Search results for: Fiber Reinforced Polymer (FRP)
1737 Thulium Laser Design and Experimental Verification for NIR and MIR Nonlinear Applications in Specialty Optical Fibers
Authors: Matej Komanec, Tomas Nemecek, Dmytro Suslov, Petr Chvojka, Stanislav Zvanovec
Abstract:
Nonlinear phenomena in the near- and mid-infrared region are attracting scientific attention mainly due to the supercontinuum generation possibilities and subsequent utilizations for ultra-wideband applications like e.g. absorption spectroscopy or optical coherence tomography. Thulium-based fiber lasers provide access to high-power ultrashort pump pulses in the vicinity of 2000 nm, which can be easily exploited for various nonlinear applications. The paper presents a simulation and experimental study of a pulsed thulium laser based for near-infrared (NIR) and mid-infrared (MIR) nonlinear applications in specialty optical fibers. In the first part of the paper the thulium laser is discussed. The thulium laser is based on a gain-switched seed-laser and a series of amplification stages for obtaining output peak powers in the order of kilowatts for pulses shorter than 200 ps in full-width at half-maximum. The pulsed thulium laser is first studied in a simulation software, focusing on seed-laser properties. Afterward, a pre-amplification thulium-based stage is discussed, with the focus of low-noise signal amplification, high signal gain and eliminating pulse distortions during pulse propagation in the gain medium. Following the pre-amplification stage a second gain stage is evaluated with incorporating a thulium-fiber of shorter length with increased rare-earth dopant ratio. Last a power-booster stage is analyzed, where the peak power of kilowatts should be achieved. Examples of analytical study are further validated by the experimental campaign. The simulation model is further corrected based on real components – parameters such as real insertion-losses, cross-talks, polarization dependencies, etc. are included. The second part of the paper evaluates the utilization of nonlinear phenomena, their specific features at the vicinity of 2000 nm, compared to e.g. 1550 nm, and presents supercontinuum modelling, based on the thulium laser pulsed output. Supercontinuum generation simulation is performed and provides reasonably accurate results, once fiber dispersion profile is precisely defined and fiber nonlinearity is known, furthermore input pulse shape and peak power must be known, which is assured thanks to the experimental measurement of the studied thulium pulsed laser. The supercontinuum simulation model is put in relation to designed and characterized specialty optical fibers, which are discussed in the third part of the paper. The focus is placed on silica and mainly on non-silica fibers (fluoride, chalcogenide, lead-silicate) in their conventional, microstructured or tapered variants. Parameters such as dispersion profile and nonlinearity of exploited fibers were characterized either with an accurate model, developed in COMSOL software or by direct experimental measurement to achieve even higher precision. The paper then combines all three studied topics and presents a possible application of such a thulium pulsed laser system working with specialty optical fibers.Keywords: nonlinear phenomena, specialty optical fibers, supercontinuum generation, thulium laser
Procedia PDF Downloads 3241736 Numerical Investigation of a Spiral Bladed Tidal Turbine
Authors: Mohammad Fereidoonnezhad, Seán Leen, Stephen Nash, Patrick McGarry
Abstract:
From the perspective of research innovation, the tidal energy industry is still in its early stages. While a very small number of turbines have progressed to utility-scale deployment, blade breakage is commonly reported due to the enormous hydrodynamic loading applied to devices. The aim of this study is the development of computer simulation technologies for the design of next-generation fibre-reinforced composite tidal turbines. This will require significant technical advances in the areas of tidal turbine testing and multi-scale computational modelling. The complex turbine blade profiles are designed to incorporate non-linear distributions of airfoil sections to optimize power output and self-starting capability while reducing power fluctuations. A number of candidate blade geometries are investigated, ranging from spiral geometries to parabolic geometries, with blades arranged in both cylindrical and spherical configurations on a vertical axis turbine. A combined blade element theory (BET-start-up model) is developed in MATLAB to perform computationally efficient parametric design optimisation for a range of turbine blade geometries. Finite element models are developed to identify optimal fibre-reinforced composite designs to increase blade strength and fatigue life. Advanced fluid-structure-interaction models are also carried out to compute blade deflections following design optimisation.Keywords: tidal turbine, composite materials, fluid-structure-interaction, start-up capability
Procedia PDF Downloads 1271735 Simulation of the Flow in Bilayer Coextrusion Dies with Gradually Changing Calibrator Profiles
Authors: Mahesh Gupta
Abstract:
The main goal in the design of a die for extrusion of a complex profile is to obtain a uniform velocity at the die exit. If the velocity at the exit of an extrusion die is not uniform, the shape of the extrudate profile can change significantly after the polymer exits the die. To rectify the extrudate distortion caused by non-uniform exit velocity, calibrators and sizers are often installed along the extrudate cooling system. Furthermore, the profile shape in calibrators and sizers is sometimes gradually changed to intentionally deform the extrudate to the required final product shape. This is exploited to simplify extrusion die design, because a relatively simple profile at the die exit can be modified to obtain a more complex profile by deforming it in calibrators or sizers. The gradual change in the shape of calibrator or sizer profiles can also be used to extrude slightly different profiles from the same die. In the present work, a combined flow, thermal and structural analysis is used to accurately predict distortion of extrudate profile after the polymer leaves a die. Simulations of the flow and extrudate deformation in two different bilayer coextrusion dies with gradually changing profile shape in successive calibrators and sizers will be presented. The effect of non-uniform exit velocity, cooling shrinkage and shape of sizer profiles on extrudate deformation is included in the simulation. The predicted extrudate shape and layer structure is found to match accurately with those in a coextruded product.Keywords: coextrusion, extrusion die design, finite element method, polymers
Procedia PDF Downloads 521734 A Kinetic Study of Radical Polymerization of Acrylic Monomers in the Presence of the Liquid Crystal and the Electro-Optical Properties of These Mixtures
Authors: A. Bouriche, D. Merah, L.Alachaher-Bedjaoui, U. Maschke
Abstract:
Intensive research continues in the field of liquid crystals (LCs) for their potential use in modern display applications. Nematic LCs has been most commonly used due to the large birefringence and their sensitivity to even weak perturbation forces induced by electric, magnetic and optical fields. Polymer dispersed liquid crystals (PDLCs), composed of micron-sized nematic LC droplets dispersed in a polymer matrix is an important class of materials for applications in different domains of technology involving large area display devices, optical switches, phase modulators, variable attenuators, polarisers, flexible displays and smart windows. In this study the composites are prepared from mixtures of monofunctional acrylic monomers, (Butylacrylate (ABu), 2-Ethylhexylacrylate (2-EHA), 2-Hydroxyethyl methacrylate (HEMA) and hydroxybutylmethacrylate (HBMA)) and two liquid crystals: (4-cyano-4'-n-pentyl-biphenyl) (5CB) and E7 which is an eutectic mixtures of four cyanoparaphenylenes. These mixtures are prepared adding the Darocur 1173 as photoinitiateor, the 1.6-hexanediol diacrylate (HDDA) as cross-linker agent, and finally they are exposed to UV irradiation. The kinetic polymerization of monomer/LC mixture were investigated with the Fourier Transform Infra Red spectroscopy (FTIR). The electro-optical properties of the PDLC films were determined by measuring the voltage dependence on the transmitted light.Keywords: acrylic monomers, films PDLC, liquid crystal, polymerisation
Procedia PDF Downloads 3311733 Investigation of Rehabilitation Effects on Fire Damaged High Strength Concrete Beams
Authors: Eun Mi Ryu, Ah Young An, Ji Yeon Kang, Yeong Soo Shin, Hee Sun Kim
Abstract:
As the number of fire incidents has been increased, fire incidents significantly damage economy and human lives. Especially when high strength reinforced concrete is exposed to high temperature due to a fire, deterioration occurs such as loss in strength and elastic modulus, cracking, and spalling of the concrete. Therefore, it is important to understand risk of structural safety in building structures by studying structural behaviors and rehabilitation of fire damaged high strength concrete structures. This paper aims at investigating rehabilitation effect on fire damaged high strength concrete beams using experimental and analytical methods. In the experiments, flexural specimens with high strength concrete are exposed to high temperatures according to ISO 834 standard time temperature curve. After heated, the fire damaged reinforced concrete (RC) beams having different cover thicknesses and fire exposure time periods are rehabilitated by removing damaged part of cover thickness and filling polymeric mortar into the removed part. From four-point loading test, results show that maximum loads of the rehabilitated RC beams are 1.8~20.9% higher than those of the non-fire damaged RC beam. On the other hand, ductility ratios of the rehabilitated RC beams are decreased than that of the non-fire damaged RC beam. In addition, structural analyses are performed using ABAQUS 6.10-3 with same conditions as experiments to provide accurate predictions on structural and mechanical behaviors of rehabilitated RC beams. For the rehabilitated RC beam models, integrated temperature–structural analyses are performed in advance to obtain geometries of the fire damaged RC beams. After spalled and damaged parts are removed, rehabilitated part is added to the damaged model with material properties of polymeric mortar. Three dimensional continuum brick elements are used for both temperature and structural analyses. The same loading and boundary conditions as experiments are implemented to the rehabilitated beam models and nonlinear geometrical analyses are performed. Structural analytical results show good rehabilitation effects, when the result predicted from the rehabilitated models are compared to structural behaviors of the non-damaged RC beams. In this study, fire damaged high strength concrete beams are rehabilitated using polymeric mortar. From four point loading tests, it is found that such rehabilitation is able to make the structural performance of fire damaged beams similar to non-damaged RC beams. The predictions from the finite element models show good agreements with the experimental results and the modeling approaches can be used to investigate applicability of various rehabilitation methods for further study.Keywords: fire, high strength concrete, rehabilitation, reinforced concrete beam
Procedia PDF Downloads 4501732 Concept of a Pseudo-Lower Bound Solution for Reinforced Concrete Slabs
Authors: M. De Filippo, J. S. Kuang
Abstract:
In construction industry, reinforced concrete (RC) slabs represent fundamental elements of buildings and bridges. Different methods are available for analysing the structural behaviour of slabs. In the early ages of last century, the yield-line method has been proposed to attempt to solve such problem. Simple geometry problems could easily be solved by using traditional hand analyses which include plasticity theories. Nowadays, advanced finite element (FE) analyses have mainly found their way into applications of many engineering fields due to the wide range of geometries to which they can be applied. In such cases, the application of an elastic or a plastic constitutive model would completely change the approach of the analysis itself. Elastic methods are popular due to their easy applicability to automated computations. However, elastic analyses are limited since they do not consider any aspect of the material behaviour beyond its yield limit, which turns to be an essential aspect of RC structural performance. Furthermore, their applicability to non-linear analysis for modeling plastic behaviour gives very reliable results. Per contra, this type of analysis is computationally quite expensive, i.e. not well suited for solving daily engineering problems. In the past years, many researchers have worked on filling this gap between easy-to-implement elastic methods and computationally complex plastic analyses. This paper aims at proposing a numerical procedure, through which a pseudo-lower bound solution, not violating the yield criterion, is achieved. The advantages of moment distribution are taken into account, hence the increase in strength provided by plastic behaviour is considered. The lower bound solution is improved by detecting over-yielded moments, which are used to artificially rule the moment distribution among the rest of the non-yielded elements. The proposed technique obeys Nielsen’s yield criterion. The outcome of this analysis provides a simple, yet accurate, and non-time-consuming tool of predicting the lower-bound solution of the collapse load of RC slabs. By using this method, structural engineers can find the fracture patterns and ultimate load bearing capacity. The collapse triggering mechanism is found by detecting yield-lines. An application to the simple case of a square clamped slab is shown, and a good match was found with the exact values of collapse load.Keywords: computational mechanics, lower bound method, reinforced concrete slabs, yield-line
Procedia PDF Downloads 1801731 Photovoltaic Performance of AgInSe2-Conjugated Polymer Hybrid Systems
Authors: Dinesh Pathaka, Tomas Wagnera, J. M. Nunzib
Abstract:
We investigated blends of MdPVV.PCBM.AIS for photovoltaic application. AgInSe2 powder was synthesized by sealing and heating the stoichiometric constituents in evacuated quartz tube ampule. Fine grinded AIS powder was dispersed in MD-MOPVV and PCBM with and without surfactant. Different concentrations of these particles were suspended in the polymer solutions and spin casted onto ITO glass. Morphological studies have been performed by atomic force microscopy and optical microscopy. The blend layers were also investigated by various techniques like XRD, UV-VIS optical spectroscopy, AFM, PL, after a series of various optimizations with polymers/concentration/deposition/ suspension/surfactants etc. XRD investigation of blend layers shows clear evidence of AIS dispersion in polymers. Diode behavior and cell parameters also revealed it. Bulk heterojunction hybrid photovoltaic device Ag/MoO3/MdPVV.PCBM.AIS/ZnO/ITO was fabricated and tested with standard solar simulator and device characterization system. The best performance and photovoltaic parameters we obtained was an open-circuit voltage of about Voc 0.54 V and a photocurrent of Isc 117 micro A and an efficiency of 0.2 percent using a white light illumination intensity of 23 mW/cm2. Our results are encouraging for further research on the fourth generation inorganic organic hybrid bulk heterojunction photovoltaics for energy. More optimization with spinning rate/thickness/solvents/deposition rates for active layers etc. need to be explored for improved photovoltaic response of these bulk heterojunction devices.Keywords: thin films, photovoltaic, hybrid systems, heterojunction
Procedia PDF Downloads 2761730 Borate Crosslinked Fracturing Fluids: Laboratory Determination of Rheology
Authors: Lalnuntluanga Hmar, Hardik Vyas
Abstract:
Hydraulic fracturing has become an essential procedure to break apart the rock and release the oil or gas which are trapped tightly in the rock by pumping fracturing fluids at high pressure down into the well. To open the fracture and to transport propping agent along the fracture, proper selection of fracturing fluids is the most crucial components in fracturing operations. Rheology properties of the fluids are usually considered the most important. Among various fracturing fluids, Borate crosslinked fluids have proved to be highly effective. Borate in the form of Boric Acid, borate ion is the most commonly use to crosslink the hydrated polymers and to produce very viscous gels that can stable at high temperature. Guar and HPG (Hydroxypropyl Guar) polymers are the most often used in these fluids. Borate gel rheology is known to be a function of polymer concentration, borate ion concentration, pH, and temperature. The crosslinking using Borate is a function of pH which means it can be formed or reversed simply by altering the pH of the fluid system. The fluid system was prepared by mixing base polymer with water at pH ranging between 8 to 11 and the optimum borate crosslinker efficiency was found to be pH of about 10. The rheology of laboratory prepared Borate crosslinked fracturing fluid was determined using Anton Paar Rheometer and Fann Viscometer. The viscosity was measured at high temperature ranging from 200ᵒF to 250ᵒF and pressures in order to partially stimulate the downhole condition. Rheological measurements reported that the crosslinking increases the viscosity, elasticity and thus fluid capability to transport propping agent.Keywords: borate, crosslinker, Guar, Hydroxypropyl Guar (HPG), rheology
Procedia PDF Downloads 2081729 Dietary Habit and Anthropometric Status in Hypertensive Patients Compared to Normotensive Participants in the North of Iran
Authors: Marjan Mahdavi-Roshan, Arsalan Salari, Mahbobeh Gholipour
Abstract:
Hypertension is one of the important reasons of morbidity and mortality in countries, including Iran. It has been shown that hypertension is a consequence of the interaction of genetics and environment. Nutrients have important roles in the controlling of blood pressure. We assessed dietary habit and anthropometric status in patients with hypertension in the north of Iran, and that have special dietary habit and according to their culture. This study was conducted on 127 patients with newly recognized hypertension and the 120 normotensive participants. Anthropometric status was measured and demographic characteristics, and medical condition were collected by valid questionnaires and dietary habit assessment was assessed with 3-day food recall (two weekdays and one weekend). The mean age of participants was 58 ± 6.7 years. The mean level of energy intake, saturated fat, vitamin D, potassium, zinc, dietary fiber, vitamin C, calcium, phosphorus, copper and magnesium was significantly lower in the hypertensive group compared to the control (p < 0.05). After adjusting for energy intake, positive association was observe between hypertension and some dietary nutrients including; Cholesterol [OR: 1.1, P: 0.001, B: 0.06], fiber [OR: 1.6, P: 0.001, B: 1.8], vitamin D [OR: 2.6, P: 0.006, B: 0.9] and zinc [OR: 1.4, P: 0.006, B: 0.3] intake. Logistic regression analysis showed that there was not significant association between hypertension, weight and waist circumference. In our study, the mean intake of some nutrients was lower in the hypertensive individuals compared to the normotensive individual. Health training about suitable dietary habits and easier access to vitamin D supplementation in patients with hypertension are cost-effective tools to improve outcomes in Iran.Keywords: hypertension, north of Iran, dietary intake, weight
Procedia PDF Downloads 1851728 Polymer Composites Containing Gold Nanoparticles for Biomedical Use
Authors: Bozena Tyliszczak, Anna Drabczyk, Sonia Kudlacik-Kramarczyk, Agnieszka Sobczak-Kupiec
Abstract:
Introduction: Nanomaterials become one of the leading materials in the synthesis of various compounds. This is a reason for the fact that nano-size materials exhibit other properties compared to their macroscopic equivalents. Such a change in size is reflected in a change in optical, electric or mechanical properties. Among nanomaterials, particular attention is currently directed into gold nanoparticles. They find application in a wide range of areas including cosmetology or pharmacy. Additionally, nanogold may be a component of modern wound dressings, which antibacterial activity is beneficial in the viewpoint of the wound healing process. Specific properties of this type of nanomaterials result in the fact that they may also be applied in cancer treatment. Studies on the development of new techniques of the delivery of drugs are currently an important research subject of many scientists. This is due to the fact that along with the development of such fields of science as medicine or pharmacy, the need for better and more effective methods of administering drugs is constantly growing. The solution may be the use of drug carriers. These are materials that combine with the active substance and lead it directly to the desired place. A role of such a carrier may be played by gold nanoparticles that are able to covalently bond with many organic substances. This allows the combination of nanoparticles with active substances. Therefore gold nanoparticles are widely used in the preparation of nanocomposites that may be used for medical purposes with special emphasis on drug delivery. Methodology: As part of the presented research, synthesis of composites was carried out. The mentioned composites consisted of the polymer matrix and gold nanoparticles that were introduced into the polymer network. The synthesis was conducted with the use of a crosslinking agent, and photoinitiator and the materials were obtained by means of the photopolymerization process. Next, incubation studies were conducted using selected liquids that simulated fluids are occurring in the human body. The study allows determining the biocompatibility of the tested composites in relation to selected environments. Next, the chemical structure of the composites was characterized as well as their sorption properties. Conclusions: Conducted research allowed for the preliminary characterization of prepared polymer composites containing gold nanoparticles in the viewpoint of their application for biomedical use. Tested materials were characterized by biocompatibility in tested environments. What is more, synthesized composites exhibited relatively high swelling capacity that is essential in the viewpoint of their potential application as drug carriers. During such an application, composite swells and at the same time releases from its interior introduced active substance; therefore, it is important to check the swelling ability of such material. Acknowledgements: The authors would like to thank The National Science Centre (Grant no: UMO - 2016/21/D/ST8/01697) for providing financial support to this project. This paper is based upon work from COST Action (CA18113), supported by COST (European Cooperation in Science and Technology).Keywords: nanocomposites, gold nanoparticles, drug carriers, swelling properties
Procedia PDF Downloads 1191727 Variants of Fat Mass Obesity Associated rs 9939609 Associated with Obesity and Eating Behavior in Adolescent of Minangkabau Ethnic
Authors: Susmiati, Ingrid S. Surono, Jamsari, Nur Indrawati Lipoeto
Abstract:
There are two contradicting opinions on the relationship between fat mass obesity associated (FTO) rs 9939609 variants and obesity on various ethnics and races. The first opinion agrees that there is an association between the two variables, yet another one disagree. Minangkabau ethnic had a different dietary pattern with other ethnics in Indonesia. They had higher fat and low fiber intakes compared to the other ethnics groups. There is little research in genetic factors that influence eating behavior (food preference or food selection). The objective of this study was to investigate the association between FTO rs 9939609 variants with obesity and eating behavior in adolescent girls of Minangkabau Ethnic. The research design was case control study. A total of 275 adolescent girls aged 12-15 years old (130 obese and 145 normal) were randomly chosen from four districts at West Sumatera (Padang, Padang Pariaman, Padang Panjang and Tanah Datar). Genetic variants of FTO rs 9939609 were analyzed with Tetra-primer Amplification Refractory Mutation System-Polimerase Chain Reaction (AMRS PCR), eating behavior were gathered using eating habits questionnaire, and Body Mass Index (BMI) was calculated according to BMI Z-score (WHO). The result showed that genetic variants of FTO rs 9939609 (TT, TA and AA genotype) had associated with obesity (p = 0,013), whereas subject with An Allele was significantly associated with obesity (odds ratio 1,62 [95% confidential interval, 1,00-2,60]). Subjects with An Allele carrier reported a higher consumption of fried food (p < 0.05) as compared to TT genotypes carriers. There is no association between genetic variants and meal frequency, fruit and fiber intakes p > 0.05. The genetic variants of FTO rs 9939609 are associated with obesity and eating behavior in adolescent of Minangkabau Ethics.Keywords: FTO rs9939609, obesity, eating behavior, adolescents
Procedia PDF Downloads 1771726 Antibacterial Wound Dressing Based on Metal Nanoparticles Containing Cellulose Nanofibers
Authors: Mohamed Gouda
Abstract:
Antibacterial wound dressings based on cellulose nanofibers containing different metal nanoparticles (CMC-MNPs) were synthesized using an electrospinning technique. First, the composite of carboxymethyl cellulose containing different metal nanoparticles (CMC/MNPs), such as copper nanoparticles (CuNPs), iron nanoparticles (FeNPs), zinc nanoparticles (ZnNPs), cadmium nanoparticles (CdNPs) and cobalt nanoparticles (CoNPs) were synthesized, and finally, these composites were transferred to the electrospinning process. Synthesized CMC-MNPs were characterized using scanning electron microscopy (SEM) coupled with high-energy dispersive X-ray (EDX) and UV-visible spectroscopy used to confirm nanoparticle formation. The SEM images clearly showed regular flat shapes with semi-porous surfaces. All MNPs were well distributed inside the backbone of the cellulose without aggregation. The average particle diameters were 29-39 nm for ZnNPs, 29-33 nm for CdNPs, 25-33 nm for CoNPs, 23-27 nm for CuNPs and 22-26 nm for FeNPs. Surface morphology, water uptake and release of MNPs from the nanofibers in water and antimicrobial efficacy were studied. SEM images revealed that electrospun CMC-MNPs nanofibers are smooth and uniformly distributed without bead formation with average fiber diameters in the range of 300 to 450 nm. Fiber diameters were not affected by the presence of MNPs. TEM images showed that MNPs are present in/on the electrospun CMC-MNPs nanofibers. The diameter of the electrospun nanofibers containing MNPs was in the range of 300–450 nm. The MNPs were observed to be spherical in shape. The CMC-MNPs nanofibers showed good hydrophilic properties and had excellent antibacterial activity against the Gram-negative bacteria Escherichia coli and the Gram-positive bacteria Staphylococcus aureus.Keywords: electrospinning technique, metal nanoparticles, cellulosic nanofibers, wound dressing
Procedia PDF Downloads 3341725 Numerical Modeling of Geogrid Reinforced Soil Bed under Strip Footings Using Finite Element Analysis
Authors: Ahmed M. Gamal, Adel M. Belal, S. A. Elsoud
Abstract:
This article aims to study the effect of reinforcement inclusions (geogrids) on the sand dunes bearing capacity under strip footings. In this research experimental physical model was carried out to study the effect of the first geogrid reinforcement depth (u/B), the spacing between the reinforcement (h/B) and its extension relative to the footing length (L/B) on the mobilized bearing capacity. This paper presents the numerical modeling using the commercial finite element package (PLAXIS version 8.2) to simulate the laboratory physical model, studying the same parameters previously handled in the experimental work (u/B, L/B & h/B) for the purpose of validation. In this study the soil, the geogrid, the interface element and the boundary condition are discussed with a set of finite element results and the validation. Then the validated FEM used for studying real material and dimensions of strip foundation. Based on the experimental and numerical investigation results, a significant increase in the bearing capacity of footings has occurred due to an appropriate location of the inclusions in sand. The optimum embedment depth of the first reinforcement layer (u/B) is equal to 0.25. The optimum spacing between each successive reinforcement layer (h/B) is equal to 0.75 B. The optimum Length of the reinforcement layer (L/B) is equal to 7.5 B. The optimum number of reinforcement is equal to 4 layers. The study showed a directly proportional relation between the number of reinforcement layer and the Bearing Capacity Ratio BCR, and an inversely proportional relation between the footing width and the BCR.Keywords: reinforced soil, geogrid, sand dunes, bearing capacity
Procedia PDF Downloads 4291724 Influence of Synergistic/Antagonistic Mixtures of Oligomeric Stabilizers on the Biodegradation of γ-Sterilized Polyolefins
Authors: Sameh A. S. Thabit Alariqi
Abstract:
Our previous studies aimed to investigate the biodegradation of γ-sterilized polyolefins in composting and microbial culture environments at different doses and γ-dose rates. It was concluded from the previous studies that the pretreatment of γ-irradiation can accelerate the biodegradation of neat polymer matrix in biotic conditions significantly. A similar work was carried out to study the stabilization of γ-sterilized polyolefins using different mixtures of stabilizers which are approved for food-contact applications. Ethylene-propylene (EP) copolymer has been melt-mixed with hindered amine stabilizers (HAS), phenolic antioxidants and hydroperoxide decomposers. Results were discussed by comparing the stabilizing efficiency, combination and consumption of stabilizers and the synergistic and antagonistic effects was explained through the interaction between the stabilizers. In this attempt, we have aimed to study the influence of the synergistic and antagonistic mixtures of oligomeric stabilizers on the biodegradation of the γ-irradiated polyolefins in composting and microbial culture. Neat and stabilized films of EP copolymer irradiated under γ-radiation and incubated in compost and fungal culture environments. The changes in functional groups, surface morphology, mechanical properties and intrinsic viscosity in polymer chains were characterized by FT-IR spectroscopy, SEM, instron, and viscometric measurements respectively. Results were discussed by comparing the effect of different stabilizers, stabilizers mixtures on the biodegradation of the γ-irradiated polyolefins. It was found that the biodegradation significantly depends on the components of stabilization system, mobility, interaction, and consumption of stabilizers.Keywords: biodegradation, γ-irradiation, polyolefins, stabilization
Procedia PDF Downloads 3921723 Synthesis and Characterisation of Starch-PVP as Encapsulation Material for Drug Delivery System
Authors: Nungki Rositaningsih, Emil Budianto
Abstract:
Starch has been widely used as an encapsulation material for drug delivery system. However, starch hydrogel is very easily degraded during metabolism in human stomach. Modification of this material is needed to improve the encapsulation process in drug delivery system, especially for gastrointestinal drug. In this research, three modified starch-based hydrogels are synthesized i.e. Crosslinked starch hydrogel, Semi- and Full- Interpenetrating Polymer Network (IPN) starch hydrogel using Poly(N-Vinyl-Pyrrolidone). Non-modified starch hydrogel was also synthesized as a control. All of those samples were compared as biomaterials, floating drug delivery, and their ability in loading drug test. Biomaterial characterizations were swelling test, stereomicroscopy observation, Differential Scanning Calorimetry (DSC), and Fourier Transform Infrared Spectroscopy (FTIR). Buoyancy test and stereomicroscopy scanning were done for floating drug delivery characterizations. Lastly, amoxicillin was used as test drug, and characterized with UV-Vis spectroscopy for loading drug observation. Preliminary observation showed that Full-IPN has the most dense and elastic texture, followed by Semi-IPN, Crosslinked, and Non-modified in the last position. Semi-IPN and Crosslinked starch hydrogel have the most ideal properties and will not be degraded easily during metabolism. Therefore, both hydrogels could be considered as promising candidates for encapsulation material. Further analysis and issues will be discussed in the paper.Keywords: biomaterial, drug delivery system, interpenetrating polymer network, poly(N-vinyl-pyrrolidone), starch hydrogel
Procedia PDF Downloads 2561722 Structural, Spectral and Optical Properties of Boron-Aluminosilicate Glasses with High Dy₂O₃ and Er₂O₃ Content for Faraday Rotator Operating at 2µm
Authors: Viktor D. Dubrovin, Masoud Mollaee, Jie Zong, Xiushan Zhu, Nasser Peyghambarian
Abstract:
Glasses doped with high rare-earth (RE) elements concentration attracted considerable attention since the middle of the 20th century due to their particular magneto-optical properties. Such glasses exhibit the Faraday effect in which the polarization plane of a linearly polarized light beam is rotated by the interaction between the incident light and the magneto-optical material. That effect found application in optical isolators that are useful for laser systems, which can prevent back reflection of light into lasers or optical amplifiers and reduce signal instability and noise. Glasses are of particular interest since they are cost-effective and can be formed into fibers, thus breaking the limits of traditional bulk optics requiring optical coupling for use with fiber-optic systems. The advent of high-power fiber lasers operating near 2µm revealed a necessity in the development of all fiber isolators for this region. Ce³⁺, Pr³⁺, Dy³⁺, and Tb³⁺ ions provide the biggest contribution to the Verdet constant value of optical materials among the RE. It is known that Pr³⁺ and Tb³⁺ ions have strong absorption bands near 2 µm, thus making Dy³⁺ and Ce³⁺ the only prospective candidates for fiber isolator operating in that region. Due to the high tendency of Ce³⁺ ions pass to Ce⁴⁺ during the synthesis, glasses with high cerium content usually suffers from Ce⁴⁺ ions absorption extending from visible to IR. Additionally, Dy³⁺ (₆H¹⁵/²) same as Ho³⁺ (⁵I₈) ions, have the largest effective magnetic moment (µeff = 10.6 µB) among the RE ions that starts to play the key role if the operating region is far from 4fⁿ→ 4fⁿ⁻¹5 d¹ electric-dipole transition relevant to the Faraday Effect. Considering the high effective magnetic moment value of Er³⁺ ions (µeff = 9.6 µB) that is 3rd after Dy³⁺/ Ho³⁺ and Tb³⁺, it is possible to assume that Er³⁺ doped glasses should exhibit Verdet constant value near 2µm that is comparable with one of Dy doped glasses. Thus, partial replacement of Dy³⁺ on Er³⁺ ions has been performed, keeping the overall concentration of Re₂O₃ equal to 70 wt.% (30.6 mol.%). Al₂O₃-B₂O₃-SiO₂-30.6RE₂O₃ (RE= Er, Dy) glasses had been synthesized, and their thermal, spectral, optical, structural, and magneto-optical properties had been studied. Glasses synthesis had been conducted in Pt crucibles for 3h at 1500 °C. The obtained melt was poured into preheated up to 400 °C mold and annealed from 800 oC to room temperature for 12h with 1h dwell. The mass of obtained glass samples was about 200g. Shown that the difference between crystallization and glass transition temperature is about 150 oC, even taking into account the fact that high content of RE₂O₃ leads to glass network depolymerization. Verdet constant of Al₂O₃-B₂O₃-SiO₂-30.6RE₂O₃ glasses for wavelength 1950 nm can reach more than 5.9 rad/(T*m), which is among the highest number reported for a paramagnetic glass at this wavelength. The refractive index value was found to be equal to 1.7545 at 633 nm. Our experimental results show that Al₂O₃-B₂O₃-SiO₂-30.6RE₂O₃ glasses with high Dy₂O₃ content are expected to be promising material for use as highly effective Faraday isolators and modulators of electromagnetic radiation in the 2μm region.Keywords: oxide glass, magneto-optical, dysprosium, erbium, Faraday rotator, boron-aluminosilicate system
Procedia PDF Downloads 1181721 In-Situ Fabrication of ZnO PES Membranes for Treatment of Pharmaceuticals
Authors: Oranso T. Mahlangi, Bhekie B. Mamba
Abstract:
The occurrence of trace organic compounds (TOrCs) in water has raised health concerns for living organisms. The majority of TorCs, including pharmaceuticals and volatile organic compounds, are poorly monitored, partly due to the high cost of analysis and less strict water quality guidelines in South Africa. Therefore, the removal of TorCs is important to guarantee safe potable water. In this study, ZnO nanoparticles were fabricated in situ in polyethersulfone (PES) polymer solutions. This was followed by membrane synthesis using the phase inversion technique. Techniques such as FTIR, Raman, SEM, AFM, EDS, and contact angle measurements were used to characterize the membranes for several physicochemical properties. The membranes were then evaluated for their efficiency in treating pharmaceutical wastewater and resistance to organic (sodium alginate) and protein (bovine serum albumin) fouling. EDS micrographs revealed uniform distribution of ZnO nanoparticles within the polymer matrix, while SEM images showed uniform fingerlike structures. The addition of ZnO increased membrane roughness as well as hydrophilicity (which in turn improved water fluxes). The membranes poorly rejected monovalent and divalent salts (< 10%), making them resistant to flux decline due to concentration polarization effects. However, the membranes effectively removed carbamazepine, caffeine, sulfamethoxazole, ibuprofen, and naproxen by over 50%. ZnO PES membranes were resistant to organic and protein fouling compared to the neat membrane. ZnO PES ultrafiltration membranes may provide a solution in the reclamation of wastewater.Keywords: trace organic compounds, pharmaceuticals, membrane fouling, wastewater reclamation
Procedia PDF Downloads 1461720 An Evaluation of Full-Scale Reinforced Concrete and Steel Girder Composite Members Using High Volume Fly-Ash
Authors: Sung-Won Yoo, Chul-Hyeon Kang, Kyoung-Tae Park, Hae-Sik Woo
Abstract:
Numerous studies were dedicated on the High Volume Fly-Ash (HVFA) concrete using high volume fly ash. The material properties of HVFA concrete have been the primordial topics of early studies, and interest shifted gradually toward the structural behavior of HVFA concrete such as elasticity modulus, stress-strain relationship, and structural behavior. However, structural studies consider small-scale members limited to the scope of reinforced concrete only. Therefore, in this paper, on the basis of recent studies on the structural behavior, 2 full-scale test members were manufactured with 7.5 m span length, fly ash replacement ratio of 50 % and concrete compressive strength of 50 MPa in order to evaluate the practicability of HVFA to real structures. In addition, 2 steel composite test members were also manufactured with span length of 3 m and using the same HVFA concrete for the same purpose. The test results of full-scale RC members showed that the practical use of HVFA on such structures is not hard despite small differences between test results and existing research results on the stress-strain relationship. The flexural test revealed very little difference between 50% fly ash concrete and general concrete in view of the similarity exhibited by the displacement and strain patterns. The experimental concrete shear strength being very close to that of design code, the existing design code can be applied. From the flexural test results of steel girder composite members, the composite behavior can be secured as much as that using normal concrete under the condition of sufficient arrangement of reinforcing bar.Keywords: composite, fly ash, full-scale, high volume
Procedia PDF Downloads 2191719 A Kinetic Study of Radical Polymerisation of Acrylic Monomers in the Presence of the Liquid Crystal and the Electro-Optical Properties of These Mixtures
Authors: A. Bouriche, D. Merah, T. Bouchaour, L. Alachaher-Bedjaoui, U. Maschke
Abstract:
Intensive research continues in the field of liquid crystals (LCs) for their potential use in modern display applications. Nematic LCs has been most commonly used due to the large birefringence and their sensitivity to even weak perturbation forces induced by electric, magnetic and optical fields. Polymer dispersed liquid crystals (PDLCs), composed of micron-sized nematic LC droplets dispersed in a polymer matrix is an important class of materials for applications in different domains of technology involving large area display devices, optical switches, phase modulators, variable attenuators, polarisers, flexible displays and smart windows. In this study the composites are prepared from mixtures of mono functional acrylic monomers, (Butylacrylate (ABu), 2-Ethylhexylacrylate (2-EHA), 2-Hydroxyethyl methacrylate (HEMA) and hydroxybutylmethacrylate (HBMA)) and two liquid crystals: (4-cyano-4'-n-pentyl-biphenyl) (5CB) and E7 which is an eutectic mixtures of four cyanoparaphenylenes. These mixtures are prepared adding the Darocur 1173 as photoinitiator, the 1.6-hexanediol diacrylate (HDDA) as cross-linker agent, and finally they are exposed to UV irradiation. The kinetic polymerization of monomer/LC mixture were investigated with the Fourier Transform Infra Red spectroscopy (FTIR). The electro-optical properties of the PDLC films were determined by measuring the voltage dependence on the transmitted light.Keywords: acrylic monomers, films PDLC, liquid crystal, polymerisation
Procedia PDF Downloads 2951718 Development of Electrospun Membranes with Defined Polyethylene Collagen and Oxide Architectures Reinforced with Medium and High Intensity Statins
Authors: S. Jaramillo, Y. Montoya, W. Agudelo, J. Bustamante
Abstract:
Cardiovascular diseases (CVD) are related to affectations of the heart and blood vessels, within these are pathologies such as coronary or peripheral heart disease, caused by the narrowing of the vessel wall (atherosclerosis), which is related to the accumulation of Low-Density Lipoproteins (LDL) in the arterial walls that leads to a progressive reduction of the lumen of the vessel and alterations in blood perfusion. Currently, the main therapeutic strategy for this type of alteration is drug treatment with statins, which inhibit the enzyme 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMG-CoA reductase), responsible for modulating the rate of cholesterol production and other isoprenoids in the mevalonate pathway. This enzyme induces the expression of LDL receptors in the liver, increasing their number on the surface of liver cells, reducing the plasma concentration of cholesterol. On the other hand, when the blood vessel presents stenosis, a surgical procedure with vascular implants is indicated, which are used to restore circulation in the arterial or venous bed. Among the materials used for the development of vascular implants are Dacron® and Teflon®, which perform the function of re-waterproofing the circulatory circuit, but due to their low biocompatibility, they do not have the ability to promote remodeling and tissue regeneration processes. Based on this, the present research proposes the development of a hydrolyzed collagen and polyethylene oxide electrospun membrane reinforced with medium and high-intensity statins, so that in future research it can favor tissue remodeling processes from its microarchitecture.Keywords: atherosclerosis, medium and high-intensity statins, microarchitecture, electrospun membrane
Procedia PDF Downloads 1431717 Nutritional Importance and Functional Properties of Baobab Leaves
Authors: Khadijat Ayanpeju Abdulsalam, Bolanle Mary Olawoye, Paul Babatunde Ayoola
Abstract:
The potential of Baobab leaves is understudied and not yet fully documented. The purpose of this work is to highlight the important nutritional value and practical qualities of baobab leaves. In this research, proximate analysis was studied to determine the macronutrient quantitative analysis in baobab leaves. Studies were also conducted on other characteristics, such as moisture content, which is significant to the food business since it affects food quality, preservation, and resistance to deterioration. Dietary fiber, which was also studied, has important health benefits, such as lowering blood cholesterol levels by lowering low-density lipoprotein or "bad" cholesterol. It functions as an anti-obesity and anti-diabetic agent, lowering the likelihood of haemorrhoids developing. Additionally, increasing face bulk and short-chain fatty acid synthesis improves gastrointestinal health and overall wellness. Baobab leaves had a moisture content of 6.4%, fat of 16.1%, ash of 3.2%, protein of 18.7%, carbohydrate 57.2% and crude fiber of 4.1%. The minerals determined in the sample of baobab leaves are Ca, Fe, Mg, K, Na, P, and Zn with Potassium (347.6±0.70) as the most abundant mineral while Zn (9.31±0.60) is the least abundant. The functional properties studied include pH, gelation temperature, bulk density, water absorption capacity, oil absorption capacity, foaming property, emulsifying property, and stability and swelling capacity, which are 8.72, 29, 0.39, 138, 98.20, 0.80, 72.80, and 73.50 respectively. The Fourier Transform InfraRed absorption spectra show bands like C=O, C-Cl and N-H. Baobab leaves are edible, nutritious, and non-toxic, as the mineral contents are within the required range.Keywords: dietary fibre, proximate analysis, macronutrients, minerals, baobab leaves, frequency range
Procedia PDF Downloads 771716 Nanoparticles Modification by Grafting Strategies for the Development of Hybrid Nanocomposites
Authors: Irati Barandiaran, Xabier Velasco-Iza, Galder Kortaberria
Abstract:
Hybrid inorganic/organic nanostructured materials based on block copolymers are of considerable interest in the field of Nanotechnology, taking into account that these nanocomposites combine the properties of polymer matrix and the unique properties of the added nanoparticles. The use of block copolymers as templates offers the opportunity to control the size and the distribution of inorganic nanoparticles. This research is focused on the surface modification of inorganic nanoparticles to reach a good interface between nanoparticles and polymer matrices which hinders the nanoparticle aggregation. The aim of this work is to obtain a good and selective dispersion of Fe3O4 magnetic nanoparticles into different types of block copolymers such us, poly(styrene-b-methyl methacrylate) (PS-b-PMMA), poly(styrene-b-ε-caprolactone) (PS-b-PCL) poly(isoprene-b-methyl methacrylate) (PI-b-PMMA) or poly(styrene-b-butadiene-b-methyl methacrylate) (SBM) by using different grafting strategies. Fe3O4 magnetic nanoparticles have been surface-modified with polymer or block copolymer brushes following different grafting methods (grafting to, grafting from and grafting through) to achieve a selective location of nanoparticles into desired domains of the block copolymers. Morphology of fabricated hybrid nanocomposites was studied by means of atomic force microscopy (AFM) and with the aim to reach well-ordered nanostructured composites different annealing methods were used. Additionally, nanoparticle amount has been also varied in order to investigate the effect of the nanoparticle content in the morphology of the block copolymer. Nowadays different characterization methods were using in order to investigate magnetic properties of nanometer-scale electronic devices. Particularly, two different techniques have been used with the aim of characterizing synthesized nanocomposites. First, magnetic force microscopy (MFM) was used to investigate qualitatively the magnetic properties taking into account that this technique allows distinguishing magnetic domains on the sample surface. On the other hand, magnetic characterization by vibrating sample magnetometer and superconducting quantum interference device. This technique demonstrated that magnetic properties of nanoparticles have been transferred to the nanocomposites, exhibiting superparamagnetic behavior similar to that of the maghemite nanoparticles at room temperature. Obtained advanced nanostructured materials could found possible applications in the field of dye-sensitized solar cells and electronic nanodevices.Keywords: atomic force microscopy, block copolymers, grafting techniques, iron oxide nanoparticles
Procedia PDF Downloads 2671715 Evaluation of Goji By-Product as a Value-Added Ingredient for the Functional Food Industry
Authors: Sanaa Ragaee, Paragyani Bora, Wee Teng Tan, Xin Hu
Abstract:
Goji berry (Lycium barbarum) is a member of the family Solanaceae which is grown widely in China, Tibet, and other parts of Asia. Its fruits are 1–2 cm-long, bright orange-red ellipsoid berries and it has a long tradition as a food and medicinal plant. Goji berries are believed to boost immune system properties. The berries are considered an excellent source of macronutrients, micronutrients, vitamins, minerals and several bioactive components. Studies have shown effects of goji fruit on aging, neuroprotection, general well-being, fatigue/endurance, metabolism/energy expenditure, glucose control in diabetics and glaucoma, antioxidant properties, immunomodulation and anti-tumor activity. Goji berries are being used to prepare Goji beverage, and the remaining solid material is considered as by-product. The by-product is currently unused and disposed as waste despite its potential as a value-added food ingredient. Therefore, this study is intended to evaluate nutritional properties of Goji by-product and its potential applications in the baking industry. The Goji by-product was freeze dried and ground to pass through 1 mm screen prior to evaluation and food use. The Goji by-product was found to be a rich source of fiber (54%) and free phenolic components (1,307 µg/g), protein (13.6%), ash (3.3%) and fat (10%). Incorporation of the Goji by-product in muffins and cookies at various levels (10-40%) significantly improved the nutritional quality of the baked products. The baked products were generally accepted and highly rated by panelists at 20% replacement level. The results indicate the potential of Goji by-product as a value-added ingredient in particular as a source of dietary fiber and protein.Keywords: Goji, by-product, phenolics, fibers, baked products
Procedia PDF Downloads 3051714 Developing Indoor Enhanced Bio Composite Vertical Smart Farming System for Climbing Food Plant
Authors: S. Mokhtar, R. Ibrahim, K. Abdan, A. Rashidi
Abstract:
The population in the world are growing in very fast rate. It is expected that urban growth and development would create serious questions of food production and processing, transport, and consumption. Future smart green city policies are emerging to support new ways of visualizing, organizing and managing the city and its flows towards developing more sustainable cities in ensuring food security while maintaining its biodiversity. This is a survey paper analyzing the feasibility of developing a smart vertical farming system for climbing food plant to meet the need of food consumption in urban cities with an alternative green material. This paper documents our investigation on specific requirement for farming high valued climbing type food plant suitable for vertical farming, development of appropriate biocomposite material composition, and design recommendations for developing a new smart vertical farming system inside urban buildings. Results include determination of suitable specific climbing food plant species and material manufacturing processes for reinforcing natural fiber for biocomposite material. The results are expected to become recommendations for developing alternative structural materials for climbing food plant later on towards the development of the future smart vertical farming system. This paper contributes to supporting urban farming in cities and promotes green materials for preserving the environment. Hence supporting efforts in food security agenda especially for developing nations.Keywords: biocomposite, natural reinforce fiber, smart farming, vertical farming
Procedia PDF Downloads 1701713 The Effect of Surface Modified Nano-Hydroxyapatite Incorporation into Polymethylmethacrylate Cement on Biocompatibility and Mechanical Properties
Authors: Yu-Shan Wu, Po-Liang Lai, I-Ming Chu
Abstract:
Poly(methylmethacrylate)(PMMA) is the most frequently used bone void filler for vertebral augmentation in osteoporotic fracture. PMMA bone cement not only exhibits strong mechanical properties but also can fabricate according to the shape of bone defect. However, the adhesion between the PMMA-based cement and the adjacent bone is usually weak and as PMMA bone cement is inherently bioinert. The combination of bioceramics and polymers as composites may increase cell adhesion and improve biocompatibility. The nano-hydroxyapatite(HAP) not only plays a significant role in maintaining the properties of the natural bone but also offers a favorable environment for osteoconduction, protein adhesion, and osteoblast proliferation. However, defects and cracks can form at the polymer/ceramics interface, resulting in uneven distribution of stress and subsequent inferior mechanical strength. Surface-modified HAP nano-crystals were prepared by chemically grafting poly(ε-caprolactone)(PCL) on surface-modified nano-HAP surface to increase the affinity of polymer/ceramic phases .Thus, incorporation of surface-modified nano-hydroxyapatite (EC-HAP) may not only improve the interfacial adhesion between cement and bone and between nanoparticles and cement, but also increase biocompatibility. In this research, PMMA mixing with 0, 5, 10, 15, 20, 25 and 30 wt% EC-HAP were examined. MC3T3-E1 cells were used for the biological evaluation of the response to the cements in vitro. Morphology was observed using scanning electron microscopy (SEM). Mechanical properties of HAP/PMMA and EC-HAP/PMMA cement were investigated by compression test. Surface wettability of the cements was measured by contact angles.Keywords: bone cement, biocompatibility, nano-hydroxyapatite, polycaprolactone, PMMA, surface grafting
Procedia PDF Downloads 3981712 Electromagnetic Interface Shielding of Graphene Oxide–Carbon Nanotube Hybrid ABS Composites
Authors: Jeevan Jyoti, Bhanu Pratap Singh, S. R. Dhakate
Abstract:
In the present study, multiwalled carbon nanotubes (MWCNTs) and reduced graphene oxide (RGO) were synthesized by chemical vapor deposition and Improved Hummer’s method, respectively and their composite with acrylonitrile butadiene styrene (ABS) were prepared by twin screw co rotating extrusion technique. The electromagnetic interference (EMI) shielding effectiveness of graphene oxide carbon nanotube (GCNTs) hybrid composites was investigated and the results were compared with EMI shielding of carbon nanotube (CNTs) and reduced graphene oxide (RGO) in the frequency range of 12.4-18 GHz (Ku-band). The experimental results indicate that the EMI shielding effectiveness of these composites is achieved up to –21 dB for 10 wt. % loading of GCNT loading. The mechanism of improvement in EMI shielding effectiveness is discussed by resolving their contribution in absorption and reflection loss. The main reason for such a high improved shielding effectiveness has been attributed to the significant improvement in the electrical conductivity of the composites. The electrical conductivity of these GCNT/ABS composites was increased from 10-13 S/cm to 10-7 S/cm showing the improvement of the 6 order of the magnitude. Scanning electron microscopic (SEM) and high resolution transmission electron microscopic (HRTEM) studies showed that the GCNTs were uniformly dispersed in the ABS polymer matrix. GCNTs form a network throughout the polymer matrix and promote the reinforcement.Keywords: ABS, EMI shielding, multiwalled carbon nanotubes, reduced graphene oxide, graphene, oxide-carbon nanotube (GCNTs), twin screw extruder, multiwall carbon nanotube, electrical conductivity
Procedia PDF Downloads 3641711 The Compositional Effects on Electrospinning of Gelatin and Polyvinyl-alcohol Mixed Nanofibers
Authors: Yi-Chun Wu, Nai-Yun Chang, Chuan LI
Abstract:
This study investigates a feasible range of composition for the mixture of gelatin and polyvinyl alcohol to form nanofibers by electrospinning. Gelatin, one of the most available naturally derived hydrogels of amino acids, is a popular choice for food additives, cosmetic ingredients, biomedical implants, or dressing of its non-toxic and biodegradable nature. Nevertheless, synthetic hydrogel polyvinyl alcohol has long been used as a thickening agent for adhesion purposes. Many biomedical devices are also containing polyvinyl-alcohol as a major content, such as eye drops and contact lenses. To discover appropriate compositions of gelatin and polyvinyl-alcohol for electrospun nanofibers, polymer solutions of different volumetric ratios between gelatin and polyvinyl alcohol were prepared for electrospinning. The viscosity, surface tension, pH value, and electrical conductance of polymer solutions were measured. On the nanofibers, the vibrational modes of molecular structures in nanofibers were investigated by Fourier-transform infrared spectroscopy. The morphologies and surface chemical elements of fibers were examined by the scanning electron microscope and the energy-dispersive X-ray spectroscopy. The hydrophilicity of nanofiberswas evaluated by the water contact angles on the surface of the fibers. To further test the biotoxicity of nanofibers, an in-vitro 3T3 fibroblasts culture further tested the biotoxicity of the electrospun nanofibers. Throughstatistical analyses of the experimental data, it is found that the polyvinyl-alcohol rich composition (the volumetric ratio of gelatin/polyvinyl-alcohol < 1) would be a preferable choice for the formation of nanofibers by the current setup of electrospinning. These electrospun nanofibers tend to be hydrophilic with no biotoxicity threat to the 3T3 fibroblasts.Keywords: gelatin, polyvinyl-alcohol, nanofibers, electrospinning, spin coating
Procedia PDF Downloads 911710 Aluminum Matrix Composites Reinforced by Glassy Carbon-Titanium Spatial Structure
Authors: B. Hekner, J. Myalski, P. Wrzesniowski
Abstract:
This study presents aluminum matrix composites reinforced by glassy carbon (GC) and titanium (Ti). In the first step, the heterophase (GC+Ti), spatial form (similar to skeleton) of reinforcement was obtained via own method. The polyurethane foam (with spatial, open-cells structure) covered by suspension of Ti particles in phenolic resin was pyrolyzed. In the second step, the prepared heterogeneous foams were infiltrated by aluminium alloy. The manufactured composites are designated to industrial application, especially as a material used in tribological field. From this point of view, the glassy carbon was applied to stabilise a coefficient of friction on the required value 0.6 and reduce wear. Furthermore, the wear can be limited due to titanium phase application, which reveals high mechanical properties. Moreover, fabrication of thin titanium layer on the carbon skeleton leads to reduce contact between aluminium alloy and carbon and thus aluminium carbide phase creation. However, the main modification involves the manufacturing of reinforcement in the form of 3D, skeleton foam. This kind on reinforcement reveals a few important advantages compared to classical form of reinforcement-particles: possibility to control homogeneity of reinforcement phase in composite material; low-advanced technique of composite manufacturing- infiltration; possibility to application the reinforcement only in required places of material; strict control of phase composition; High quality of bonding between components of material. This research is founded by NCN in the UMO-2016/23/N/ST8/00994.Keywords: metal matrix composites, MMC, glassy carbon, heterophase composites, tribological application
Procedia PDF Downloads 1211709 Tractography Analysis of the Evolutionary Origin of Schizophrenia
Authors: Asmaa Tahiri, Mouktafi Amine
Abstract:
A substantial number of traditional medical research has been put forward to managing and treating mental disorders. At the present time, to our best knowledge, it is believed that fundamental understanding of the underlying causes of the majority psychological disorders needs to be explored further to inform early diagnosis, managing symptoms and treatment. The emerging field of evolutionary psychology is a promising prospect to address the origin of mental disorders, potentially leading to more effective treatments. Schizophrenia as a topical mental disorder has been linked to the evolutionary adaptation of the human brain represented in the brain connectivity and asymmetry directly linked to humans higher brain cognition in contrast to other primates being our direct living representation of the structure and connectivity of our earliest common African ancestors. As proposed in the evolutionary psychology scientific literature the pathophysiology of schizophrenia is expressed and directly linked to altered connectivity between the Hippocampal Formation (HF) and Dorsolateral Prefrontal Cortex (DLPFC). This research paper presents the results of the use of tractography analysis using multiple open access Diffusion Weighted Imaging (DWI) datasets of healthy subjects, schizophrenia-affected subjects and primates to illustrate the relevance of the aforementioned brain regions connectivity and the underlying evolutionary changes in the human brain. Deterministic fiber tracking and streamline analysis were used to generate connectivity matrices from the DWI datasets overlaid to compute distances and highlight disconnectivity patterns in conjunction with other fiber tracking metrics; Fractional Anisotropy (FA), Mean Diffusivity (MD) and Radial Diffusivity (RD).Keywords: tractography, evolutionary psychology, schizophrenia, brain connectivity
Procedia PDF Downloads 751708 Effects of Auxetic Antibacterial Zwitterion Carboxylate and Sulfate Copolymer Hydrogels for Diabetic Wound Healing Application
Authors: Udayakumar Vee, Franck Quero
Abstract:
Zwitterionic polymers generally have been viewed as a new class of antimicrobial and non-fouling materials. They offer a broad versatility for chemical modification and hence great freedom for accurate molecular design, which bear an equimolar number of homogenously distributed anionic and cationic groups along their polymer chains. This study explores the effectiveness of the auxetic zwitterion carboxylate/sulfonate hydrogel in the diabetic-induced mouse model. A series of silver metal-doped auxetic zwitterion carboxylate/sulfonate/vinylaniline copolymer hydrogels is designed via a 3D printer. Zwitterion monomers have been characterized by FT-IR and NMR techniques. The effect of changing the monomers and different loading ratios of Ag over zwitterion on the final hydrogel materials' antimicrobial properties and biocompatibility will be investigated in detail. The synthesized auxetic hydrogel has been characterized using a wide range of techniques to help establish the relationship between molecular level and macroscopic properties of these materials, including mechanical and antibacterial and biocompatibility and wound healing ability. This work's comparative studies and results provide new insights and guide us in choosing a better auxetic structured material for a broad spectrum of wound healing applications in the animal model. We expect this approach to provide a versatile and robust platform for biomaterial design that could lead to promising treatments for wound healing applications.Keywords: auxetic, zwitterion, carboxylate, sulfonate, polymer, wound healing
Procedia PDF Downloads 146