Search results for: Fourier neural operator
1417 Characterization and Degradation Analysis of Tapioca Starch Based Biofilms
Authors: R. R. Ali, W. A. W. A. Rahman, R. M. Kasmani, H. Hasbullah, N. Ibrahim, A. N. Sadikin, U. A. Asli
Abstract:
In this study, tapioca starch which acts as natural polymer was added in the blend in order to produce biodegradable product. Low density polyethylene (LDPE) and tapioca starch blends were prepared by extrusion and the test sample by injection moulding process. Ethylene vinyl acetate (EVA) acts as compatibilizer while glycerol as processing aid was added in the blend. The blends were characterized by using melt flow index (MFI), fourier transform infrared (FTIR) and the effects of water absorption to the sample. As the starch content increased, MFI of the blend was decreased. Tensile testing were conducted shows the tensile strength and elongation at break decreased while the modulus increased as the starch increased. For the biodegradation, soil burial test was conducted and the loss in weight was studied as the starch content increased. Morphology studies were conducted in order to show the distribution between LDPE and starch.Keywords: biopolymers, degradable polymers, starch based polyethylene, injection moulding
Procedia PDF Downloads 2861416 Study on Microbial Pretreatment for Enhancing Enzymatic Hydrolysis of Corncob
Authors: Kessara Seneesrisakul, Erdogan Gulari, Sumaeth Chavadej
Abstract:
The complex structure of lignocellulose leads to great difficulties in converting it to fermentable sugars for the ethanol production. The major hydrolysis impediments are the crystallinity of cellulose and the lignin content. To improve the efficiency of enzymatic hydrolysis, microbial pretreatment of corncob was investigated using two bacterial strains of Bacillus subtilis A 002 and Cellulomonas sp. TISTR 784 (expected to break open the crystalline part of cellulose) and lignin-degrading fungus, Phanerochaete sordida SK7 (expected to remove lignin from lignocellulose). The microbial pretreatment was carried out with each strain under its optimum conditions. The pretreated corncob samples were further hydrolyzed to produce reducing glucose with low amounts of commercial cellulase (25 U•g-1 corncob) from Aspergillus niger. The corncob samples were determined for composition change by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscope (SEM). According to the results, the microbial pretreatment with fungus, P. sordida SK7 was the most effective for enhancing enzymatic hydrolysis, approximately, 40% improvement.Keywords: corncob, enzymatic hydrolysis, glucose, microbial pretreatment
Procedia PDF Downloads 5851415 Proposition of an Intelligent System Based on the Augmented Reality for Warehouse Logistics
Authors: Safa Gharbi, Hayfa Zgaya, Nesrine Zoghlami, Slim Hammadi, Cyril De Barbarin, Laurent Vinatier, Christiane Coupier
Abstract:
Increasing productivity and quality of service, improving the working comfort and ensuring the efficiency of all processes are important challenges for every warehouse. The order picking is recognized to be the most important and costly activity of all the process in warehouses. This paper presents a new approach using Augmented Reality (AR) in the field of logistics. It aims to create a Head-Up Display (HUD) interface with a Warehouse Management System (WMS), using AR glasses. Integrating AR technology allows the optimization of order picking by reducing time of picking process, increasing the efficiency and delivering quickly. The picker will be able to access immediately to all the information needed for his tasks. All the information is displayed when needed in the field of vision (FOV) of the operator, without any action requested from him. These research works are part of the industrial project RASL (Réalité Augmentée au Service de la Logistique) which gathers two major partners: the LAGIS (Laboratory of Automatics, Computer Engineering and Signal Processing in Lille-France) and Genrix Group, European leader in warehouses logistics, who provided his software for implementation, and his logistics expertise.Keywords: Augmented Reality (AR), logistics and optimization, Warehouse Management System (WMS), Head-Up Display (HUD)
Procedia PDF Downloads 4831414 Phase Detection Using Infrared Spectroscopy: A Build up to Inline Gas–Liquid Flow Characterization
Authors: Kwame Sarkodie, William Cheung, Andrew R. Fergursson
Abstract:
The characterization of multiphase flow has gained enormous attention for most petroleum and chemical industrial processes. In order to fully characterize fluid phases in a stream or containment, there needs to be a profound knowledge of the existing composition of fluids present. This introduces a problem for real-time monitoring of fluid dynamics such as fluid distributions, and phase fractions. This work presents a simple technique of correlating absorbance spectrums of water, oil and air bubble present in containment. These spectra absorption outputs are derived by using an Fourier Infrared spectrometer. During the testing, air bubbles were introduced into static water column and oil containment and with light absorbed in the infrared regions of specific wavelength ranges. Attenuation coefficients are derived for various combinations of water, gas and oil which reveal the presence of each phase in the samples. The results from this work are preliminary and viewed as a build up to the design of a multiphase flow rig which has an infrared sensor pair to be used for multiphase flow characterization.Keywords: attenuation, infrared, multiphase, spectroscopy
Procedia PDF Downloads 3681413 NFResNet: Multi-Scale and U-Shaped Networks for Deblurring
Authors: Tanish Mittal, Preyansh Agrawal, Esha Pahwa, Aarya Makwana
Abstract:
Multi-Scale and U-shaped Networks are widely used in various image restoration problems, including deblurring. Keeping in mind the wide range of applications, we present a comparison of these architectures and their effects on image deblurring. We also introduce a new block called as NFResblock. It consists of a Fast Fourier Transformation layer and a series of modified Non-Linear Activation Free Blocks. Based on these architectures and additions, we introduce NFResnet and NFResnet+, which are modified multi-scale and U-Net architectures, respectively. We also use three differ-ent loss functions to train these architectures: Charbonnier Loss, Edge Loss, and Frequency Reconstruction Loss. Extensive experiments on the Deep Video Deblurring dataset, along with ablation studies for each component, have been presented in this paper. The proposed architectures achieve a considerable increase in Peak Signal to Noise (PSNR) ratio and Structural Similarity Index (SSIM) value.Keywords: multi-scale, Unet, deblurring, FFT, resblock, NAF-block, nfresnet, charbonnier, edge, frequency reconstruction
Procedia PDF Downloads 1361412 Fused Structure and Texture (FST) Features for Improved Pedestrian Detection
Authors: Hussin K. Ragb, Vijayan K. Asari
Abstract:
In this paper, we present a pedestrian detection descriptor called Fused Structure and Texture (FST) features based on the combination of the local phase information with the texture features. Since the phase of the signal conveys more structural information than the magnitude, the phase congruency concept is used to capture the structural features. On the other hand, the Center-Symmetric Local Binary Pattern (CSLBP) approach is used to capture the texture information of the image. The dimension less quantity of the phase congruency and the robustness of the CSLBP operator on the flat images, as well as the blur and illumination changes, lead the proposed descriptor to be more robust and less sensitive to the light variations. The proposed descriptor can be formed by extracting the phase congruency and the CSLBP values of each pixel of the image with respect to its neighborhood. The histogram of the oriented phase and the histogram of the CSLBP values for the local regions in the image are computed and concatenated to construct the FST descriptor. Several experiments were conducted on INRIA and the low resolution DaimlerChrysler datasets to evaluate the detection performance of the pedestrian detection system that is based on the FST descriptor. A linear Support Vector Machine (SVM) is used to train the pedestrian classifier. These experiments showed that the proposed FST descriptor has better detection performance over a set of state of the art feature extraction methodologies.Keywords: pedestrian detection, phase congruency, local phase, LBP features, CSLBP features, FST descriptor
Procedia PDF Downloads 4881411 Treatment of Industrial Effluents by Using Polyethersulfone/Chitosan Membrane Derived from Fishery Waste
Authors: Suneeta Kumari, Abanti Sahoo
Abstract:
Industrial effluents treatment is a major problem in the world. All wastewater treatment methods have some problems in the environment. Due to this reason, today many natural biopolymers are being used in the waste water treatment because those are safe for our environment. In this study, synthesis and characterization of polyethersulfone/chitosan membranes (Thin film composite membrane) are carried out. Fish scales are used as raw materials. Different characterization techniques such as Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), scanning electron microscope (SEM) and Thermal gravimetric analysis (TGA) are analysed for the synthesized membrane. The performance of membranes such as flux, rejection, and pore size are also checked. The synthesized membrane is used for the treatment of steel industry waste water where Biochemical oxygen demand (BOD), Chemical Oxygen Demand (COD), pH, colour, Total dissolved solids (TDS), Total suspended solids (TSS), Electrical conductivity (EC) and Turbidity aspects are analysed.Keywords: fish scale, membrane synthesis, treatment of industrial effluents, chitosan
Procedia PDF Downloads 3211410 Investigating Geopolymerization Process of Aluminosilicates and its Impact on the Compressive Strength of the Produced Geopolymers
Authors: Heba Fouad, Tarek M. Madkour, Safwan A. Khedr
Abstract:
This paper investigates multiple factors that impact the formation of geopolymers and their compressive strength to be utilized in construction as an environmentally-friendly material. Bentonite and Kaolinite were thermally calcinated at 750 °C to obtain Metabentonite and Metakaolinite with higher reactivity. Both source materials were activated using a solution of sodium hydroxide (NaOH). Thereafter, samples were cured at different temperatures. The samples were analyzed chemically using a host of spectroscopic techniques. The bulk density and compressive strength of the produced Geopolymer pastes were studied. Findings indicate that the ratio of NaOH solution to source material affects the compressive strength, being optimal at 0.54. Moreover, controlled heat curing was proven effective to improve compressive strength. The existence of characteristic Fourier Transform Infrared Spectroscopy (FTIR) peaks at approximately 1020 cm-1 and 460 cm-1 which corresponds to the asymmetric stretching vibration of Si-O-T and bending vibration of Si-O-Si, hence, confirming the formation of the target geopolymer.Keywords: calcination of metakaolinite, compressive strength, FTIR analysis, geopolymer, green cement
Procedia PDF Downloads 1701409 Multifunctional Nanofiber Based Aerogels: Bridging Electrospinning with Aerogel Fabrication
Authors: Tahira Pirzada, Zahra Ashrafi, Saad Khan
Abstract:
We present a facile and sustainable solid templating approach to fabricate highly porous, flexible and superhydrophobic aerogels of composite nanofibers of cellulose diacetate and silica which are produced through sol gel electrospinning. Scanning electron microscopy, contact angle measurement, and attenuated total reflection-Fourier transform infrared spectrometry are used to understand the structural features of the resultant aerogels while thermogravimetric analysis and differential scanning calorimetry demonstrate their thermal stability. These aerogels exhibit a self-supportive three-dimensional network abundant in large secondary pores surrounded by primary pores resulting in a highly porous structure. Thermal crosslinking of the aerogels has further stabilized their structure and flexibility without compromising on the porosity. Ease of processing, thermal stability, high porosity and oleophilic nature of these aerogels make them promising candidate for a wide variety of applications including acoustic and thermal insulation and oil and water separation.Keywords: hybrid aerogels, sol-gel electrospinning, oil-water separation, nanofibers
Procedia PDF Downloads 1581408 Magnetite Nanoparticles Immobilized Pectinase: Preparation, Characterization and Application for the Fruit Juices Clarification
Authors: Leila Mosafa, Majid Moghadam, Mohammad Shahedi
Abstract:
In this work, pectinase was immobilized on the surface of silica-coated magnetite nanoparticles via covalent attachment. The magnetite-immobilized enzyme was characterized by Fourier transform infrared spectroscopy, X-ray powder diffraction, scanning electron microscopy and vibrating sample magnetometry techniques. Response surface methodology using Minitab Software was applied for statistical designing of operating conditions in order to immobilize pectinase on magnetic nanoparticles. The optimal conditions were obtained at 30°C and pH 5.5 with 42.97 µl pectinase for 2 h. The immobilization yield was 50.6% at optimized conditions. Compared to the free pectinase, the immobilized pectinase was found to exhibit enhanced enzyme activity, better tolerance to the variation of pH and temperature, and improved storage stability. Both free and immobilized samples reduced the viscosity of apple juice from 1.12 to 0.88 and 0.92 mm2s-1, respectively, after 30 min at their optimum temperature. Furthermore, the immobilized enzyme could be reused six consecutive cycles and the efficiency loss in viscosity reduction was found to be only 8.16%.Keywords: magnetite nanoparticles, pectinase enzyme, immobilization, juice clarification, enzyme activity
Procedia PDF Downloads 4071407 Cr³⁺/SiO₄⁴⁻ Codoped Hydroxyapatite Nanorods: Fabrication and Microstructure Analysis
Authors: Ammar Z. Alshemary, Zafer Evis
Abstract:
In this study, nanorods of Cr³⁺/SiO₄⁴⁻ codoped hydroxyapatite (Cr³⁺/SiO₄⁴⁻-HA) were synthesized successfully and rapidly through microwave irradiation technique, using (Ca(NO₃)₂•4H₂O), ((NH₄)₂HPO₄), (SiC₈H₂₀O₄) and (Cr(NO₃)₃.9H₂O) as source materials for Ca²⁺, PO₄³⁻, SiO₄⁴⁻ and Cr³⁺ ions, respectively. The impact of dopants on the phase formation and microstructure of the powders were investigated by means of X-ray diffraction (XRD), Fourier transform infrared spectrum analysis (FT-IR) and Field emission electron microscopy (FESEM) techniques. XRD analysis showed that with an incorporation of Cr³⁺/SiO₄⁴⁻ ions into HA structure resulted in peak broadening and reduced peak height due to the amorphous nature and reduced crystallinity of the resulting HA powder. FTIR spectroscopy revealed the existence of the different vibrational modes matching to phosphates and hydroxyl groups. The FESEM analysis showed a change in the crystal shape from spherical to rod shaped particles upon Cr³⁺ doping into the crystal structure. Acknowledgments: This study was supported by Karabük University (Project no. KBÜBAP-17-YD-144). The authors would like to thank for support.Keywords: nano-hydroxyapatite, microwave, dopants, characterization, microstructure
Procedia PDF Downloads 2281406 Comprehensive Machine Learning-Based Glucose Sensing from Near-Infrared Spectra
Authors: Bitewulign Mekonnen
Abstract:
Context: This scientific paper focuses on the use of near-infrared (NIR) spectroscopy to determine glucose concentration in aqueous solutions accurately and rapidly. The study compares six different machine learning methods for predicting glucose concentration and also explores the development of a deep learning model for classifying NIR spectra. The objective is to optimize the detection model and improve the accuracy of glucose prediction. This research is important because it provides a comprehensive analysis of various machine-learning techniques for estimating aqueous glucose concentrations. Research Aim: The aim of this study is to compare and evaluate different machine-learning methods for predicting glucose concentration from NIR spectra. Additionally, the study aims to develop and assess a deep-learning model for classifying NIR spectra. Methodology: The research methodology involves the use of machine learning and deep learning techniques. Six machine learning regression models, including support vector machine regression, partial least squares regression, extra tree regression, random forest regression, extreme gradient boosting, and principal component analysis-neural network, are employed to predict glucose concentration. The NIR spectra data is randomly divided into train and test sets, and the process is repeated ten times to increase generalization ability. In addition, a convolutional neural network is developed for classifying NIR spectra. Findings: The study reveals that the SVMR, ETR, and PCA-NN models exhibit excellent performance in predicting glucose concentration, with correlation coefficients (R) > 0.99 and determination coefficients (R²)> 0.985. The deep learning model achieves high macro-averaging scores for precision, recall, and F1-measure. These findings demonstrate the effectiveness of machine learning and deep learning methods in optimizing the detection model and improving glucose prediction accuracy. Theoretical Importance: This research contributes to the field by providing a comprehensive analysis of various machine-learning techniques for estimating glucose concentrations from NIR spectra. It also explores the use of deep learning for the classification of indistinguishable NIR spectra. The findings highlight the potential of machine learning and deep learning in enhancing the prediction accuracy of glucose-relevant features. Data Collection and Analysis Procedures: The NIR spectra and corresponding references for glucose concentration are measured in increments of 20 mg/dl. The data is randomly divided into train and test sets, and the models are evaluated using regression analysis and classification metrics. The performance of each model is assessed based on correlation coefficients, determination coefficients, precision, recall, and F1-measure. Question Addressed: The study addresses the question of whether machine learning and deep learning methods can optimize the detection model and improve the accuracy of glucose prediction from NIR spectra. Conclusion: The research demonstrates that machine learning and deep learning methods can effectively predict glucose concentration from NIR spectra. The SVMR, ETR, and PCA-NN models exhibit superior performance, while the deep learning model achieves high classification scores. These findings suggest that machine learning and deep learning techniques can be used to improve the prediction accuracy of glucose-relevant features. Further research is needed to explore their clinical utility in analyzing complex matrices, such as blood glucose levels.Keywords: machine learning, signal processing, near-infrared spectroscopy, support vector machine, neural network
Procedia PDF Downloads 941405 One-Pot Synthesis and Characterization of Magnesium Oxide Nanoparticles Prepared by Calliandra Calothyrsus Leaf Extract
Authors: Indah Kurniawaty, Yoki Yulizar, Haryo Satriya Oktaviano, Adam Kusuma Rianto
Abstract:
Magnesium oxide nanoparticles (MgO NP) were successfully synthesized in this study using a one-pot green synthesis mediated by Calliandra Calothyrsus leaf extract (CLE). CLE was prepared by maceration of the leaf using methanol with a ratio of 1:5 for 7 days. Secondary metabolites in CLE, such as alkaloids and flavonoids, served as a weak base provider and capping agent in the formation of MgO NP. CLE Fourier Transform Infra-Red (FTIR) spectra peak at 3255, 1600, 1384, 1205, 1041, and 667 cm-1 showing the presence of vibrations O-H stretching, N-H bending, C-C stretching, C-N stretching and N-H wagging. During the experiment, different CLE volumes and calcined temperatures were used, resulting in a variety of structures. Energy Dispersive X-ray Spectrometer (EDS) and FTIR were used to characterize metal oxide particles. MgO diffraction pattern at 2θ of 36.9°; 42.9°; 62.2°; 74.6°; and 78.5° which can be assigned to crystal planes (111), (200), (220), (311), and (222), respectively. Scanning Electron Microscopy (SEM) was used to characterize the surface morphology. The morphology ranged from sphere to flower-like resulting in crystallite sizes of 28, 23, 12, and 9 nm.Keywords: MgO, nanoparticle, calliandra calothyrsus, green-synthesis
Procedia PDF Downloads 781404 Starch-Based Systems for the Nano-Delivery of Quercetin
Authors: Fernando G. Torres, Omar P. Troncoso
Abstract:
Quercetin is a naturally occurring polyphenol found in many vegetables, such as onion, with antioxidant properties. It is a dietary component with a documented role in reducing different human cancers. However, its low bioavailability, poor water solubility, and chemical instability limit its applications. Different nano-delivery systems such as nanoparticles, micelles, and nanohydrogels have been studied in order to improve the bioavailability of quercetin. Nanoparticles based on natural polymers such as starch have the advantage of being biocompatible, biodegradable, and non-toxic. In this study, quercetin was loaded into starch nanoparticles using a nanoprecipitation method. Different routes, using sodium tripolyphosphate and Tween® 80 as tensioactive agents, were tested in order to obtain an optimized starch-based nano-delivery system. The characterization of the nanoparticles loaded with quercetin was assessed by Fourier Transform Infrared Spectroscopy, Dynamic Light Scattering, Zeta potential, and Differential scanning calorimetry. UV-vis spectrophotometry was used to evaluate the loading efficiency and capacity of the samples. The results showed that starch-based systems could be successfully used for the nano-delivery of quercetin.Keywords: starch nanoparticles, nanoprecipitation, quercetin, biomedical applications
Procedia PDF Downloads 1411403 Probabilistic Life Cycle Assessment of the Nano Membrane Toilet
Authors: A. Anastasopoulou, A. Kolios, T. Somorin, A. Sowale, Y. Jiang, B. Fidalgo, A. Parker, L. Williams, M. Collins, E. J. McAdam, S. Tyrrel
Abstract:
Developing countries are nowadays confronted with great challenges related to domestic sanitation services in view of the imminent water scarcity. Contemporary sanitation technologies established in these countries are likely to pose health risks unless waste management standards are followed properly. This paper provides a solution to sustainable sanitation with the development of an innovative toilet system, called Nano Membrane Toilet (NMT), which has been developed by Cranfield University and sponsored by the Bill & Melinda Gates Foundation. The particular technology converts human faeces into energy through gasification and provides treated wastewater from urine through membrane filtration. In order to evaluate the environmental profile of the NMT system, a deterministic life cycle assessment (LCA) has been conducted in SimaPro software employing the Ecoinvent v3.3 database. The particular study has determined the most contributory factors to the environmental footprint of the NMT system. However, as sensitivity analysis has identified certain critical operating parameters for the robustness of the LCA results, adopting a stochastic approach to the Life Cycle Inventory (LCI) will comprehensively capture the input data uncertainty and enhance the credibility of the LCA outcome. For that purpose, Monte Carlo simulations, in combination with an artificial neural network (ANN) model, have been conducted for the input parameters of raw material, produced electricity, NOX emissions, amount of ash and transportation of fertilizer. The given analysis has provided the distribution and the confidence intervals of the selected impact categories and, in turn, more credible conclusions are drawn on the respective LCIA (Life Cycle Impact Assessment) profile of NMT system. Last but not least, the specific study will also yield essential insights into the methodological framework that can be adopted in the environmental impact assessment of other complex engineering systems subject to a high level of input data uncertainty.Keywords: sanitation systems, nano-membrane toilet, lca, stochastic uncertainty analysis, Monte Carlo simulations, artificial neural network
Procedia PDF Downloads 2251402 Estimating Algae Concentration Based on Deep Learning from Satellite Observation in Korea
Authors: Heewon Jeong, Seongpyo Kim, Joon Ha Kim
Abstract:
Over the last few tens of years, the coastal regions of Korea have experienced red tide algal blooms, which are harmful and toxic to both humans and marine organisms due to their potential threat. It was accelerated owing to eutrophication by human activities, certain oceanic processes, and climate change. Previous studies have tried to monitoring and predicting the algae concentration of the ocean with the bio-optical algorithms applied to color images of the satellite. However, the accurate estimation of algal blooms remains problems to challenges because of the complexity of coastal waters. Therefore, this study suggests a new method to identify the concentration of red tide algal bloom from images of geostationary ocean color imager (GOCI) which are representing the water environment of the sea in Korea. The method employed GOCI images, which took the water leaving radiances centered at 443nm, 490nm and 660nm respectively, as well as observed weather data (i.e., humidity, temperature and atmospheric pressure) for the database to apply optical characteristics of algae and train deep learning algorithm. Convolution neural network (CNN) was used to extract the significant features from the images. And then artificial neural network (ANN) was used to estimate the concentration of algae from the extracted features. For training of the deep learning model, backpropagation learning strategy is developed. The established methods were tested and compared with the performances of GOCI data processing system (GDPS), which is based on standard image processing algorithms and optical algorithms. The model had better performance to estimate algae concentration than the GDPS which is impossible to estimate greater than 5mg/m³. Thus, deep learning model trained successfully to assess algae concentration in spite of the complexity of water environment. Furthermore, the results of this system and methodology can be used to improve the performances of remote sensing. Acknowledgement: This work was supported by the 'Climate Technology Development and Application' research project (#K07731) through a grant provided by GIST in 2017.Keywords: deep learning, algae concentration, remote sensing, satellite
Procedia PDF Downloads 1831401 Inversely Designed Chipless Radio Frequency Identification (RFID) Tags Using Deep Learning
Authors: Madhawa Basnayaka, Jouni Paltakari
Abstract:
Fully passive backscattering chipless RFID tags are an emerging wireless technology with low cost, higher reading distance, and fast automatic identification without human interference, unlike already available technologies like optical barcodes. The design optimization of chipless RFID tags is crucial as it requires replacing integrated chips found in conventional RFID tags with printed geometric designs. These designs enable data encoding and decoding through backscattered electromagnetic (EM) signatures. The applications of chipless RFID tags have been limited due to the constraints of data encoding capacity and the ability to design accurate yet efficient configurations. The traditional approach to accomplishing design parameters for a desired EM response involves iterative adjustment of design parameters and simulating until the desired EM spectrum is achieved. However, traditional numerical simulation methods encounter limitations in optimizing design parameters efficiently due to the speed and resource consumption. In this work, a deep learning neural network (DNN) is utilized to establish a correlation between the EM spectrum and the dimensional parameters of nested centric rings, specifically square and octagonal. The proposed bi-directional DNN has two simultaneously running neural networks, namely spectrum prediction and design parameters prediction. First, spectrum prediction DNN was trained to minimize mean square error (MSE). After the training process was completed, the spectrum prediction DNN was able to accurately predict the EM spectrum according to the input design parameters within a few seconds. Then, the trained spectrum prediction DNN was connected to the design parameters prediction DNN and trained two networks simultaneously. For the first time in chipless tag design, design parameters were predicted accurately after training bi-directional DNN for a desired EM spectrum. The model was evaluated using a randomly generated spectrum and the tag was manufactured using the predicted geometrical parameters. The manufactured tags were successfully tested in the laboratory. The amount of iterative computer simulations has been significantly decreased by this approach. Therefore, highly efficient but ultrafast bi-directional DNN models allow rapid and complicated chipless RFID tag designs.Keywords: artificial intelligence, chipless RFID, deep learning, machine learning
Procedia PDF Downloads 501400 Structural, Magnetic and Electrical Properties of Gd3+ Doped CoFe2O4 Nanoparticles Synthesized by Sonochemical Method
Authors: Raghvendra Singh Yadav, Ivo Kuřitka
Abstract:
In this report, we studied the impact of Gd3+ substitution on structural, magnetic and electrical properties of CoFe2O4 nanoparticles synthesized by sonochemical method. X-ray diffraction pattern confirmed the formation of cubic spinel structure at low concentration of Gd3+ ions, however, GdFeO3 additional phase was observed at higher concentration of Gd3+ ions. Raman and Fourier Transform Infrared spectroscopy study also confirmed cubic spinel structure of Gd3+ substituted CoFe2O4 nanoparticles. The field emission scanning electron microscopy study revealed that Gd3+ substituted CoFe2O4 nanoparticles were in the range of 5-20 nm. The magnetic properties of Gd3+ substituted CoFe2O4 nanoparticles were investigated by using vibrating sample magnetometer. The variation in saturation magnetization, coercivity and remanent magnetization with Gd3+ concentration in CoFe2O4 nanoparticles was observed. The variation of real and imaginary part of dielectric constant, tan δ, and AC conductivity were studied at room temperature.Keywords: spinel ferrites, nanoparticles, sonochemical method, magnetic properties
Procedia PDF Downloads 2941399 Automatic Detection of Sugarcane Diseases: A Computer Vision-Based Approach
Authors: Himanshu Sharma, Karthik Kumar, Harish Kumar
Abstract:
The major problem in crop cultivation is the occurrence of multiple crop diseases. During the growth stage, timely identification of crop diseases is paramount to ensure the high yield of crops, lower production costs, and minimize pesticide usage. In most cases, crop diseases produce observable characteristics and symptoms. The Surveyors usually diagnose crop diseases when they walk through the fields. However, surveyor inspections tend to be biased and error-prone due to the nature of the monotonous task and the subjectivity of individuals. In addition, visual inspection of each leaf or plant is costly, time-consuming, and labour-intensive. Furthermore, the plant pathologists and experts who can often identify the disease within the plant according to their symptoms in early stages are not readily available in remote regions. Therefore, this study specifically addressed early detection of leaf scald, red rot, and eyespot types of diseases within sugarcane plants. The study proposes a computer vision-based approach using a convolutional neural network (CNN) for automatic identification of crop diseases. To facilitate this, firstly, images of sugarcane diseases were taken from google without modifying the scene, background, or controlling the illumination to build the training dataset. Then, the testing dataset was developed based on the real-time collected images from the sugarcane field from India. Then, the image dataset is pre-processed for feature extraction and selection. Finally, the CNN-based Visual Geometry Group (VGG) model was deployed on the training and testing dataset to classify the images into diseased and healthy sugarcane plants and measure the model's performance using various parameters, i.e., accuracy, sensitivity, specificity, and F1-score. The promising result of the proposed model lays the groundwork for the automatic early detection of sugarcane disease. The proposed research directly sustains an increase in crop yield.Keywords: automatic classification, computer vision, convolutional neural network, image processing, sugarcane disease, visual geometry group
Procedia PDF Downloads 1161398 Field Production Data Collection, Analysis and Reporting Using Automated System
Authors: Amir AlAmeeri, Mohamed Ibrahim
Abstract:
Various data points are constantly being measured in the production system, and due to the nature of the wells, these data points, such as pressure, temperature, water cut, etc.., fluctuations are constant, which requires high frequency monitoring and collection. It is a very difficult task to analyze these parameters manually using spreadsheets and email. An automated system greatly enhances efficiency, reduce errors, the need for constant emails which take up disk space, and frees up time for the operator to perform other critical tasks. Various production data is being recorded in an oil field, and this huge volume of data can be seen as irrelevant to some, especially when viewed on its own with no context. In order to fully utilize all this information, it needs to be properly collected, verified and stored in one common place and analyzed for surveillance and monitoring purposes. This paper describes how data is recorded by different parties and departments in the field, and verified numerous times as it is being loaded into a repository. Once it is loaded, a final check is done before being entered into a production monitoring system. Once all this is collected, various calculations are performed to report allocated production. Calculated production data is used to report field production automatically. It is also used to monitor well and surface facility performance. Engineers can use this for their studies and analyses to ensure field is performing as it should be, predict and forecast production, and monitor any changes in wells that could affect field performance.Keywords: automation, oil production, Cheleken, exploration and production (E&P), Caspian Sea, allocation, forecast
Procedia PDF Downloads 1561397 Design and Fabrication of a Programmable Stiffness-Sensitive Gripper for Object Handling
Authors: Mehdi Modabberifar, Sanaz Jabary, Mojtaba Ghodsi
Abstract:
Stiffness sensing is an important issue in medical diagnostic, robotics surgery, safe handling, and safe grasping of objects in production lines. Detecting and obtaining the characteristics in dwelling lumps embedded in a soft tissue and safe removing and handling of detected lumps is needed in surgery. Also in industry, grasping and handling an object without damaging in a place where it is not possible to access a human operator is very important. In this paper, a method for object handling is presented. It is based on the use of an intelligent gripper to detect the object stiffness and then setting a programmable force for grasping the object to move it. The main components of this system includes sensors (sensors for measuring force and displacement), electrical (electrical and electronic circuits, tactile data processing and force control system), mechanical (gripper mechanism and driving system for the gripper) and the display unit. The system uses a rotary potentiometer for measuring gripper displacement. A microcontroller using the feedback received by the load cell, mounted on the finger of the gripper, calculates the amount of stiffness, and then commands the gripper motor to apply a certain force on the object. Results of Experiments on some samples with different stiffness show that the gripper works successfully. The gripper can be used in haptic interfaces or robotic systems used for object handling.Keywords: gripper, haptic, stiffness, robotic
Procedia PDF Downloads 3581396 Mass Polarization in Three-Body System with Two Identical Particles
Authors: Igor Filikhin, Vladimir M. Suslov, Roman Ya. Kezerashvili, Branislav Vlahivic
Abstract:
The mass-polarization term of the three-body kinetic energy operator is evaluated for different systems which include two identical particles: A+A+B. The term has to be taken into account for the analysis of AB- and AA-interactions based on experimental data for two- and three-body ground state energies. In this study, we present three-body calculations within the framework of a potential model for the kaonic clusters K−K−p and ppK−, nucleus 3H and hypernucleus 6 ΛΛHe. The systems are well clustering as A+ (A+B) with a ground state energy E2 for the pair A+B. The calculations are performed using the method of the Faddeev equations in configuration space. The phenomenological pair potentials were used. We show a correlation between the mass ratio mA/mB and the value δB of the mass-polarization term. For bosonic-like systems, this value is defined as δB = 2E2 − E3, where E3 is three-body energy when VAA = 0. For the systems including three particles with spin(isospin), the models with average AB-potentials are used. In this case, the Faddeev equations become a scalar one like for the bosonic-like system αΛΛ. We show that the additional energy conected with the mass-polarization term can be decomposite to a sum of the two parts: exchenge related and reduced mass related. The state of the system can be described as the following: the particle A1 is bound within the A + B pair with the energy E2, and the second particle A2 is bound with the pair with the energy E3 − E2. Due to the identity of A particles, the particles A1 and A2 are interchangeable in the pair A + B. We shown that the mass polarization δB correlates with a type of AB potential using the system αΛΛ as an example.Keywords: three-body systems, mass polarization, Faddeev equations, nuclear interactions
Procedia PDF Downloads 3771395 Monitoring Large-Coverage Forest Canopy Height by Integrating LiDAR and Sentinel-2 Images
Authors: Xiaobo Liu, Rakesh Mishra, Yun Zhang
Abstract:
Continuous monitoring of forest canopy height with large coverage is essential for obtaining forest carbon stocks and emissions, quantifying biomass estimation, analyzing vegetation coverage, and determining biodiversity. LiDAR can be used to collect accurate woody vegetation structure such as canopy height. However, LiDAR’s coverage is usually limited because of its high cost and limited maneuverability, which constrains its use for dynamic and large area forest canopy monitoring. On the other hand, optical satellite images, like Sentinel-2, have the ability to cover large forest areas with a high repeat rate, but they do not have height information. Hence, exploring the solution of integrating LiDAR data and Sentinel-2 images to enlarge the coverage of forest canopy height prediction and increase the prediction repeat rate has been an active research topic in the environmental remote sensing community. In this study, we explore the potential of training a Random Forest Regression (RFR) model and a Convolutional Neural Network (CNN) model, respectively, to develop two predictive models for predicting and validating the forest canopy height of the Acadia Forest in New Brunswick, Canada, with a 10m ground sampling distance (GSD), for the year 2018 and 2021. Two 10m airborne LiDAR-derived canopy height models, one for 2018 and one for 2021, are used as ground truth to train and validate the RFR and CNN predictive models. To evaluate the prediction performance of the trained RFR and CNN models, two new predicted canopy height maps (CHMs), one for 2018 and one for 2021, are generated using the trained RFR and CNN models and 10m Sentinel-2 images of 2018 and 2021, respectively. The two 10m predicted CHMs from Sentinel-2 images are then compared with the two 10m airborne LiDAR-derived canopy height models for accuracy assessment. The validation results show that the mean absolute error (MAE) for year 2018 of the RFR model is 2.93m, CNN model is 1.71m; while the MAE for year 2021 of the RFR model is 3.35m, and the CNN model is 3.78m. These demonstrate the feasibility of using the RFR and CNN models developed in this research for predicting large-coverage forest canopy height at 10m spatial resolution and a high revisit rate.Keywords: remote sensing, forest canopy height, LiDAR, Sentinel-2, artificial intelligence, random forest regression, convolutional neural network
Procedia PDF Downloads 921394 Physico‑chemical Behavior and Microstructural Manipulation of Nanocomposites Containing Hydroxyapatite, Alumina, and Graphene Oxide
Authors: Reim A. Almotiri, Manal M. Alkhamisi
Abstract:
Ternary nanocomposites based on hydroxyapatite (HAP) and alumina (Al2O3) were embedded through graphene oxide (GO) nanosheets to be investigated for medical applications. The composition of the preparations has been confirmed by X-ray photoelectron spectroscopy, energy-dispersive X-ray analysis, and Fourier-Transform infrared spectroscopy. Scanning and transmission electron microscopy have shown the typical morphologies of the components of the nanocomposites with hydroxyapatite nanorods reaching an average diameter of 22.26±2 nm and an average length of 69.56±19.25 nm in the ternary nanocomposites. The ternary nanocomposite has a microhardness of 5.8±0.1 GPa and a higher average roughness of 6.5 nm compared to pure HAP preparation with an average roughness of 2.7 nm. All preparations have shown an acceptable cytotoxicity profile with a percent osteoblasts cell viability of 98.6±1.3% after culturing with the ternary nanocomposite. The TNC has also shown the highest antibacterial activity compared to preparations of each of its constituents and their nanocomposites, with a zone of inhibition’s diameter of 14.1±0.8 mm and 13.6±0.6 mm against Staphylococcus aureus and Escherichia coli, respectively, compared to no zone of inhibition for the pure hydroxyapatite preparation.Keywords: hydroxypatite, cytotoxicity, nanocomposites, X-ray analysis
Procedia PDF Downloads 831393 Environmentally Friendly Palm Oil-Based Polymeric Plasticiser for Poly (Vinyl Chloride)
Authors: Nur Zahidah Rozaki, Desmond Ang Teck Chye
Abstract:
Environment-friendly polymeric plasticisers for poly(vinyl chloride), PVC were synthesised using palm oil as the main raw material. The synthesis comprised of 2 steps: (i) transesterification of palm oil, followed by (ii) polycondensation between the products of transesterification with diacids. The synthesis involves four different formulations to produce plasticisers with different average molecular weight. Chemical structures of the plasticiser were studied using FTIR (Fourier-Transformed Infra-Red) and 1H-NMR (Proton-Nuclear Magnetic Resonance).The molecular weights of these palm oil-based polymers were obtained using GPC (Gel Permeation Chromatography). PVC was plasticised with the polymeric plasticisers through solvent casting technique using tetrahydrofuran, THF as the mutual solvent. Some of the tests conducted to evaluate the effectiveness of the plasticiser in the PVC film including thermal stability test using thermogravimetric analyser (TGA), differential scanning calorimetry (DSC) analysis to determine the glass transition temperature, Tg, and mechanical test to determine tensile strength, modulus and elongation at break of plasticised PVC using standard test method ASTM D882.Keywords: alkyd, palm oil, plasticiser, pvc
Procedia PDF Downloads 2881392 Robust Medical Image Watermarking Using Frequency Domain and Least Significant Bits Algorithms
Authors: Volkan Kaya, Ersin Elbasi
Abstract:
Watermarking and stenography are getting importance recently because of copyright protection and authentication. In watermarking we embed stamp, logo, noise or image to multimedia elements such as image, video, audio, animation and text. There are several works have been done in watermarking for different purposes. In this research work, we used watermarking techniques to embed patient information into the medical magnetic resonance (MR) images. There are two methods have been used; frequency domain (Digital Wavelet Transform-DWT, Digital Cosine Transform-DCT, and Digital Fourier Transform-DFT) and spatial domain (Least Significant Bits-LSB) domain. Experimental results show that embedding in frequency domains resist against one type of attacks, and embedding in spatial domain is resist against another group of attacks. Peak Signal Noise Ratio (PSNR) and Similarity Ratio (SR) values are two measurement values for testing. These two values give very promising result for information hiding in medical MR images.Keywords: watermarking, medical image, frequency domain, least significant bits, security
Procedia PDF Downloads 2881391 Synthesis and Characterization of Biodegradable Elastomeric Polyester Amide for Tissue Engineering Applications
Authors: Abdulrahman T. Essa, Ahmed Aied, Omar Hamid, Felicity R. A. J. Rose, Kevin M. Shakesheff
Abstract:
Biodegradable poly(ester amide)s are promising polymers for biomedical applications such as drug delivery and tissue engineering because of their optimized chemical and physical properties. In this study, we developed a biodegradable polyester amide elastomer poly(serinol sebacate) (PSS) composed of crosslinked networks based on serinol and sebacic acid. The synthesized polymers were characterized to evaluate their chemical structures, mechanical properties, degradation behaviors and in vitro cytocompatibility. Analysis of proton nuclear magnetic resonance and Fourier transform infrared spectroscopy revealed the structure of the polymer. The PSS exhibit excellent solubility in a variety of solvents such as methanol, dimethyl sulfoxide and dimethylformamide. More importantly, the mechanical properties of PSS could be tuned by changing the curing conditions. In addition, the 3T3 fibroblast cells cultured on the PSS demonstrated good cell attachment and high viability.Keywords: biodegradable, biomaterial, elastomer, mechanical properties, poly(serinol sebacate)
Procedia PDF Downloads 3541390 Optimising Transcranial Alternating Current Stimulation
Authors: Robert Lenzie
Abstract:
Transcranial electrical stimulation (tES) is significant in the research literature. However, the effects of tES on brain activity are still poorly understood at the surface level, the Brodmann Area level, and the impact on neural networks. Using a method like electroencephalography (EEG) in conjunction with tES might make it possible to comprehend the brain response and mechanisms behind published observed alterations in more depth. Using a method to directly see the effect of tES on EEG may offer high temporal resolution data on the brain activity changes/modulations brought on by tES that correlate to various processing stages within the brain. This paper provides unpublished information on a cutting-edge methodology that may reveal details about the dynamics of how the human brain works beyond what is now achievable with existing methods.Keywords: tACS, frequency, EEG, optimal
Procedia PDF Downloads 831389 Study of Interaction between Ascorbic Acid and Bovine Hemoglobin by Multispectroscopic Methods
Authors: Krishnamoorthy Shanmugaraj, Malaichamy Ilanchelian
Abstract:
Ascorbic acid is an essential component in the diet of humans, and also is a typical long used pharmaceutical agent. In the present contribution, we have carried out a detailed study on the binding interaction of ascorbic acid (AA) with bovine hemoglobin (BHb) using steady state emission, time resolved fluorescence, UV-Vis absorption, circular dichroism (CD), Fourier transform infra-red (FT-IR) and three dimensional emission (3D) spectral studies. The results from the emission spectral studies unveiled that the quenching of BHb emission by AA is attributed to the formation of a complex in the ground state (static in nature) after correcting for inner filter effect. The binding parameters calculated from corrected emission quenching data revealed that BHb exhibited a significant binding affinity towards AA. Moreover, AA induced tertiary and secondary conformational changes of BHb were monitored by UV-Vis absorption, CD, FT-IR and 3D emission spectral studies. The results presented here will help to further understand the credible mechanism of BHb-AA system which is expected to provide insights into conformational and microenvironmental changes of BHb.Keywords: ascorbic acid, bovine hemoglobin, circular dichroism, three dimensional emission spectral studies
Procedia PDF Downloads 9781388 Information Requirements for Vessel Traffic Service Operations
Authors: Fan Li, Chun-Hsien Chen, Li Pheng Khoo
Abstract:
Operators of vessel traffic service (VTS) center provides three different types of services; namely information service, navigational assistance and traffic organization to vessels. To provide these services, operators monitor vessel traffic through computer interface and provide navigational advice based on the information integrated from multiple sources, including automatic identification system (AIS), radar system, and closed circuit television (CCTV) system. Therefore, this information is crucial in VTS operation. However, what information the VTS operator actually need to efficiently and properly offer services is unclear. The aim of this study is to investigate into information requirements for VTS operation. To achieve this aim, field observation was carried out to elicit the information requirements for VTS operation. The study revealed that the most frequent and important tasks were handling arrival vessel report, potential conflict control and abeam vessel report. Current location and vessel name were used in all tasks. Hazard cargo information was particularly required when operators handle arrival vessel report. The speed, the course, and the distance of two or several vessels were only used in potential conflict control. The information requirements identified in this study can be utilized in designing a human-computer interface that takes into consideration what and when information should be displayed, and might be further used to build the foundation of a decision support system for VTS.Keywords: vessel traffic service, information requirements, hierarchy task analysis, field observation
Procedia PDF Downloads 251