Search results for: active snubber cell
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6937

Search results for: active snubber cell

5287 Transcriptional Differences in B cell Subpopulations over the Course of Preclinical Autoimmunity Development

Authors: Aleksandra Bylinska, Samantha Slight-Webb, Kevin Thomas, Miles Smith, Susan Macwana, Nicolas Dominguez, Eliza Chakravarty, Joan T. Merrill, Judith A. James, Joel M. Guthridge

Abstract:

Background: Systemic Lupus Erythematosus (SLE) is an interferon-related autoimmune disease characterized by B cell dysfunction. One of the main hallmarks is a loss of tolerance to self-antigens leading to increased levels of autoantibodies against nuclear components (ANAs). However, up to 20% of healthy ANA+ individuals will not develop clinical illness. SLE is more prevalent among women and minority populations (African, Asian American and Hispanics). Moreover, African Americans have a stronger interferon (IFN) signature and develop more severe symptoms. The exact mechanisms involved in ethnicity-dependent B cell dysregulation and the progression of autoimmune disease from ANA+ healthy individuals to clinical disease remains unclear. Methods: Peripheral blood mononuclear cells (PBMCs) from African (AA) and European American (EA) ANA- (n=12), ANA+ (n=12) and SLE (n=12) individuals were assessed by multimodal scRNA-Seq/CITE-Seq methods to examine differential gene signatures in specific B cell subsets. Library preparation was done with a 10X Genomics Chromium according to established protocols and sequenced on Illumina NextSeq. The data were further analyzed for distinct cluster identification and differential gene signatures in the Seurat package in R and pathways analysis was performed using Ingenuity Pathways Analysis (IPA). Results: Comparing all subjects, 14 distinct B cell clusters were identified using a community detection algorithm and visualized with Uniform Manifold Approximation Projection (UMAP). The proportion of each of those clusters varied by disease status and ethnicity. Transitional B cells trended higher in ANA+ healthy individuals, especially in AA. Ribonucleoprotein high population (HNRNPH1 elevated, heterogeneous nuclear ribonucleoprotein, RNP-Hi) of proliferating Naïve B cells were more prevalent in SLE patients, specifically in EA. Interferon-induced protein high population (IFIT-Hi) of Naive B cells are increased in EA ANA- individuals. The proportion of memory B cells and plasma cells clusters tend to be expanded in SLE patients. As anticipated, we observed a higher signature of cytokine-related pathways, especially interferon, in SLE individuals. Pathway analysis among AA individuals revealed an NRF2-mediated Oxidative Stress response signature in the transitional B cell cluster, not seen in EA individuals. TNFR1/2 and Sirtuin Signaling pathway genes were higher in AA IFIT-Hi Naive B cells, whereas they were not detected in EA individuals. Interferon signaling was observed in B cells in both ethnicities. Oxidative phosphorylation was found in age-related B cells (ABCs) for both ethnicities, whereas Death Receptor Signaling was found only in EA patients in these cells. Interferon-related transcription factors were elevated in ABCs and IFIT-Hi Naive B cells in SLE subjects of both ethnicities. Conclusions: ANA+ healthy individuals have altered gene expression pathways in B cells that might drive apoptosis and subsequent clinical autoimmune pathogenesis. Increases in certain regulatory pathways may delay progression to SLE. Further, AA individuals have more elevated activation pathways that may make them more susceptible to SLE.

Keywords:

Procedia PDF Downloads 175
5286 Photocapacitor Integrating Solar Energy Conversion and Energy Storage

Authors: Jihuai Wu, Zeyu Song, Zhang Lan, Liuxue Sun

Abstract:

Solar energy is clean, open, and infinite, but solar radiation on the earth is fluctuating, intermittent, and unstable. So, the sustainable utilization of solar energy requires a combination of high-efficient energy conversion and low-loss energy storage technologies. Hence, a photo capacitor integrated with photo-electrical conversion and electric-chemical storage functions in single device is a cost-effective, volume-effective and functional-effective optimal choice. However, owing to the multiple components, multi-dimensional structure and multiple functions in one device, especially the mismatch of the functional modules, the overall conversion and storage efficiency of the photocapacitors is less than 13%, which seriously limits the development of the integrated system of solar conversion and energy storage. To this end, two typical photocapacitors were studied. A three-terminal photocapacitor was integrated by using perovskite solar cell as solar conversion module and symmetrical supercapacitor as energy storage module. A function portfolio management concept was proposed the relationship among various efficiencies during photovoltaic conversion and energy storage process were clarified. By harmonizing the energy matching between conversion and storage modules and seeking the maximum power points coincide and the maximum efficiency points synchronize, the overall efficiency of the photocapacitor surpassed 18 %, and Joule efficiency was closed to 90%. A voltage adjustable hybrid supercapacitor (VAHSC) was designed as energy storage module, and two Si wafers in series as solar conversion module, a three-terminal photocapacitor was fabricated. The VAHSC effectively harmonizes the energy harvest and storage modules, resulting in the current, voltage, power, and energy match between both modules. The optimal photocapacitor achieved an overall efficiency of 15.49% and Joule efficiency of 86.01%, along with excellent charge/discharge cycle stability. In addition, the Joule efficiency (ηJoule) was defined as the energy ratio of discharge/charge of the devices for the first time.

Keywords: joule efficiency, perovskite solar cell, photocapacitor, silicon solar cell, supercapacitor

Procedia PDF Downloads 86
5285 The Role of NAD+ and Nicotinamide (Vitamin B3) in Glaucoma: A Literature Review

Authors: James Pietris

Abstract:

Glaucoma is a collection of irreversible optic neuropathies which, if left untreated, lead to severe visual field loss. These diseases are a leading cause of blindness across the globe and are estimated to affect approximately 80 million people, particularly women and people of Asian descent.1This represents a major burden on healthcare systems worldwide. Recently, there has been increasing interest in the potential of nicotinamide (vitamin B3) as a novel option in the management of glaucoma. This review aims to analyse the currently available literature to determine whether there is evidence of an association between nicotinamide adenine dinucleotide (NAD+) and glaucomatous optic neuropathy and whether nicotinamide has the potential to prevent or reverse these effects. The literature showed a strong connection between reduced NAD+ levels and retinal ganglion cell dysfunction through multiple different studies. There is also evidence of the positive effect of nicotinamide supplementation on retinal ganglion cell function in models of mouse glaucoma and in a study involving humans. Based on the literature findings, a recommendation has been made that more research into the efficacy, appropriate dosing, and potential side effects of nicotinamide supplementation is needed before it can be definitively determined whether it is appropriate for widespread prophylactic and therapeutic use against glaucoma in humans.

Keywords: glaucoma, nicotinamide, vitamin B3, optic neuropathy

Procedia PDF Downloads 106
5284 Angiomotin Regulates Integrin Beta 1-Mediated Endothelial Cell Migration and Angiogenesis

Authors: Yuanyuan Zhang, Yujuan Zheng, Giuseppina Barutello, Sumako Kameishi, Kungchun Chiu, Katharina Hennig, Martial Balland, Federica Cavallo, Lars Holmgren

Abstract:

Angiogenesis describes that new blood vessels migrate from pre-existing ones to form 3D lumenized structure and remodeling. During directional migration toward the gradient of pro-angiogenic factors, the endothelial cells, especially the tip cells need filopodia to sense the environment and exert the pulling force. Of particular interest are the integrin proteins, which play an essential role in focal adhesion in the connection between migrating cells and extracellular matrix (ECM). Understanding how these biomechanical complexes orchestrate intrinsic and extrinsic forces is important for our understanding of the underlying mechanisms driving angiogenesis. We have previously identified Angiomotin (Amot), a member of Amot scaffold protein family, as a promoter for endothelial cell migration in vitro and zebrafish models. Hence, we established inducible endothelial-specific Amot knock-out mice to study normal retinal angiogenesis as well as tumor angiogenesis. We found that the migration ratio of the blood vessel network to the edge was significantly decreased in Amotec- retinas at postnatal day 6 (P6). While almost all the Amot defect tip cells lost migration advantages at P7. In consistence with the dramatic morphology defect of tip cells, there was a non-autonomous defect in astrocytes, as well as the disorganized fibronectin expression pattern correspondingly in migration front. Furthermore, the growth of transplanted LLC tumor was inhibited in Amot knockout mice due to fewer vasculature involved. By using MMTV-PyMT transgenic mouse model, there was a significantly longer period before tumors arised when Amot was specifically knocked out in blood vessels. In vitro evidence showed that Amot binded to beta-actin, Integrin beta 1 (ITGB1), Fibronectin, FAK, Vinculin, major focal adhesion molecules, and ITGB1 and stress fibers were distinctly induced by Amot transfection. Via traction force microscopy, the total energy (force indicater) was found significantly decreased in Amot knockdown cells. Taken together, we propose that Amot is a novel partner of the ITGB1/Fibronectin protein complex at focal adhesion and required for exerting force transition between endothelial cell and extracellular matrix.

Keywords: angiogenesis, angiomotin, endothelial cell migration, focal adhesion, integrin beta 1

Procedia PDF Downloads 238
5283 ZnMn₂O₄ / Carbon Composite Recycled from Spent Zinc-Carbon Batteries for Zn-Air Battery Applications

Authors: Nivedha L. K., Dhinesh Kumar Murugaiah, Ganapathi Rao Kandregula, Raja Murugan, Kothandaraman R.

Abstract:

ZnMn₂O₄, a non-precious metal catalyst for oxygen reduction reaction (ORR), was recycled from the spent primary Zn-C battery and utilized in the zinc-air battery. Catalysts exhibiting facile ORR kinetics are a requirement for building efficient Zinc-air batteries. ZnMn₂O₄ demonstrated excellent catalytic activity towards ORR in an aqueous alkaline medium, with an onset potential of 0. 90 V vs. RHE. The recycled ZnMn₂O₄ manifested a similar performance (at ~ 1.0 V) as the chemically synthesized one with a specific capacity of 210 mAh gzn-¹ at a constant current discharge of 15 mA cm-². A single electrode potential study was done to comprehend the losses at the electrodes and to identify the limiting electrode. Interestingly, the cathode was improving during discharge, which is in contrast to the expectation due to the accumulation of peroxide around the catalytic layer. Although the anode has exhibited minimal polarization, beyond a capacity of 210 mAh g-¹, the supersaturation of electrolyte occurs with zincate ion causing precipitation of ZnO on the cell components, thereby leading to sudden polarization of the cell and hence zinc electrode act as a limiting electrode in this system.

Keywords: battery recycling, oxygen reduction reaction, single electrode measurement, Zn-air battery, ZnMn₂O₄ recovery

Procedia PDF Downloads 73
5282 Mechanism of in Vitro Inhibition of Alpha-Amylase, Alpha-Glucosidase by Ethanolic Extracts of Polyalthia Longifolia, Its in Vitro Cytotoxicity on L6, Vero Cell-Lines and Influence of Glucose Uptake by Rat Hemi-Diaphragm

Authors: P. Gayathri, G. P. Jeyanthi

Abstract:

The bark of Polyalthia longifolia is used in ayurvedic system of medicine for the manangement of various ailments including diabetes mellitus. The bark of P. longifolia extracts was extracted using various polar and non-polar solvents and tested for inhibition of alpha-amylase and alpha-glucosidase among which the ethanolic extracts were found to be more potent. The ethanolic extracts of the bark were tested for the in vitro inhibition of alpha-amylase using starch as substrate and alpha-glucosidase using p-nitro phenyl alpha-D-gluco pyranoside as substrate to establish its in vitro antidiabetic effect. The mechanism of inhibition was determined by Dixon plot and Cornish-Bowden plot. The cytotoxic effect of the extract was tested on L6 and Vero cell-lines. The extract was partially purified by TLC. The individual effect of the ethanolic extract, TLC fractions and its combinatorial effect with insulin and glibenclamide on glucose uptake by rat hemi-diaphragm were studied.Results revealed that the ethanolic extracts of Polyalthia longifolia bark exhibited competitive inhibition of alpha-amylase and alpha-glucosidase. The extracts were also found not to be cytotoxic at the highest dose of 1 mg/mL. Glucose uptake study revealed that the extract alone and when combined with insulin, decreased the glucose uptake when compared to insulin control, however the purified TLC fractions exhibited significantly higher (p<0.05) glucose uptake by the rat hemi-diaphragm when compared to insulin. The study shows various possible mechanism of in vitro antidiabetic effect of the P. longifolia bark.

Keywords: alpha-amylase, alpha-glucosidase, dixon, cornish-bowden, L6 , Vero cell-lines, glucose uptake, polyalthia longifolia bark, ethanolic extract, TLC fractions

Procedia PDF Downloads 469
5281 Designing a Thermal Management System for Lithium Ion Battery Packs in Electric Vehicles

Authors: Ekin Esen, Mohammad Alipour, Riza Kizilel

Abstract:

Rechargeable lithium-ion batteries have been replacing lead-acid batteries for the last decade due to their outstanding properties such as high energy density, long shelf life, and almost no memory effect. Besides these, being very light compared to lead acid batteries has gained them their dominant place in the portable electronics market, and they are now the leading candidate for electric vehicles (EVs) and hybrid electric vehicles (HEVs). However, their performance strongly depends on temperature, and this causes some inconveniences for their utilization in extreme temperatures. Since weather conditions vary across the globe, this situation limits their utilization for EVs and HEVs and makes a thermal management system obligatory for the battery units. The objective of this study is to understand thermal characteristics of Li-ion battery modules for various operation conditions and design a thermal management system to enhance battery performance in EVs and HEVs. In the first part of our study, we investigated thermal behavior of commercially available pouch type 20Ah LiFePO₄ (LFP) cells under various conditions. Main parameters were chosen as ambient temperature and discharge current rate. Each cell was charged and discharged at temperatures of 0°C, 10°C, 20°C, 30°C, 40°C, and 50°C. The current rate of charging process was 1C while it was 1C, 2C, 3C, 4C, and 5C for discharge process. Temperatures of 7 different points on the cells were measured throughout charging and discharging with N-type thermocouples, and a detailed temperature profile was obtained. In the second part of our study, we connected 4 cells in series by clinching and prepared 4S1P battery modules similar to ones in EVs and HEVs. Three reference points were determined according to the findings of the first part of the study, and a thermocouple is placed on each reference point on the cells composing the 4S1P battery modules. In the end, temperatures of 6 points in the module and 3 points on the top surface were measured and changes in the surface temperatures were recorded for different discharge rates (0.2C, 0.5C, 0.7C, and 1C) at various ambient temperatures (0°C – 50°C). Afterwards, aluminum plates with channels were placed between the cells in the 4S1P battery modules, and temperatures were controlled with airflow. Airflow was provided with a regular compressor, and the effect of flow rate on cell temperature was analyzed. Diameters of the channels were in mm range, and shapes of the channels were determined in order to make the cell temperatures uniform. Results showed that the designed thermal management system could help keeping the cell temperatures in the modules uniform throughout charge and discharge processes. Other than temperature uniformity, the system was also beneficial to keep cell temperature close to the optimum working temperature of Li-ion batteries. It is known that keeping the temperature at an optimum degree and maintaining uniform temperature throughout utilization can help obtaining maximum power from the cells in battery modules for a longer time. Furthermore, it will increase safety by decreasing the risk of thermal runaways. Therefore, the current study is believed to be beneficial for wider use of Li batteries for battery modules of EVs and HEVs globally.

Keywords: lithium ion batteries, thermal management system, electric vehicles, hybrid electric vehicles

Procedia PDF Downloads 163
5280 Electoral Violence and Women in Politics: A Case Study of Pakistan

Authors: Mariam Arif

Abstract:

The objective of the current study is to find out the electoral violence against women and its implications on their political participation. This paper is a qualitative study to get an in-depth analysis of the phenomenon. This study used questionnaires and interviews for findings. This paper attempts to study electoral violence and women in politics in Pakistan. The study concluded that women are subjected to different categories of violence defined as physical violence that involves sexual and bodily harm to a politically active woman or to people associated with her. Social and psychological violence includes class difference, stress, social limitations, family pressure and character assassination. Economic violence is defined as a systematic restriction of access to economic resources available to women thus hinder women active participation in politics (elections). All these violence against women in elections are threat to the integrity of the electoral process of the country that eventually affects women’s participation as voters, party candidates, election officials and political party leaders. It also undermines the free and fair democratic process. This qualitative paper shows a significant negative relationship between electoral violence and women participation in politics.

Keywords: elections, politics, violence, women

Procedia PDF Downloads 159
5279 Elastoplastic Modified Stillinger Weber-Potential Based Discretized Virtual Internal Bond and Its Application to the Dynamic Fracture Propagation

Authors: Dina Kon Mushid, Kabutakapua Kakanda, Dibu Dave Mbako

Abstract:

The failure of material usually involves elastoplastic deformation and fracturing. Continuum mechanics can effectively deal with plastic deformation by using a yield function and the flow rule. At the same time, it has some limitations in dealing with the fracture problem since it is a theory based on the continuous field hypothesis. The lattice model can simulate the fracture problem very well, but it is inadequate for dealing with plastic deformation. Based on the discretized virtual internal bond model (DVIB), this paper proposes a lattice model that can account for plasticity. DVIB is a lattice method that considers material to comprise bond cells. Each bond cell may have any geometry with a finite number of bonds. The two-body or multi-body potential can characterize the strain energy of a bond cell. The two-body potential leads to the fixed Poisson ratio, while the multi-body potential can overcome the limitation of the fixed Poisson ratio. In the present paper, the modified Stillinger-Weber (SW), a multi-body potential, is employed to characterize the bond cell energy. The SW potential is composed of two parts. One part is the two-body potential that describes the interatomic interactions between particles. Another is the three-body potential that represents the bond angle interactions between particles. Because the SW interaction can represent the bond stretch and bond angle contribution, the SW potential-based DVIB (SW-DVIB) can represent the various Poisson ratios. To embed the plasticity in the SW-DVIB, the plasticity is considered in the two-body part of the SW potential. It is done by reducing the bond stiffness to a lower level once the bond reaches the yielding point. While before the bond reaches the yielding point, the bond is elastic. When the bond deformation exceeds the yielding point, the bond stiffness is softened to a lower value. When unloaded, irreversible deformation occurs. With the bond length increasing to a critical value, termed the failure bond length, the bond fails. The critical failure bond length is related to the cell size and the macro fracture energy. By this means, the fracture energy is conserved so that the cell size sensitivity problem is relieved to a great extent. In addition, the plasticity and the fracture are also unified at the bond level. To make the DVIB able to simulate different Poisson ratios, the three-body part of the SW potential is kept elasto-brittle. The bond angle can bear the moment before the bond angle increment is smaller than a critical value. By this method, the SW-DVIB can simulate the plastic deformation and the fracturing process of material with various Poisson ratios. The elastoplastic SW-DVIB is used to simulate the plastic deformation of a material, the plastic fracturing process, and the tunnel plastic deformation. It has been shown that the current SW-DVIB method is straightforward in simulating both elastoplastic deformation and plastic fracture.

Keywords: lattice model, discretized virtual internal bond, elastoplastic deformation, fracture, modified stillinger-weber potential

Procedia PDF Downloads 98
5278 Common Regulatory Mechanisms Reveals Links between Aberrant Glycosylation and Biological Hallmarks in Cancer

Authors: Jahanshah Ashkani, Kevin J. Naidoo

Abstract:

Glycosylation is the major posttranslational modification (PTM) process in cellular development. In tumour development, it is marked by structural alteration of carbohydrates (glycans) that is the result of aberrant glycosylation. Altered glycan structures affect cell surface ligand-receptor interactions that interfere with the regulation of cell adhesion, migration, and proliferation. The resulting changes in glycan biosynthesis pathways originate from altered expression of glycosyltransferases and glycosidases. While the alteration in glycosylation patterns is a recognized “hallmark of cancer”, the influential overview of the biology of cancer proposes eight hallmarks with no explicit suggestion to connectivity with glycosylation. Recently, we have discovered a connection between the glycosyltransferase gene expression and cancer type and subtype. Here we present an association between aberrant glycosylation and the biological hallmarks of breast cancer by exploring the common regulatory mechanisms at the genomic scale. The result of this study bridges the glycobiological and biological pathways that are accepted hallmarks of cancer by connecting their common regulatory pathways. This is an impetus for further investigation as target therapies of breast cancer are very likely to be uncovered from this.

Keywords: aberrant glycosylation, biological hallmarks, breast cancer, regulatory mechanism

Procedia PDF Downloads 254
5277 Exploring Health-Related Inequalities between Private, Public and Active Transport Users, Using Relative Importance Index: Case Study on Santiago de Chile

Authors: Beatriz Mella Lira, Karla Yohannessen, Robin Hickman

Abstract:

The aim of the paper is recognising inequalities through the self-assessment of health-related factors, in the context of daily mobilities in Santiago de Chile. Human capabilities will be used as the theoretical basis for the recognition and assessment of these factors regarding the functioning (what people are currently able to do) and capabilities (what people want to achieve and what is valuable for them), reflecting differences across social groups and among types of transport users. The self-assessment of health-related factors considers perceptions of stress, physical effort, proximity to other transport users, pollution, safety, and comfort. The types of transport users are classified as: private (cars, taxis, colectivos, motos), public (buses and metro) and active (bicycles and walking). The methodology follows a capability-based questionnaire, which was applied in different areas of Santiago de Chile, considering concepts extracted from the human capabilities list. The self-assessment of these health-related factors examines the context of peoples’ mobilities for performing their daily activities, considering socioeconomic differences as income, age, gender, disabilities, residence location and primary mode choice. The paper uses Relative Importance Index (RII) for weighting the relative influence or valuation of the factors. The respondents were asked to rate the importance of each factor on a scale from 1 to 5, in an ascending order of importance. The results suggest that these health-related factors impact not just the perceptions of users, but their well-being and their propensity for achieving their capabilities and the things they value in life. The paper is focused on the development of an applicable approach, measuring factors that should be included in transport project appraisal, as a more comprehensive and complementary method.

Keywords: active transport, health, human capabilities, Santiago de Chile, transport inequalities, transportation planning, urban planning

Procedia PDF Downloads 189
5276 Increasing Photosynthetic H2 Production by in vivo Expression of Re-Engineered Ferredoxin-Hydrogenase Fusion Protein in the Green Alga Chlamydomonas reinhardtii

Authors: Dake Xiong, Ben Hankamer, Ian Ross

Abstract:

The most urgent challenge of our time is to replace the depleting resources of fossil fuels by sustainable environmentally friendly alternatives. Hydrogen is a promising CO2-neutral fuel for a more sustainable future especially when produced photo-biologically. Hydrogen can be photosynthetically produced in unicellular green alga like Chlamydomonas reinhardtii, catalysed by the inducible highly active and bidirectional [FeFe]-hydrogenase enzymes (HydA). However, evolutionary and physiological constraints severely restrict the hydrogen yield of algae for industrial scale-up, mainly due to its competition among other metabolic pathways on photosynthetic electrons. Among them, a major challenge to be resolved is the inferior competitiveness of hydrogen production (catalysed by HydA) with NADPH production (catalysed by ferredoxin-NADP+-reductase (FNR)), which is essential for cell growth and takes up ~95% of photosynthetic electrons. In this work, the in vivo hydrogen production efficiency of mutants with ferredoxin-hydrogenase (Fd*-HydA1*) fusion protein construct, where the electron donor ferredoxin (Fd*) is fused to HydA1* and expressed in the model organism C. reinhardtii was investigated. Once Fd*-HydA1* fusion gene is expressed in algal cells, the fusion enzyme is able to draw the redistributed photosynthetic electrons and use them for efficient hydrogen production. From preliminary data, mutants with Fd*-HydA1* transgene showed a ~2-fold increase in the photosynthetic hydrogen production rate compared with its parental strain, which only possesses the native HydA in vivo. Therefore, a solid method of having more efficient hydrogen production in microalgae can be achieved through the expression of the synthetic enzymes.

Keywords: Chlamydomonas reinhardtii, ferredoxin, fusion protein, hydrogen production, hydrogenase

Procedia PDF Downloads 262
5275 Energy and Exergy Analysis of Anode-Supported and Electrolyte–Supported Solid Oxide Fuel Cells Gas Turbine Power System

Authors: Abdulrazzak Akroot, Lutfu Namli

Abstract:

Solid oxide fuel cells (SOFCs) are one of the most promising technologies since they can produce electricity directly from fuel and generate a lot of waste heat that is generally used in the gas turbines to promote the general performance of the thermal power plant. In this study, the energy, and exergy analysis of a solid oxide fuel cell/gas turbine hybrid system was proceed in MATLAB to examine the performance characteristics of the hybrid system in two different configurations: anode-supported model and electrolyte-supported model. The obtained results indicate that if the fuel utilization factor reduces from 0.85 to 0.65, the overall efficiency decreases from 64.61 to 59.27% for the anode-supported model whereas it reduces from 58.3 to 56.4% for the electrolyte-supported model. Besides, the overall exergy reduces from 53.86 to 44.06% for the anode-supported model whereas it reduces from 39.96 to 33.94% for the electrolyte-supported model. Furthermore, increasing the air utilization factor has a negative impact on the electrical power output and the efficiencies of the overall system due to the reduction in the O₂ concentration at the cathode-electrolyte interface.

Keywords: solid oxide fuel cell, anode-supported model, electrolyte-supported model, energy analysis, exergy analysis

Procedia PDF Downloads 152
5274 Study of Non-hodgkin’s Lymphoma

Authors: Zidani Abla

Abstract:

Lymphoma is a common type of cancer that affects the lymphatic system, including the lymph nodes, spleen and other associated organs. There are two main types of lymphoma: Hodgkin's lymphoma and non-Hodgkin's lymphoma. The epidemiological, clinical and biological features of lymphoma are poorly studied in Algeria. The main objective of our study is to investigate the epidemiological, clinical, paraclinical, etiological, evolutionary and biological characteristics of non-Hodgkin's lymphoma (NHL) in the hematology department of the University Hospital Center (HUC) of Batna. This is a study of 10 patients diagnosed at Batna University Hospital. 70% were male and 30% female (sex ratio M/F= 2.33). Median age was 51.7 years. Pain, especially abdominal pain, was the main reason for consultation. Stage IV predominated (40%), followed by stage III (20%). Abdominal adenopathies (34%) were the most abundant. Secondary hepatic localization was predominant. Large B-cell NHL predominated, accounting for 60% of cases, followed by small B-cell NHL (30%). Serology for hepatitis B and C, and human immunodeficiency virus (HIV) was negative. Biologically, a predominance of hyperleukocytosis, polynuclear neutrophilic leukocytosis, lymphopenia and hypoalbuminemia were present in the majority of cases. In summary, our results remain to be compared with other works for other periods and other regions in order to generalize lymphoma percentages for the entire Algerian population.

Keywords: non Hodgkin's lymphoma, epidemiology, clinic, biology

Procedia PDF Downloads 28
5273 Microbial Fuel Cells: Performance and Applications

Authors: Andrea Pietrelli, Vincenzo Ferrara, Bruno Allard, Francois Buret, Irene Bavasso, Nicola Lovecchio, Francesca Costantini, Firas Khaled

Abstract:

This paper aims to show some applications of microbial fuel cells (MFCs), an energy harvesting technique, as clean power source to supply low power device for application like wireless sensor network (WSN) for environmental monitoring. Furthermore, MFC can be used directly as biosensor to analyse parameters like pH and temperature or arranged in form of cluster devices in order to use as small power plant. An MFC is a bioreactor that converts energy stored in chemical bonds of organic matter into electrical energy, through a series of reactions catalysed by microorganisms. We have developed a lab-scale terrestrial microbial fuel cell (TMFC), based on soil that acts as source of bacteria and flow of nutrient and a lab-scale waste water microbial fuel cell (WWMFC), where waste water acts as flow of nutrient and bacteria. We performed large series of tests to exploit the capability as biosensor. The pH value has strong influence on the open circuit voltage (OCV) delivered from TMFCs. We analyzed three condition: test A and B were filled with same soil but changing pH from 6 to 6.63, test C was prepared using a different soil with a pH value of 6.3. Experimental results clearly show how with higher pH value a higher OCV was produced; indeed reactors are influenced by different values of pH which increases the voltage in case of a higher pH value until the best pH value of 7 is achieved. The influence of pH on OCV of lab-scales WWMFC was analyzed at pH value of 6.5, 7, 7.2, 7.5 and 8. WWMFCs are influenced from temperature more than TMFCs. We tested the power performance of WWMFCs considering four imposed values of ambient temperature. Results show how power performance increase proportionally with higher temperature values, doubling the output power from 20° to 40°. The best value of power produced from our lab-scale TMFC was equal to 310 μW using peaty soil, at 1KΩ, corresponding to a current of 0.5 mA. A TMFC can supply proper energy to low power devices of a WSN by means of the design of three stages scheme of an energy management system, which adapts voltage level of TMFC to those required by a WSN node, as 3.3V. Using a commercial DC/DC boost converter, that needs an input voltage of 700 mV, the current source of 0.5 mA, charges a capacitor of 6.8 mF until it will have accumulated an amount of charge equal to 700 mV in a time of 10 s. The output stage includes an output switch that close the circuit after a time of 10s + 1.5ms because the converter can boost the voltage from 0.7V to 3.3V in 1.5 ms. Furthermore, we tested in form of clusters connected in series up to 20 WWMFCs, we have obtained a high voltage value as output, around 10V, but low current value. MFC can be considered a suitable clean energy source to be used to supply low power devices as a WSN node or to be used directly as biosensor.

Keywords: energy harvesting, low power electronics, microbial fuel cell, terrestrial microbial fuel cell, waste-water microbial fuel cell, wireless sensor network

Procedia PDF Downloads 207
5272 Inf-γ and Il-2 Asses the Therapeutic Response in Anti-tuberculosis Patients at Jamot Hospital Yaounde, Cameroon

Authors: Alexandra Emmanuelle Membangbi, Jacky Njiki Bikoï, Esther Del-florence Moni Ndedi, Marie Joseph Nkodo Mindimi, Donatien Serge Mbaga, Elsa Nguiffo Makue, André Chris Mikangue Mbongue, Martha Mesembe, George Ikomey Mondinde, Eric Walter Perfura-yone, Sara Honorine Riwom Essama

Abstract:

Background: Tuberculosis (TB) is one of the top lethal infectious diseases worldwide. In recent years, interferon-γ (INF-γ) release assays (IGRAs) have been established as routine tests for diagnosing TB infection. However, produced INF-γ assessment failed to distinguish active TB (ATB) from latent TB infection (LTBI), especially in TB epidemic areas. In addition to IFN-γ, interleukin-2 (IL-2), another cytokine secreted by activated T cells, is also involved in immune response against Mycobacterium tuberculosis. The aim of the study was to assess the capacity of IFN-γ and IL2 to evaluate the therapeutic response of patients on anti-tuberculosis treatment. Material and Methods: We conducted a cross-sectional study in the Pneumonology Departments of the Jamot Hospital in Yaoundé between May and August 2021. After signed the informed consent, the sociodemographic data, as well as 5 mL of blood, were collected in the crook of the elbow of each participant. Sixty-one subjects were selected (n= 61) and divided into 4 groups as followed: group 1: resistant tuberculosis (n=13), group 2: active tuberculosis (n=19), group 3 cured tuberculosis (n=16), and group 4: presumed healthy persons (n=13). The cytokines of interest were determined using an indirect Enzyme-linked Immuno-Sorbent Assay (ELISA) according to the manufacturer's recommendations. P-values < 0.05 were interpreted as statistically significant. All statistical calculations were performed using SPSS version 22.0 Results: The results showed that men were more 14/61 infected (31,8%) with a high presence in active and resistant TB groups. The mean age was 41.3±13.1 years with a 95% CI = [38.2-44.7], the age group with the highest infection rate was ranged between 31 and 40 years. The IL-2 and INF-γ means were respectively 327.6±160.6 pg/mL and 26.6±13.0 pg/mL in active tuberculosis patients, 251.1±30.9 pg/mL and 21.4±9.2 pg/mL in patients with resistant tuberculosis, while it was 149.3±93.3 pg/mL and 17.9±9.4 pg/mL in cured patients, 15.1±8.4 pg/mL and 5.3±2.6 pg/mL in participants presumed healthy (p <0.0001). Significant differences in IFN-γ and IL-2 rates were observed between the different groups. Conclusion: Monitoring the serum levels of INF-γ and IL-2 would be useful to evaluate the therapeutic response of anti-tuberculosis patients, particularly in the both cytokines association case, that could improve the accuracy of routine examinations.

Keywords: antibiotic therapy, interferon gamma, interleukin 2, tuberculosis

Procedia PDF Downloads 117
5271 Toxicological Effects of Atmospheric Fine Particulate Matter on Human Bronchial Epithelial Cells: Metabolic Activation, Genotoxicity and Epigenetic Modifications

Authors: M. Borgie, Z. Dagher, F. Ledoux, A. Verdin, F. Cazier, H. Greige, P. Shirali, D. Courcot

Abstract:

In October 2013, the International Agency for Research on Cancer (IARC) classified outdoor air pollution and fine particulate matter (PM2.5) as carcinogenic to humans. Despite the clearly relationship established by epidemiological studies between PM exposure and the onset of respiratory and cardiovascular diseases, uncertainties remain about the physiopathological mechanisms responsible for these diseases. The aim of this work was to evaluate the toxicological effects of two samples of atmospheric PM2.5 collected at urban and rural sites on human bronchial epithelial cells, BEAS-2B, especially to investigate the metabolic activation of organic compounds, the alteration of epigenetic mechanisms (i.e. microRNAs genes expression), the phosphorylation of H2AX and the telomerase activity. Our results showed a significant increase in CYP1A1, CYP1B1, and AhRR genes expression, miR-21 gene expression, H2AX phosphorylation and telomerase activity in BEAS-2B cells after their exposure to PM2.5, both in a dose and site-dependent manner. These results showed that PM2.5, especially urban PM, are able to induce the expression of metabolizing enzymes which can provide metabolic biotransformation of organic compounds into more toxic and carcinogenic metabolites, and to induce the expression of the oncomiR miR-21 which promotes cell growth and enhances tumor invasion and metastasis in lung cancer. In addition, our results have highlighted the role of PM2.5 in the activation of telomerase, which can maintain the telomeres length and subsequently preventing cell death, and have also demonstrated the ability of PM2.5 to induce DNA breaks and thus to increase the risk of mutations or chromosomal translocations that lead to genomic instability. All these factors may contribute to cell abnormalities, and thus the development of cancer.

Keywords: BEAS-2B cells, carcinogenesis, epigenetic alterations and genotoxicity, PM2.5

Procedia PDF Downloads 382
5270 Cloning and Expression of Azurin: A Protein Having Antitumor and Cell Penetrating Ability

Authors: Mohsina Akhter

Abstract:

Cancer has become a wide spread disease around the globe and takes many lives every year. Different treatments are being practiced but all have potential side effects with somewhat less specificity towards target sites. Pseudomonas aeruginosa is known to secrete a protein azurin with special anti-cancer function. It has unique cell penetrating peptide comprising of 18 amino acids that have ability to enter cancer cells specifically. Reported function of Azurin is to stabilize p53 inside the tumor cells and induces apoptosis through Bax mediated cytochrome c release from mitochondria. At laboratory scale, we have made recombinant azurin through cloning rpTZ57R/T-azu vector into E.coli strain DH-5α and subcloning rpET28-azu vector into E.coli BL21-CodonPlus (DE3). High expression was ensured with IPTG induction at different concentrations then optimized high expression level at 1mM concentration of IPTG for 5 hours. Purification has been done by using Ni+2 affinity chromatography. We have concluded that azurin can be a remarkable improvement in cancer therapeutics if it produces on a large scale. Azurin does not enter into the normal cells so it will prove a safe and secure treatment for patients and prevent them from hazardous anomalies.

Keywords: azurin, pseudomonas aeruginosa, cancer, therapeutics

Procedia PDF Downloads 311
5269 Lanthanum Fluoride with Embedded Silicon Nanocrystals: A Novel Material for Future Electronic Devices

Authors: Golam Saklayen, Sheikh Rashel al Ahmed, Ferdous Rahman, Ismail Abu Bakar

Abstract:

Investigation on Lanthanum Fluoride LaF3 layer embedding Silicon Nanocrystals (Si-NCs) fabricated using a novel one-step chemical method has been reported in this presentation. Application of this material has been tested for low-voltage operating non-volatile memory and Schottkey-junction solar cell. Colloidal solution of Si-NCs in hydrofluoric acid (HF) was prepared from meso-porous silicon by ultrasonic vibration (sonication). This solution prevents the Si-NCs to be oxidized. On a silicon (Si) substrate, LaCl3 solution in HCl is allowed to react with the colloidal solution of prepared Si-NCs. Since this solution contains HF, LaCl3 reacts with HF and produces LaF3 crystals that deposits on the silicon substrate as a layer embedding Si-NCs. This a novel single step chemical way of depositing LaF3 insulating layer embedding Si-NCs. The X-Ray diffraction of the deposited layer shows a polycrystalline LaF3 deposition on silicon. A non-stoichiometric LaF3 layer embedding Si-NCs was found by EDX analysis. The presence of Si-NCs was confirmed by SEM. FTIR spectroscopy of the deposited LaF3 powder also confirmed the presence of Si-NCs. The size of Si-NCs was found to be inversely proportional to the ultrasonic power. After depositing proper contacts on the back of Si and LaF3, the devices have been tested as a non-volatile memory and solar cell. A memory window of 525 mV was obtained at a programming and erasing bias of 2V. The LaF3 films with Si NCs showed strong absorption and was also found to decrease optical transmittance than pure LaF3 film of same thickness. The I-V characteristics of the films showed a dependency on the incident light intensity where current changed under various light illumination. Experimental results show a lot of promise for Si-NCs-embedded LaF3 layer to be used as an insulating layer in MIS devices as well as an photoactive material in Schottkey junction solar cells.

Keywords: silicon nanocrystals (Si NCs), LaF3, colloidal solution, Schottky junction solar cell

Procedia PDF Downloads 392
5268 The Role of Chemokine Family, CXCL-10 Urine as a Marker Diagnosis of Active Lung Tuberculosis in HIV/AIDS Patients

Authors: Dwitya Elvira, Raveinal Masri, Rohayat Bilmahdi

Abstract:

Human Immunodeficiency Virus (HIV) pandemic increased significantly worldwide. The rise in cases of HIV/AIDS was also followed by an increase in the incidence of opportunistic infection, with tuberculosis being the most opportunistic infection found in HIV/AIDS and the main cause of mortality in HIV/AIDS patients. Diagnosis of tuberculosis in HIV/AIDS patients is often difficult because of the uncommon symptom in HIV/AIDS patients compared to those without the disease. Thus, diagnostic tools are required that are more effective and efficient to diagnose tuberculosis in HIV/AIDS. CXCL-10/IP-10 is a chemokine that binds to the CXCR3 receptor found in HIV/AIDS patients with a weakened immune system. Tuberculosis infection in HIV/AIDS activates chemokine IP-10 in urine, which is used as a marker for diagnosis of infection. The aim of this study was to prove whether IP-10 urine can be a biomarker diagnosis of active lung tuberculosis in HIV-AIDS patients. Design of this study is a cross sectional study involving HIV/AIDS patients with lung tuberculosis as the subject of this study. Forty-seven HIV/AIDS patients with tuberculosis based on clinical and biochemical laboratory were asked to collect urine samples and IP-10/CXCL-10 urine being measured using ELISA method with 18 healthy human urine samples as control. Forty-seven patients diagnosed as HIV/AIDS were included as a subject of this study. HIV/AIDS were more common in male than in women with the percentage in male 85.1% vs. 14.5% of women. In this study, most diagnosed patients were aged 31-40 years old, followed by those 21-30 years, and > 40 years old, with one case diagnosed at age less than 20 years of age. From the result of the urine IP-10 using ELISA method, there was significant increase of the mean value of IP-10 urine in patients with TB-HIV/AIDS co-infection compared to the healthy control with mean 61.05 pg/mL ± 78.01 pg/mL vs. mean 17.2 pg/mL. Based on this research, there was significant increase of urine IP-10/CXCL-10 in active lung tuberculosis with HIV/AIDS compared to the healthy control. From this finding, it is necessary to conduct further research into whether urine IP-10/CXCL-10 plays a significant role in TB-HIV/AIDS co-infection, which can also be used as a biomarker in the early diagnosis of TB-HIV.

Keywords: chemokine, HIV/AIDS, IP-10 urine, tuberculosis

Procedia PDF Downloads 233
5267 Evaluation Rabbit Serum of the Immunodominant Proteins of Mycobacterium avium Paratuberculosis Extracts

Authors: Maryam Hashemi, Nematollah Razmi, Rasool Madani

Abstract:

M. paratuberculosis is a slow growing mycobactin dependent mycobacterial species known to be the causative agent of Johne’s disease in all species of domestic ruminants worldwide. JD is characterized by gradual weight loss; decreased milk production. Excretion of the organism may occur for prolonged periods (1 to 2.5 years) before the onset of clinical disease. In recent years, researchers focus on identification a specific antigen of MAP to use in diagnosis test and preparation of effective vaccine. In this paper, for production of polyclonal antibody against proteins of Mycobacterium avium paratuberculosis cell wall a rabbit immunization at a certain time period with antigen. After immunization of the animal, blood samples were collected from the rabbit for producing enriched serum. Antibodies were purified with ion exchange chromatography. For exact measurement of interaction, western blotting test was used and as it is demonstrated in the study, sharp bands appear in nitrocellulose paper and specific bands were 50 and 150 KD molecular weight. These were indicating immunodominant proteins.

Keywords: immunodominant, paratuberculosis, Western blotting, cell wall proteins, protein purification

Procedia PDF Downloads 254
5266 Library Screening and Evaluation of Mycobacterium tuberculosis Ketol-Acid Reductoisomerase Inhibitors

Authors: Vagolu S. Krishna, Shan Zheng, Estharla M. Rekha, Luke W. Guddat, Dharmarajan Sriram

Abstract:

Tuberculosis (TB) remains a major threat to human health. This due to the fact that current drug treatments are less than optimal as well as the rising occurrence of multi drug-resistant and extensively drug-resistant strains of the etiological agent, Mycobacterium tuberculosis (Mt). Given the wide-spread significance of this disease, we have undertaken a design and evaluation program to discover new anti-TB drug leads. Here, our attention is focused on ketol-acid reductoisomerase (KARI), the second enzyme in the branched-chain amino acid biosynthesis pathway. Importantly, this enzyme is present in bacteria but not in humans, making it an attractive proposition for drug discovery. In the present work, we used high-throughput virtual screening to identify seventeen potential inhibitors of KARI using the Birla Institute of Technology and Science in-house database. Compounds were selected based on high docking scores, which were assigned as the result of favourable interactions between the compound and the active site of KARI. The Ki values for two leads, compounds 14 and 16 are 3.71 and 3.06 µM, respectively for Mt KARI. To assess the mode of binding, 100 ns molecular dynamics simulations for these two compounds in association with Mt KARI were performed and showed that the complex was stable with an average RMSD of less than 2.5 Å for all atoms. Compound 16 showed an MIC of 2.06 ± 0.91 µM and a 1.9 fold logarithmic reduction in the growth of Mt in an infected macrophage model. The two compounds exhibited low toxicity against murine macrophage RAW 264.7 cell lines. Thus, both compounds are promising candidates for development as an anti-TB drug leads.

Keywords: ketol-acid reductoisomerase, macrophage, molecular docking and dynamics, tuberculosis

Procedia PDF Downloads 122
5265 Analysis of Metamaterial Permeability on the Performance of Loosely Coupled Coils

Authors: Icaro V. Soares, Guilherme L. F. Brandao, Ursula D. C. Resende, Glaucio L. Siqueira

Abstract:

Electrical energy can be wirelessly transmitted through resonant coupled coils that operate in the near-field region. Once in this region, the field has evanescent character, the efficiency of Resonant Wireless Power Transfer (RWPT) systems decreases proportionally with the inverse cube of distance between the transmitter and receiver coils. The commercially available RWPT systems are restricted to short and mid-range applications in which the distance between coils is lesser or equal to the coil size. An alternative to overcome this limitation is applying metamaterial structures to enhance the coupling between coils, thus reducing the field decay along the distance between them. Metamaterials can be conceived as composite materials with periodic or non-periodic structure whose unconventional electromagnetic behaviour is due to its unit cell disposition and chemical composition. This new kind of material has been used in frequency selective surfaces, invisibility cloaks, leaky-wave antennas, among other applications. However, for RWPT it is mainly applied as superlenses which are lenses that can overcome the optical limitation and are made of left-handed media, that is, a medium with negative magnetic permeability and electric permittivity. As RWPT systems usually operate at wavelengths of hundreds of meters, the metamaterial unit cell size is much smaller than the wavelength. In this case, electric and magnetic field are decoupled, therefore the double negative condition for superlenses are not required and the negative magnetic permeability is enough to produce an artificial magnetic medium. In this work, the influence of the magnetic permeability of a metamaterial slab inserted between two loosely coupled coils is studied in order to find the condition that leads to the maximum transmission efficiency. The metamaterial used is formed by a subwavelength unit cell that consist of a capacitor-loaded split ring with an inner spiral that is designed and optimized using the software Computer Simulation Technology. The unit cell permeability is experimentally characterized by the ratio of the transmission parameters between coils measured with and without the presence of the metamaterial slab. Early measurements results show that the transmission coefficient at the resonant frequency after the inclusion of the metamaterial is about three times higher than with just the two coils, which confirms the enhancement that this structure brings to RWPT systems.

Keywords: electromagnetic lens, loosely coupled coils, magnetic permeability, metamaterials, resonant wireless power transfer, subwavelength unit cells

Procedia PDF Downloads 146
5264 Structural Investigation of the GAF Domain Protein BPSL2418 from Burkholderia pseudomallei

Authors: Mona G. Alharbi

Abstract:

A new family of methionine-sulfoxide reductase (Msr) was recently discovered and was named free methionine sulfoxide reductase (fRMsr). This family includes enzymes with a reductase activity toward the free R isomer of a methionine sulfoxide substrate. The fRMsrs have a GAF domain topology, a domain, which was previously identified as having in some cases a cyclic nucleotide phosphodiesterase activity. The classification of fRMsrs as GAF domains revealed a new function can be added to the GAF domain family. Interestingly the four members identified in the fRMsr family share the GAF domain structure and the presence of three conserved cysteines in the active site with free R methionine sulfoxide substrate specificity. This thesis presents the crystal structures of reduced, free Met-SO substrate-bound and MES-bound forms of a new fRMsr from Burkholderia pseudomallei (BPSL2418). BPSL2418 was cloned, overexpressed and purified to enable protein crystallization. The crystallization trials for reduced, Met-SO-bound and MES-bound forms of BPSL2418 were prepared and reasonable crystals of each form were produced. The crystal structures of BPSL2418MES, BPSL2418Met-SO and BPSL2418Reduced were solved at 1.18, 1.4 and 2.0Å, respectively by molecular replacement. The BPSL2418MES crystal belongs to space group P 21 21 21 while BPSL2418Met-SO and BPSL2418Reduced crystals belong to space group P 1 21 1. All three forms share the GAF domain structure of six antiparallel β-strands and four α-helices with connecting loops. The antiparallel β-strands (β1, β2, β5 and β6) are located in the center of the BPSL2418 structure flanked on one side by a three α-helices (α1, α2 and α4) and on the other side by a (loop1, β3, loop2, α3, β4 loop4) unit where loop4 forms a capping flap and covers the active site. The structural comparison of the three forms of BPSL2418 indicates that the catalytically important cysteine is CYS109, where the resolving cysteine is CYS75, which forms a disulfide bond with CYS109. They also suggest that the third conserved cysteine in the active site, CYS85, which is located in α3, is a non-essential cysteine for the catalytic function but it may play a role in the binding of the substrate. The structural comparison of the three forms reveals that conformational changes appear in the active site particularly involving loop4 and CYS109 during catalysis. The 3D structure of BPSL2418 shows strong structure similarity to fRMsrs enzymes, which further suggests that BPSL2418 acts as a free Met-R-SO reductase and shares the catalytic mechanism of fRMsr family.

Keywords: Burkholderia pseudomallei, GAF domain protein, methionine sulfoxide reductase, protein crystallization

Procedia PDF Downloads 386
5263 A Data-Driven Approach for Studying the Washout Effects of Rain on Air Pollution

Authors: N. David, H. O. Gao

Abstract:

Air pollution is a serious environmental threat on a global scale and can cause harm to human health, morbidity and premature mortality. Reliable monitoring and control systems are therefore necessary to develop coping skills against the hazards associated with this phenomenon. However, existing environmental monitoring means often do not provide a sufficient response due to practical and technical limitations. Commercial microwave links that form the infrastructure for transmitting data between cell phone towers can be harnessed to map rain at high tempo-spatial resolution. Rainfall causes a decrease in the signal strength received by these wireless communication links allowing it to be used as a built-in sensor network to map the phenomenon. In this study, we point to the potential that lies in this system to indirectly monitor areas where air pollution is reduced. The relationship between pollutant wash-off and rainfall provides an opportunity to acquire important spatial information about air quality using existing cell-phone tower signals. Since the density of microwave communication networks is high relative to any dedicated sensor arrays, it could be possible to rely on this available observation tool for studying precipitation scavenging on air pollutants, for model needs and more.

Keywords: air pollution, commercial microwave links, rainfall, washout

Procedia PDF Downloads 111
5262 Modeling, Analysis and Control of a Smart Composite Structure

Authors: Nader H. Ghareeb, Mohamed S. Gaith, Sayed M. Soleimani

Abstract:

In modern engineering, weight optimization has a priority during the design of structures. However, optimizing the weight can result in lower stiffness and less internal damping, causing the structure to become excessively prone to vibration. To overcome this problem, active or smart materials are implemented. The coupled electromechanical properties of smart materials, used in the form of piezoelectric ceramics in this work, make these materials well-suited for being implemented as distributed sensors and actuators to control the structural response. The smart structure proposed in this paper is composed of a cantilevered steel beam, an adhesive or bonding layer, and a piezoelectric actuator. The static deflection of the structure is derived as function of the piezoelectric voltage, and the outcome is compared to theoretical and experimental results from literature. The relation between the voltage and the piezoelectric moment at both ends of the actuator is also investigated and a reduced finite element model of the smart structure is created and verified. Finally, a linear controller is implemented and its ability to attenuate the vibration due to the first natural frequency is demonstrated.

Keywords: active linear control, lyapunov stability theorem, piezoelectricity, smart structure, static deflection

Procedia PDF Downloads 387
5261 Telomerase, a Biomarker in Oral Cancer Cell Proliferation and Tool for Its Prevention at Initial Stage

Authors: Shaista Suhail

Abstract:

As cancer populations is increasing sharply, the incidence of oral squamous cell carcinoma (OSCC) has also been expected to increase. Oral carcinogenesis is a highly complex, multistep process which involves accumulation of genetic alterations that lead to the induction of proteins promoting cell growth (encoded by oncogenes), increased enzymatic (telomerase) activity promoting cancer cell proliferation. The global increase in frequency and mortality, as well as the poor prognosis of oral squamous cell carcinoma, has intensified current research efforts in the field of prevention and early detection of this disease. The advances in the understanding of the molecular basis of oral cancer should help in the identification of new markers. The study of the carcinogenic process of the oral cancer, including continued analysis of new genetic alterations, along with their temporal sequencing during initiation, promotion and progression, will allow us to identify new diagnostic and prognostic factors, which will provide a promising basis for the application of more rational and efficient treatments. Telomerase activity has been readily found in most cancer biopsies, in premalignant lesions or germ cells. Activity of telomerase is generally absent in normal tissues. It is known to be induced upon immortalization or malignant transformation of human cells such as in oral cancer cells. Maintenance of telomeres plays an essential role during transformation of precancer to malignant stage. Mammalian telomeres, a specialized nucleoprotein structures are composed of large conctamers of the guanine-rich sequence 5_-TTAGGG-3_. The roles of telomeres in regulating both stability of genome and replicative immortality seem to contribute in essential ways in cancer initiation and progression. It is concluded that activity of telomerase can be used as a biomarker for diagnosis of malignant oral cancer and a target for inactivation in chemotherapy or gene therapy. Its expression will also prove to be an important diagnostic tool as well as a novel target for cancer therapy. The activation of telomerase may be an important step in tumorgenesis which can be controlled by inactivating its activity during chemotherapy. The expression and activity of telomerase are indispensable for cancer development. There are no drugs which can effect extremely to treat oral cancers. There is a general call for new emerging drugs or methods that are highly effective towards cancer treatment, possess low toxicity, and have a minor environment impact. Some novel natural products also offer opportunities for innovation in drug discovery. Natural compounds isolated from medicinal plants, as rich sources of novel anticancer drugs, have been of increasing interest with some enzyme (telomerase) blockage property. The alarming reports of cancer cases increase the awareness amongst the clinicians and researchers pertaining to investigate newer drug with low toxicity.

Keywords: oral carcinoma, telomere, telomerase, blockage

Procedia PDF Downloads 175
5260 Prediction of Extreme Precipitation in East Asia Using Complex Network

Authors: Feng Guolin, Gong Zhiqiang

Abstract:

In order to study the spatial structure and dynamical mechanism of extreme precipitation in East Asia, a corresponding climate network is constructed by employing the method of event synchronization. It is found that the area of East Asian summer extreme precipitation can be separated into two regions: one with high area weighted connectivity receiving heavy precipitation mostly during the active phase of the East Asian Summer Monsoon (EASM), and another one with low area weighted connectivity receiving heavy precipitation during both the active and the retreat phase of the EASM. Besides,a way for the prediction of extreme precipitation is also developed by constructing a directed climate networks. The simulation accuracy in East Asia is 58% with a 0-day lead, and the prediction accuracy is 21% and average 12% with a 1-day and an n-day (2≤n≤10) lead, respectively. Compare to the normal EASM year, the prediction accuracy is lower in a weak year and higher in a strong year, which is relevant to the differences in correlations and extreme precipitation rates in different EASM situations. Recognizing and identifying these effects is good for understanding and predicting extreme precipitation in East Asia.

Keywords: synchronization, climate network, prediction, rainfall

Procedia PDF Downloads 442
5259 Biocompatible Hydrogel Materials Containing Cytostatics for Cancer Treatment

Authors: S. Kudlacik-Kramarczyk, M. Kedzierska, B. Tyliszczak

Abstract:

Recently, the continuous development of medicine and related sciences has been observed. Particular emphasis is directed on the development of biomaterials, i.e., non-toxic, biocompatible and biodegradable materials that may improve the effectiveness of treatment as well as the comfort of patients. This is particularly important in the case of cancer treatment. Currently, there are many methods of cancer treatment based primarily on chemotherapy and the surgical removal of the tumor, but it is worth noting that these therapies also cause many side effects. Among women, the most common cancer is breast cancer. It may be completely cured, but the consequence of treatment is partial or complete breast mastectomy and radiation therapy, which results in severe skin burns. The skin of the patient after radiation therapy is very burned, and therefore requires intensive care and high frequency of dressing changes. The traditional dressing adheres to the burn wounds and does not absorb adequate amount of exudate from injuries and the patient is forced to change the dressing every 2 hours. Therefore, the main purpose was to develop an innovative combination of dressing material with drug carriers that may be used in anti-cancer therapy. The innovation of this solution is the combination of these two products into one system, i.e., a transdermal system with the possibility of a controlled release of the drug- cytostatic. Besides, the possibility of modifying the hydrogel matrix with aloe vera juice provides this material with new features favorable from the point of view of healing processes of burn wounds resulting from the radiation therapy. In this study, hydrogel materials containing protein spheres with the active substance have been obtained as a result of photopolymerization process. The reaction mixture consisting of the protein (albumin) spheres incorporated with cytostatic, chitosan, adequate crosslinking agent and photoinitiator has been subjected to the UV radiation for 2 minutes. Prepared materials have been subjected to the numerous studies including the analysis of cytotoxicity using murine fibroblasts L929. Analysis was conducted based on the mitochondrial activity test (MTT reduction assay) which involves the determining the number of cells characterized by proper metabolism. Hydrogel materials obtained using different amount of crosslinking agents have been subjected to the cytotoxicity analysis. According to the standards, tested material is defined as cytotoxic when the viability of cells after 24 h incubation with this material is lower than 70%. In the research, hydrogel polymer materials containing protein spheres incorporated with the active substance, i.e. a cytostatic, have been developed. Such a dressing may support the treatment of cancer due to the content of the anti-cancer drug - cytostatic, and may also provide a soothing effect on the healing of the burn wounds resulted from the radiation therapy due to the content of aloe vera juice in the hydrogel matrix. Based on the conducted cytotoxicity studies, it may be concluded that the obtained materials do not adversely affect the tested cell lines, therefore they can be subjected to more advanced analyzes.

Keywords: hydrogel polymers, cytostatics, drug carriers, cytotoxicity

Procedia PDF Downloads 132
5258 Knowledge, Attitude, and Practice of Physical Activity among Adults in Alimosho Local Government Area

Authors: Elizabeth Adebomi Akinlotan, Olukemi Odukoya

Abstract:

INTRODUCTION: Physical Activity is defined as activity that involves bodily movement which is done as a part of daily activity in the form of working, playing, active transportation such as walking and also as a form of recreational activity. Physical inactivity has been identified as the fourth leading risk factor for global mortality and morbidity causing an estimated 3.2 million deaths globally and 5.5% of total deaths and it remains a pressing public health issue. There is a shift in the major causes of death from communicable to non-communicable diseases in many developed countries and this is fast becoming the case in developing countries. Physical activity is an important determinant of health and has been associated with lower mortality rates as it reduces the risk of developing chronic diseases such as diabetes mellitus, hypertension, stroke, cancer and osteoporosis. It improves musculoskeletal health, controls weight and reduces symptoms of depression. AIM: The aim is to study the knowledge, attitude and practices of physical activity among adults in Alimosho local government area. METHODOLOGY: This was a descriptive cross sectional survey designed to study the knowledge, attitude and practice of physical activity among adults in Alimosho Local Government Area. The study population were 250 adults aged 18-65 who were residents of the area of more than 6 months duration and had no chronic disease condition or physical disability. A multistage sampling method was used to select the respondents and data was collected using interviewer administered questionnaires. The data was analyzed with the use of EPI-info 2007 statistical software. Chi Square was thereafter used to test the association between selected variables. The level of statistical significance was set at 5% (p<0.05). RESULTS: In general, majority (61.6%) of the respondents had a good knowledge of what physical activity entails, 34.0% had fair knowledge and 4.4% had poor knowledge. There was a favorable attitude towards physical activity among the respondents with 82.4% having an overall positive attitude. Below a third of the respondents (26.4%) reported having a high physical activity (METS > 3001) while 40.0% had moderate (601-3000 METS) levels of activity and 33.6% were inactive (<600METS). There is statistical significance between the gender of the respondent and the levels of physical activity (p=0.0007); 75.2% males reached the minimum recommendations while 24.8% were inactive and 55.0% females reached the minimum recommendations while 45.0% were inactive. Results also showed that of 95 respondents who were satisfied with their levels of physical activity, 33.7% were insufficiently active while 66.3% were either minimally active or highly active and of 110 who were unsatisfied with their levels of physical activity, 72.0% were above the minimum recommendations while 38.0% were insufficiently active. CONCLUSION: In contrast to the high level of knowledge and favorable attitude towards physical activity, there was a lower level of practice of high or moderate physical activities. It is recommended that more awareness should be created on the recommended levels of physical activity especially for the vigorous intensity and moderate intensity physical activity.

Keywords: METS, physical activity, physical inactivity, public health

Procedia PDF Downloads 233