses the performance of UFMC with different parameters for the UFMC system. Also, paper shows that UFMC is the best choice outperforming OFDM in any case and FBMC in case of very short packets while performing similarly for long sequences with channel estimation techniques for Interleave Division Multiple Access (IDMA) systems.Keywords: universal filtered multi-carrier technique, UFMC, interleave division multiple access, IDMA, fifth-generation, subband
Procedia PDF Downloads 1361470 Chocomerr (Merr Leaves Chocolate) Alternative Food in Increasing Breastmilk Quantity
Authors: Rara Wulan Anggareni, Narita Putri, Riski Septianing Astuti
Abstract:
Breastfeeding is a key to prevent mortality and morbidity in children. It is also the second highest risk responsible for Disability Adjusted Life Years (DALYs) among children below five years old. UNICEF estimates that during 1995 – 2003, there are only about 38% infants in developing countries who get to be exclusively breastfed during the first six months of their lives. According to Demography and Health Survey in Indonesia 2007, breastfeed practice rate still considered as low which is about 41%. One of the factors causing the low breastfeed practice rate in Indonesia is the anxiety and postpartum depression, and also the weanling dilemma in which mother feels that her breastmilk cannot suffice infant needs. Those factors finally resulting into low or even stopped production of breastmilk. Breastmilk production can be enhanced by consuming food containing phytosterol and lactogoga effect. Food with the highest phytosterol level is Sauropus androgynus (L.) Merr leaf (merr leaf). In this study, we made alternative food which named Chocomerr for breastfeeding mothers. Chocomerr consists of merr leaves which have lactogoga effect and chocolate for relaxation. Based on organoleptic tests conducted towards 2 age groups, which are 18 – 21 and 25 – 40 years old, this product gets good acceptance in taste, texture, and colour categories. Chocomerr can be used as an alternative way for increasing breastmilk production to aim for the decreasing number of DALYs among children aged under 5 years old.Keywords: breastfeeding, increasing, chocolate, merr leaves
Procedia PDF Downloads 4361469 Impact of Keeping Drug-Addicted Mothers and Newborns Together: Enhancing Bonding, Interoception Learning, and Thriving for Newborns with Positive Effects on Attachment and Child Development
Authors: Poteet Frances, Glovinski Ira
Abstract:
INTRODUCTION: The interoceptive nervous system continuously senses chemical and anatomical changes and helps you recognize, understand, and feel what’s going on inside your body so it is important for energy regulation, memory, affect, and sense of self. A newborn needs predictable routines rather than confusion/chaos to make connections between internal experiences and emotions. AIM: Current legal protocols of removing babies from drug-addicted mothers impact the critical window of bonding. The newborn’s brain is social and the attachment process influences a child’s development which begins immediately after birth through nourishment, comfort, and protection. DESCRIPTION: Our project aims to educate drug-addicted mothers, and medical, nursing, and social work professionals on interoceptive concepts and practices to sustain the mother/newborn relationship. A mother’s interoceptive knowledge predicts children’s emotion regulation and social skills in middle childhood. CONCLUSION: When mothers develop an awareness of their inner bodily sensations, they can self-regulate and be emotionally available to co-regulate (support their newborn during distressing emotions and sensations). Our project has enhanced relationship preservation (mothers understand how their presence matters) and the overall mother/newborn connection.Keywords: drug-addiction, interoception, legal, mothers, newborn, self-regulation
Procedia PDF Downloads 611468 Overcoming Usability Challenges of Educational Math Apps: Designing and Testing a Mobile Graphing Calculator
Authors: M. Tomaschko
Abstract:
The integration of technology in educational settings has gained a lot of interest. Especially the use of mobile devices and accompanying mobile applications can offer great potentials to complement traditional education with new technologies and enrich students’ learning in various ways. Nevertheless, the usability of the deployed mathematics application is an indicative factor to exploit the full potential of technology enhanced learning because directing cognitive load toward using an application will likely inhibit effective learning. For this reason, the purpose of this research study is the identification of possible usability issues of the mobile GeoGebra Graphing Calculator application. Therefore, eye tracking in combination with task scenarios, think aloud method, and a SUS questionnaire were used. Based on the revealed usability issues, the mobile application was iteratively redesigned and assessed in order to verify the success of the usability improvements. In this paper, the identified usability issues are presented, and recommendations on how to overcome these concerns are provided. The main findings relate to the conception of a mathematics keyboard and the interaction design in relation to an equation editor, as well as the representation of geometrical construction tools. In total, 12 recommendations were formed to improve the usability of a mobile graphing calculator application. The benefit to be gained from this research study is not only the improvement of the usability of the existing GeoGebra Graphing Calculator application but also to provide helpful hints that could be considered from designers and developers of mobile math applications.Keywords: GeoGebra, graphing calculator, math education, smartphone, usability
Procedia PDF Downloads 1341467 Roof Integrated Photo Voltaic with Air Collection on Glasgow School of Art Campus Building: A Feasibility Study
Authors: Rosalie Menon, Angela Reid
Abstract:
Building integrated photovoltaic systems with air collectors (hybrid PV-T) have proved successful however there are few examples of their application in the UK. The opportunity to pull heat from behind the PV system to contribute to a building’s heating system is an efficient use of waste energy and its potential to improve the performance of the PV array is well documented. As part of Glasgow School of Art’s estate expansion, the purchase and redevelopment of an existing 1950’s college building was used as a testing vehicle for the hybrid PV-T system as an integrated element of the upper floor and roof. The primary objective of the feasibility study was to determine if hybrid PV-T was technically and financially suitable for the refurbished building. The key consideration was whether the heat recovered from the PV panels (to increase the electrical efficiency) can be usefully deployed as a heat source within the building. Dynamic thermal modelling (IES) and RetScreen Software were used to carry out the feasibility study not only to simulate overshadowing and optimise the PV-T locations but also to predict the atrium temperature profile; predict the air load for the proposed new 4 No. roof mounted air handling units and to predict the dynamic electrical efficiency of the PV element. The feasibility study demonstrates that there is an energy reduction and carbon saving to be achieved with each hybrid PV-T option however the systems are subject to lengthy payback periods and highlights the need for enhanced government subsidy schemes to reward innovation with this technology in the UK.Keywords: building integrated, photovoltatic thermal, pre-heat air, ventilation
Procedia PDF Downloads 1721466 Gradient Index Metalens for WLAN Applications
Authors: Akram Boubakri, Fethi Choubeni, Tan Hoa Vuong, Jacques David
Abstract:
The control of electromagnetic waves is a key aim of several researches over the past decade. In this regard, Metamaterials have shown a strong ability to manipulate the electromagnetic waves on a subwavelength scales thanks to its unconventional properties that are not available in natural materials such as negative refraction index, super imaging and invisibility cloaking. Metalenses were used to avoid some drawbacks presented by conventional lenses since focusing with conventional lenses suffered from the limited resolution because they were only able to focus the propagating wave component. Nevertheless, Metalenses were able to go beyond the diffraction limit and enhance the resolution not only by collecting the propagating waves but also by restoring the amplitude of evanescent waves that decay rapidly when going far from the source and that contains the finest details of the image. Metasurfaces have many mechanical advantages over three-dimensional metamaterial structures especially the ease of fabrication and a smaller required volume. Those structures have been widely used for antenna performance improvement and to build flat metalenses. In this work, we showed that a well-designed metasurface lens operating at the frequency of 5.9GHz, has efficiently enhanced the radiation characteristics of a patch antenna and can be used for WLAN applications (IEEE 802.11 a). The proposed metasurface lens is built with a geometrically modified unit cells which lead to a change in the response of the lens at different position and allow the control of the wavefront beam of the incident wave thanks to the gradient refractive index.Keywords: focusing, gradient index, metasurface, metalens, WLAN Applications
Procedia PDF Downloads 2551465 AI-Powered Personalized Teacher Training for Enhancing Language Teaching Competence
Authors: Ororho Maureen Ekpelezie
Abstract:
This study investigates language educators' perceptions and experiences regarding AI-driven personalized teacher training modules in Awka South, Anambra State, Nigeria. Utilizing a stratified random sampling technique, 25 schools across various educational levels were selected to ensure a representative sample. A total of 1000 questionnaires were distributed among language teachers in these schools, focusing on assessing their perceptions and experiences related to AI-driven personalized teacher training. With an impressive response rate of 99.1%, the study garnered valuable insights into language teachers' attitudes towards AI-driven personalized teacher training and its effectiveness in enhancing language teaching competence. The quantitative analysis revealed predominantly positive perceptions towards AI-driven personalized training modules, indicating their efficacy in addressing individual learning needs. However, challenges were identified in the long-term retention and transfer of AI-enhanced skills, underscoring the necessity for further refinement of personalized training approaches. Recommendations stemming from these findings emphasize the need for continued refinement of training methodologies and the development of tailored professional development programs to alleviate educators' concerns. Overall, this research enriches discussions on the integration of AI technology in teacher training and professional development, with the aim of bolstering language teaching competence and effectiveness in educational settings.Keywords: language teacher training, AI-driven personalized learning, professional development, language teaching competence, personalized teacher training
Procedia PDF Downloads 421464 Impregnation Reduction Method for the Preparation of Platinum-Nickel/Carbon Black Alloy Nanoparticles as Faor Electrocatalyst
Authors: Maryam Kiani
Abstract:
In order to enhance the efficiency and stability of an electrocatalyst for formic acid electro-oxidation reaction (FAOR), we developed a method to create Pt/Ni nanoparticles with carbon black. These nanoparticles were prepared using a simple impregnation reduction technique. During the observation, it was found that the nanoparticles had a spherical shape. Additionally, the average particle size remained consistent, falling within the range of about 4 nm. This approach aimed to obtain a loaded Pt-based electrocatalyst that would exhibit improved performance and stability when used in FAOR applications. By utilizing the impregnation reduction method and incorporating Ni nanoparticles along with Pt, we sought to enhance the catalytic properties of the material. By incorporating Ni atoms into the Pt structure, the electronic properties of Pt are modified, resulting in a delay in the chemisorption of harmful CO intermediate species. This modification also promotes the dehydrogenation pathway of the formic acid oxidation reaction (FAOR). Through electrochemical analysis, it has been observed that the Pt3Ni-C catalyst exhibits enhanced performance in FAOR compared to traditional Pt catalysts. This means that the addition of Ni atoms improves the efficiency and effectiveness of the Pt3Ni-C catalyst in facilitating the FAOR process. Overall, the utilization of these alloy nanoparticles as electrocatalysts represents a significant advancement in fuel cell technology.Keywords: electrocatalyst, impregnation reduction method, formic acid electro-oxidation reaction, fuel cells
Procedia PDF Downloads 1301463 Use of Polymeric Materials in the Architectural Preservation
Authors: F. Z. Benabid, F. Zouai, A. Douibi, D. Benachour
Abstract:
These Fluorinated polymers and polyacrylics have known a wide use in the field of historical monuments. PVDF provides a great easiness to processing, a good UV resistance and good chemical inertia. Although the quality of physical characteristics of the PMMA and its low price with a respect to PVDF, its deterioration against UV radiations limits its use as protector agent for the stones. On the other hand, PVDF/PMMA blend is a compromise of a great development in the field of architectural restoration, since it is the best method in term of quality and price to make new polymeric materials having enhanced properties. Films of different compositions based on the two polymers within an adequate solvent (DMF) were obtained to perform an exposition to artificial ageing and to the salted fog, a spectroscopic analysis (FTIR and UV) and optical analysis (refractive index). Based on its great interest in the field of building, a variety of standard tests has been elaborated for the first time at the central laboratory of ENAP (Souk-Ahras) in order to evaluate our blend performance. The obtained results have allowed observing the behavior of the different compositions of the blend under various tests. The addition of PVDF to PMMA enhances the properties of this last to know the exhibition to the natural and artificial ageing and to the saline fog. On the other hand, PMMA enhances the optical properties of the blend. Finally, 70/30 composition of the blend is in concordance with results of previous works and it is the adequate proportion for an eventual application.Keywords: blend, PVDF, PMMA, preservation, historic monuments
Procedia PDF Downloads 3091462 Prefabricated Integral Design of Building Services
Authors: Mina Mortazavi
Abstract:
The common approach in the construction industry for restraint requirements in existing structures or new constructions is to have Non-Structural Components (NSCs) assembled and installed on-site by different MEP subcontractors. This leads to a lack of coordination and higher costs, construction time, and complications due to inaccurate building information modelling (BIM) systems. Introducing NSCs to a consistent BIM system from the beginning of the design process and considering their seismic loads in the analysis and design process can improve coordination and reduce costs and time. One solution is to use prefabricated mounts with attached MEPs delivered as an integral module. This eliminates the majority of coordination complications and reduces design and installation costs and time. An advanced approach is to have as many NSCs as possible installed in the same prefabricated module, which gives the structural engineer the opportunity to consider the involved component weights and locations in the analysis and design of the prefabricated support. This efficient approach eliminates coordination and access issues, leading to enhanced quality control. This research will focus on the existing literature on modular sub-assemblies that are integrated with architectural and structural components. Modular MEP systems take advantage of the precision provided by BIM tools to meet exact requirements and achieve a buildable design every time. Modular installations that include MEP systems provide efficient solutions for the installation of MEP services or components.Keywords: building services, modularisation, prefabrication, integral building design
Procedia PDF Downloads 721461 Effect of Steel Fibers on M30 Fly Ash Concrete
Authors: Saksham
Abstract:
Concrete's versatility and affordability make it a highly competitive building material capable of meeting diverse requirements. However, the increasing demands placed on structures and the need for enhanced durability and performance have driven the development of distinct cementitious materials and concrete composites. One significant aspect of this advancement is the utilization of waste materials from industries, such as fly ash, to improve concrete's properties. Fly ash, a byproduct of coal combustion can enhance concrete's strength and durability while reducing environmental impact. Additionally, steel fibers can enhance concrete's toughness and crack resistance, contributing to improved structural performance. The experimental study aims to optimize the proportion of ingredients in M30-grade concrete, incorporating fly ash and steel fibers. By varying fly ash content (10% to 30%) and steel fiber dosage (0% to 1.5%), the research seeks to determine the optimal combination for achieving the desired compressive strength. Two sets of experiments are conducted: one focusing on varying fly ash content while keeping steel fiber dosage constant, and the other focusing on varying steel fiber dosage while keeping other parameters fixed. Through systematic testing, molding, curing, and evaluation according to specified standards, the research aims to analyze the impact of fly ash and steel fibers on concrete's compressive strength. The findings have the potential to inform engineers about optimized concrete mix designs that balance performance, cost-effectiveness, and sustainability, advancing toward more resilient and environmentally friendly building practices.Keywords: concrete, sustainability, durability, compressive strength
Procedia PDF Downloads 541460 Enhancement of Rice Straw Composting Using UV Induced Mutants of Penicillium Strain
Authors: T. N. M. El Sebai, A. A. Khattab, Wafaa M. Abd-El Rahim, H. Moawad
Abstract:
Fungal mutant strains have produced cellulase and xylanase enzymes, and have induced high hydrolysis with enhanced of rice straw. The mutants were obtained by exposing Penicillium strain to UV-light treatments. Screening and selection after treatment with UV-light were carried out using cellulolytic and xylanolytic clear zones method to select the hypercellulolytic and hyperxylanolytic mutants. These mutants were evaluated for their cellulase and xylanase enzyme production as well as their abilities for biodegradation of rice straw. The mutant 12 UV/1 produced 306.21% and 209.91% cellulase and xylanase, respectively, as compared with the original wild type strain. This mutant showed high capacity of rice straw degradation. The effectiveness of tested mutant strain and that of wild strain was compared in relation to enhancing the composting process of rice straw and animal manures mixture. The results obtained showed that the compost product of inoculated mixture with mutant strain (12 UV/1) was the best compared to the wild strain and un-inoculated mixture. Analysis of the composted materials showed that the characteristics of the produced compost were close to those of the high quality standard compost. The results obtained in the present work suggest that the combination between rice straw and animal manure could be used for enhancing the composting process of rice straw and particularly when applied with fungal decomposer accelerating the composting process.Keywords: rice straw, composting, UV mutants, Penicillium
Procedia PDF Downloads 2841459 Effect of the Keyword Strategy on Lexical Semantic Acquisition: Recognition, Retention and Comprehension in an English as Second Language Context
Authors: Fatima Muhammad Shitu
Abstract:
This study seeks to investigate the effect of the keyword strategy on lexico–semantic acquisition, recognition, retention and comprehension in an ESL context. The aim of the study is to determine whether the keyword strategy can be used to enhance acquisition. As a quasi- experimental research, the objectives of the study include: To determine the extent to which the scores obtained by the subjects, who were trained on the use of the keyword strategy for acquisition, differ at the pre-tests and the post–tests and also to find out the relationship in the scores obtained at these tests levels. The sample for the study consists of 300 hundred undergraduate ESL Students in the Federal College of Education, Kano. The seventy-five lexical items for acquisition belong to the lexical field category known as register, and they include Medical, Agriculture and Photography registers (MAP). These were divided in the ratio twenty-five (25) lexical items in each lexical field. The testing technique was used to collect the data while the descriptive and inferential statistics were employed for data analysis. For the purpose of testing, the two kinds of tests administered at each test level include the WARRT (Word Acquisition, Recognition, and Retention Test) and the CCPT (Cloze Comprehension Passage Test). The results of the study revealed that there are significant differences in the scores obtained between the pre-tests, and the post–tests and there are no correlations in the scores obtained as well. This implies that the keyword strategy has effectively enhanced the acquisition of the lexical items studied.Keywords: keyword, lexical, semantics, strategy
Procedia PDF Downloads 3131458 Can 3D Virtual Prototyping Conquers the Apparel Industry?
Authors: Evridiki Papachristou, Nikolaos Bilalis
Abstract:
Imagine an apparel industry where fashion design does not begin with a paper-and-pen drawing which is then translated into pattern and later to a 3D model where the designer tries out different fabrics, colours and contrasts. Instead, imagine a fashion designer in the future who produces that initial fashion drawing in a three-dimensional space and won’t leave that environment until the product is done, communicating his/her ideas with the entire development team in true to life 3D. Three-dimensional (3D) technology - while well established in many other industrial sectors like automotive, aerospace, architecture and industrial design, has only just started to open up a whole range of new opportunities for apparel designers. The paper will discuss the process of 3D simulation technology enhanced by high quality visualization of data and its capability to ensure a massive competitiveness in the market. Secondly, it will underline the most frequent problems & challenges that occur in the process chain when various partners in the production of textiles and apparel are working together. Finally, it will offer a perspective of how the Virtual Prototyping Technology will make the global textile and apparel industry change to a level where designs will be visualized on a computer and various scenarios modeled without even having to produce a physical prototype. This state-of-the-art 3D technology has been described as transformative and“disruptive”comparing to the process of the way apparel companies develop their fashion products today. It provides the benefit of virtual sampling not only for quick testing of design ideas, but also reducing process steps and having more visibility.A so called“digital asset” that can be used for other purposes such as merchandising or marketing.Keywords: 3D visualization, apparel, virtual prototyping, prototyping technology
Procedia PDF Downloads 5921457 Forecasting Unusual Infection of Patient Used by Irregular Weighted Point Set
Authors: Seema Vaidya
Abstract:
Mining association rule is a key issue in data mining. In any case, the standard models ignore the distinction among the exchanges, and the weighted association rule mining does not transform on databases with just binary attributes. This paper proposes a novel continuous example and executes a tree (FP-tree) structure, which is an increased prefix-tree structure for securing compacted, discriminating data about examples, and makes a fit FP-tree-based mining system, FP enhanced capacity algorithm is used, for mining the complete game plan of examples by illustration incessant development. Here, this paper handles the motivation behind making remarkable and weighted item sets, i.e. rare weighted item set mining issue. The two novel brightness measures are proposed for figuring the infrequent weighted item set mining issue. Also, the algorithm are handled which perform IWI which is more insignificant IWI mining. Moreover we utilized the rare item set for choice based structure. The general issue of the start of reliable definite rules is troublesome for the grounds that hypothetically no inciting technique with no other person can promise the rightness of influenced theories. In this way, this framework expects the disorder with the uncommon signs. Usage study demonstrates that proposed algorithm upgrades the structure which is successful and versatile for mining both long and short diagnostics rules. Structure upgrades aftereffects of foreseeing rare diseases of patient.Keywords: association rule, data mining, IWI mining, infrequent item set, frequent pattern growth
Procedia PDF Downloads 4001456 A Study of the Effects of Nurse Innovation on Service Quality and Service Experience
Authors: Rhay-Hung Weng, Ching-Yuan Huang, Wan-Ping Chen
Abstract:
Recently, many hospitals have put much emphasis upon the development of nurse innovation. The present study aimed to clarify how nurse innovation is related to medical service quality and medical service experience. This study adopted questionnaire-survey method with nurses and customers of the inpatient wards from three Taiwanese hospitals as the research subjects. After pairing, there were 294 valid questionnaires. Hierarchical regression analysis was utilized to test the possible impact of nurse innovation on medical service quality and experience. In terms of the dimensions of nurse innovation, “innovation behavior” ranked the highest (3.24), followed by knowledge creation and innovation diffusion; in terms of the degree of the medical service quality, 'reliability' ranked the highest (4.35). As for the degree of the medical service experience, 'feel experience' ranked the highest (4.44). All dimensions of nurse innovation have no significant effects on medical service quality and medical service experience. Of these three dimensions of nurse innovation, the level of innovation behavior was perceived by the nurses as the highest. The study found that nurse innovation has no significant effects on medical service quality and medical service experience. Managers shall provide sufficient resources and budget for fostering innovation development and encourage their nurses to develop nursing innovation for patents. The education and training courses on “patient-centered ” shall be enhanced among hospital nurses. Health care managers shall also explore the difficulties about innovation diffusion and find the solutions for nurses.Keywords: innovation, employee innovative behavior, service quality, service experience
Procedia PDF Downloads 3361455 Influence of Ground Granulated Blast Furnace Slag on Geotechnical Characteristics of Jarosite Waste
Authors: Chayan Gupta, Arun Prasad
Abstract:
The quick evolution of industrialization causes the scarcity of precious land. Thus, it is vital need to influence the R&D societies to achieve sustainable, economic and social benefits from huge utilization of waste for universal aids. The current study promotes the influence of steel industries waste i.e. ground granulated blast furnace slag (GGBS) in geotechnical properties of jarosite waste (solid waste residues produced from hydrometallurgy operations involved in extraction of Zinc). Numerous strengths tests (unconfined compression (qu) and splitting tensile strength (qt)) are conducted on jarosite-GGBS blends (GGBS, 10-30%) with different curing periods (7, 28 & 90 days). The results indicate that both qu and qt increase with the increase in GGBS content along with curing periods. The increased strength with the addition of GGBS is also observed from microstructural study, which illustrates the occurrence of larger agglomeration of jarosite-GGBS blend particles. The Freezing-Thawing (F-T) durability analysis is also conducted for all the jarosite-GGBS blends and found that the reduction in unconfined compressive strength after five successive F-T cycles enhanced from 62% (natural jarosite) to 48, 42 and 34% at 7, 14 and 28 days curing periods respectively for stabilized jarosite-GGBS samples containing 30% GGBS content. It can be concluded from this study that blending of cementing additives (GGBS) with jarosite waste resulted in a significant improvement in geotechnical characteristics.Keywords: jarosite, GGBS, strength characteristics, microstructural study, durability analysis
Procedia PDF Downloads 171