Search results for: success metrics
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3030

Search results for: success metrics

1410 A Comprehensive Review of Electronic Health Records Implementation in Healthcare

Authors: Lateefat Amao, Misagh Faezipour

Abstract:

Implementing electronic health records (EHR) in healthcare is a pivotal transition aimed at digitizing and optimizing patient health information management. The expectations associated with this transition are high, even towards other health information systems (HIS) and health technology. This multifaceted process involves careful planning and execution to improve the quality and efficiency of patient care, especially as healthcare technology is a sensitive niche. Key considerations include a thorough needs assessment, judicious vendor selection, robust infrastructure development, and training and adaptation of healthcare professionals. Comprehensive training programs, data migration from legacy systems and models, interoperability, as well as security and regulatory compliance are imperative for healthcare staff to navigate EHR systems adeptly. The purpose of this work is to offer a comprehensive review of the literature on EHR implementation. It explores the impact of this health technology on health practices, highlights challenges and barriers to its successful utility, and offers practical strategies that can impact its success in healthcare. This paper provides a thorough review of studies on the adoption of EHRs, emphasizing the wide range of experiences and results connected to EHR use in the medical field, especially across different types of healthcare organizations.

Keywords: healthcare, electronic health records, EHR implementation, patient care, interoperability

Procedia PDF Downloads 83
1409 Is Privatization Related with Macroeconomic Management? Evidence from Some Selected African Countries

Authors: E. O. George, P. Ojeaga, D. Odejimi, O. Mattehws

Abstract:

Has macroeconomic management succeeded in making privatization promote growth in Africa? What are the probable strategies that should accompany the privatization reform process to promote growth in Africa? To what extent has the privatization process succeeded in attracting foreign direct investment to Africa? The study investigates the relationship between macroeconomic management and privatization. Many African countries have embarked on one form of privatization reform or the other since 1980 as one of the stringent conditions for accessing capital from the IMF and the World Bank. Secondly globalization and the gradually integration of the African economy into the global economy also means that Africa has to strategically develop its domestic market to cushion itself from fluctuations and probable contagion associated with global economic crisis that are always inevitable Stiglitz. The methods of estimation used are the OLS, linear mixed effects (LME), 2SLS and the GMM method of estimation. It was found that macroeconomic management has the capacity to affect the success of the privatization reform process. It was also found that privatization was not promoting growth in Africa; privatization could promote growth if long run growth strategies are implemented together with the privatization reform process. Privatization was also found not to have the capacity to attract foreign investment to many African countries.

Keywords: Africa, political economy, game theory, macroeconomic management and privatization

Procedia PDF Downloads 331
1408 Project Management Practices and Operational Challenges in Conflict Areas: Case Study Kewot Woreda North Shewa Zone, Amhara Region, Ethiopia

Authors: Rahel Birhane Eshetu

Abstract:

This research investigates the complex landscape of project management practices and operational challenges in conflict-affected areas, with a specific focus on Kewot Woreda in the North Shewa Zone of the Amhara region in Ethiopia. The study aims to identify essential project management methodologies, the significant operational hurdles faced, and the adaptive strategies employed by project managers in these challenging environments. Utilizing a mixed-methods approach, the research combines qualitative and quantitative data collection. Initially, a comprehensive literature review was conducted to establish a theoretical framework. This was followed by the administration of questionnaires to gather empirical data, which was then analyzed using statistical software. This sequential approach ensures a robust understanding of the context and challenges faced by project managers. The findings reveal that project managers in conflict zones encounter a range of escalating challenges. Initially, they must contend with immediate security threats and the presence of displaced populations, which significantly disrupt project initiation and execution. As projects progress, additional challenges arise, including limited access to essential resources and environmental disruptions such as natural disasters. These factors exacerbate the operational difficulties that project managers must navigate. In response to these challenges, the study highlights the necessity for project managers to implement formal project plans while simultaneously adopting adaptive strategies that evolve over time. Key adaptive strategies identified include flexible risk management frameworks, change management practices, and enhanced stakeholder engagement approaches. These strategies are crucial for maintaining project momentum and ensuring that objectives are met despite the unpredictable nature of conflict environments. The research emphasizes that structured scope management, clear documentation, and thorough requirements analysis are vital components for effectively navigating the complexities inherent in conflict-affected regions. However, the ongoing threats and logistical barriers necessitate a continuous adjustment to project management methodologies. This adaptability is not only essential for the immediate success of projects but also for fostering long-term resilience within the community. Concluding, the study offers actionable recommendations aimed at improving project management practices in conflict zones. These include the adoption of adaptive frameworks specifically tailored to the unique conditions of conflict environments and targeted training for project managers. Such training should focus on equipping managers with the skills to better address the dynamic challenges presented by conflict situations. The insights gained from this research contribute significantly to the broader field of project management, providing a practical guide for practitioners operating in high-risk areas. By emphasizing sustainable and resilient project outcomes, this study underscores the importance of adaptive management strategies in ensuring the success of projects in conflict-affected regions. The findings serve not only to enhance the understanding of project management practices in Kewot Woreda but also to inform future research and practice in similar contexts, ultimately aiming to promote stability and development in areas beset by conflict.

Keywords: project management practices, operational challenges, conflict zones, adaptive strategies

Procedia PDF Downloads 18
1407 Analyzing the Connection between Productive Structure and Communicable Diseases: An Econometric Panel Study

Authors: Julio Silva, Lia Hasenclever, Gilson G. Silva Jr.

Abstract:

The aim of this paper is to check possible convergence in health measures (aged-standard rate of morbidity and mortality) for communicable diseases between developed and developing countries, conditional to productive structures features. Understanding the interrelations between health patterns and economic development is particularly important in the context of low- and middle-income countries, where economic development comes along with deep social inequality. Developing countries with less diversified productive structures (measured through complexity index) but high heterogeneous inter-sectorial labor productivity (using as a proxy inter-sectorial coefficient of variation of labor productivity) has on average low health levels in communicable diseases compared to developed countries with high diversified productive structures and low labor market heterogeneity. Structural heterogeneity and productive diversification may have influence on health levels even considering per capita income. We set up a panel data for 139 countries from 1995 to 2015, joining several data about the countries, as economic development, health, and health system coverage, environmental and socioeconomic aspects. This information was obtained from World Bank, International Labour Organization, Atlas of Economic Complexity, United Nation (Development Report) and Institute for Health Metrics and Evaluation Database. Econometric panel models evidence shows that the level of communicable diseases has a positive relationship with structural heterogeneity, even considering other factors as per capita income. On the other hand, the recent process of convergence in terms of communicable diseases have been motivated for other reasons not directly related to productive structure, as health system coverage and environmental aspects. These evidences suggest a joint dynamics between the unequal distribution of communicable diseases and countries' productive structure aspects. These set of evidence are quite important to public policy as meet the health aims in Millennium Development Goals. It also highlights the importance of the process of structural change as fundamental to shift the levels of health in terms of communicable diseases and can contribute to the debate between the relation of economic development and health patterns changes.

Keywords: economic development, inequality, population health, structural change

Procedia PDF Downloads 146
1406 CNS Cryptococcoma in an Immunocompetent Adult from a Low Resource Setting: A Case Report

Authors: Ssembatya Joseph Mary

Abstract:

Introduction: Cryptococcal infection in the Central Nervous System (CNS) is frequently seen in human immunodeficiency virus (HIV) patients and others with low immunity as an opportunistic fungal infection. However, CNS cryptococcal granuloma (cryptococcoma) in immunocompetent patients is rare. We present a case of CNS cryptococcoma in an immunocompetent patient and review the literature to illustrate the diagnosis and treatment of such lesions. Case presentation: A 62-year-old, HIV-negative, immunocompetent female patient with no known chronic illness presented with 5 months history of a progressive headache associated with on and off episodic generalized tonic-clonic convulsions. She had been to several hospitals before she was referred to our center with a diagnosis of a brain tumor. Before referral and despite a negative CSF analysis result, she had received treatment for bacterial meningitis with no success. At Mbarara Regional Referral Hospital (MRRH), she had surgery with an excision biopsy which showed features consistent with cryptococcosis on histology. The patient had a successful adjuvant treatment with antifungal drugs following surgery. Conclusion: The diagnosis of a parasitic CNS infection, particularly cryptococcal infection mimicking neoplastic lesions in an immunocompetent patient, was unusual. Surgical management of such lesions from different reports has a bad outcome and management remains totally conservative.

Keywords: Cryptococcal meningitis, immunocompetent patient, Uganda, low resource setting

Procedia PDF Downloads 87
1405 Mobile Cloud Application in Design Build Bridge Construction

Authors: Meng Sun, Bin Wei

Abstract:

In the past decades, design-build has become a more popular project delivery system especially for the large scaled infrastructure project in North America. It provides a one-stop shopping system for the client therefore improves the efficiency of construction, and reduces the risks and overall cost for the clients. Compared to the project with traditional delivery method, design-build project requires contractor and designer to work together efficiently to deliver the best-value solutions through the construction process. How to facilitate a solid integration and efficient interaction between contractor and designer often affects the schedule, budget and quality of the construction therefore becomes a key factor to the success of a design-build project. This paper presents a concept of using modern mobile cloud technology to provide an integrated solution during the design-build construction. It uses mobile cloud architecture to provide a platform for real-time field progress, change request approval, job progress log, and project time entry with devices integration for field information and communications. The paper uses a real filed change notice as an example to demonstrate how mobile cloud technology applies in a design-build project and how it can improve the project efficiency.

Keywords: cloud, design-build, field change notice, mobile application

Procedia PDF Downloads 248
1404 Exploring Problem-Based Learning and University-Industry Collaborations for Fostering Students’ Entrepreneurial Skills: A Qualitative Study in a German Urban Setting

Authors: Eylem Tas

Abstract:

This empirical study aims to explore the development of students' entrepreneurial skills through problem-based learning within the context of university-industry collaborations (UICs) in curriculum co-design and co-delivery (CDD). The research question guiding this study is: "How do problem-based learning and university-industry collaborations influence the development of students' entrepreneurial skills in the context of curriculum co-design and co-delivery?” To address this question, the study was conducted in a big city in Germany and involved interviews with stakeholders from various industries, including the private sector, government agencies (govt), and non-governmental organizations (NGOs). These stakeholders had established collaborative partnerships with the targeted university for projects encompassing entrepreneurial development aspects in CDD. The study sought to gain insights into the intricacies and subtleties of UIC dynamics and their impact on fostering entrepreneurial skills. Qualitative content analysis, based on Mayring's guidelines, was employed to analyze the interview transcriptions. Through an iterative process of manual coding, 442 codes were generated, resulting in two main sections: "the role of problem-based learning and UIC in fostering entrepreneurship" and "challenges and requirements of problem-based learning within UIC for systematical entrepreneurship development.” The chosen experimental approach of semi-structured interviews was justified by its capacity to provide in-depth perspectives and rich data from stakeholders with firsthand experience in UICs in CDD. By enlisting participants with diverse backgrounds, industries, and company sizes, the study ensured a comprehensive and heterogeneous sample, enhancing the credibility of the findings. The first section of the analysis delved into problem-based learning and entrepreneurial self-confidence to gain a deeper understanding of UIC dynamics from an industry standpoint. It explored factors influencing problem-based learning, alignment of students' learning styles and preferences with the experiential learning approach, specific activities and strategies, and the role of mentorship from industry professionals in fostering entrepreneurial self-confidence. The second section focused on various interactions within UICs, including communication, knowledge exchange, and collaboration. It identified key elements, patterns, and dynamics of interaction, highlighting challenges and limitations. Additionally, the section emphasized success stories and notable outcomes related to UICs' positive impact on students' entrepreneurial journeys. Overall, this research contributes valuable insights into the dynamics of UICs and their role in fostering students' entrepreneurial skills. UICs face challenges in communication and establishing a common language. Transparency, adaptability, and regular communication are vital for successful collaboration. Realistic expectation management and clearly defined frameworks are crucial. Responsible data handling requires data assurance and confidentiality agreements, emphasizing the importance of trust-based relationships when dealing with data sharing and handling issues. The identified key factors and challenges provide a foundation for universities and industrial partners to develop more effective UIC strategies for enhancing students' entrepreneurial capabilities and preparing them for success in today's digital age labor market. The study underscores the significance of collaborative learning and transparent communication in UICs for entrepreneurial development in CDD.

Keywords: collaborative learning, curriculum co-design and co-delivery, entrepreneurial skills, problem-based learning, university-industry collaborations

Procedia PDF Downloads 61
1403 Exploring Gaming-Learning Interaction in MMOG Using Data Mining Methods

Authors: Meng-Tzu Cheng, Louisa Rosenheck, Chen-Yen Lin, Eric Klopfer

Abstract:

The purpose of the research is to explore some of the ways in which gameplay data can be analyzed to yield results that feedback into the learning ecosystem. Back-end data for all users as they played an MMOG, The Radix Endeavor, was collected, and this study reports the analyses on a specific genetics quest by using the data mining techniques, including the decision tree method. In the study, different reasons for quest failure between participants who eventually succeeded and who never succeeded were revealed. Regarding the in-game tools use, trait examiner was a key tool in the quest completion process. Subsequently, the results of decision tree showed that a lack of trait examiner usage can be made up with additional Punnett square uses, displaying multiple pathways to success in this quest. The methods of analysis used in this study and the resulting usage patterns indicate some useful ways that gameplay data can provide insights in two main areas. The first is for game designers to know how players are interacting with and learning from their game. The second is for players themselves as well as their teachers to get information on how they are progressing through the game, and to provide help they may need based on strategies and misconceptions identified in the data.

Keywords: MMOG, decision tree, genetics, gaming-learning interaction

Procedia PDF Downloads 358
1402 Women, Ethnic Minorities and Electoral Success

Authors: Karen Lesley Webster, Charles Crothers

Abstract:

As the population of the Auckland region in New Zealand becomes markedly more super-diverse, the question of fair and effective representation becomes increasingly relevant. This paper explores who stood and who was elected to local office, in the three Auckland triennial local elections, following the 2010 amalgamation of the regions local authorities. It addresses the question of how representative the electoral candidates and elected members of local government in Auckland were of the diverse population they serve. A quantitative analysis of the gender and ethnicity of the Auckland Council candidates and elected members in 2013, 2016, and 2019 triennial elections was undertaken, and the gender and ethnicity compared with that of the Auckland population. Our findings show that under the two-tiered shared governance model established by the Local Government Act (Auckland Council) 2009, electoral candidates have become more ethnically and gender representative of Aucklanders at the local level, while at the regional level, divergence from predominantly New Zealand European, male local representatives is emerging, albeit with less pace. These findings warrant further investigation, but overall, the research presents a cautiously optimistic picture of Auckland local democracy in terms of increasing representational diversity.

Keywords: local government, representation, diversity, gender, ethnicity

Procedia PDF Downloads 334
1401 A Script for Presentation to the Management of a Teaching Hospital on DXplain Clinical Decision Support System

Authors: Jacob Nortey

Abstract:

Introduction: In recent years, there has been an enormous success in discoveries of scientific knowledge in medicine coupled with the advancement of technology. Despite all these successes, diagnoses and treatment of diseases have become complex. According to the Ibero – American Study of Adverse Effects (IBEAS), about 10% of hospital patients suffer from secondary damage during the care process, and approximately 2% die from this process. Many clinical decision support systems have been developed to help mitigate some healthcare medical errors. Method: Relevant databases were searched, including ones that were peculiar to the clinical decision support system (that is, using google scholar, Pub Med and general google searches). The articles were then screened for a comprehensive overview of the functionality, consultative style and statistical usage of Dxplain Clinical decision support systems. Results: Inferences drawn from the articles showed high usage of Dxplain clinical decision support system for problem-based learning among students in developed countries as against little or no usage among students in Low – and Middle – income Countries. The results also indicated high usage among general practitioners. Conclusion: Despite the challenges Dxplain presents, the benefits of its usage to clinicians and students are enormous.

Keywords: dxplain, clinical decision support sytem, diagnosis, support systems

Procedia PDF Downloads 80
1400 Mining Coupled to Agriculture: Systems Thinking in Scalable Food Production

Authors: Jason West

Abstract:

Low profitability in agriculture production along with increasing scrutiny over environmental effects is limiting food production at scale. In contrast, the mining sector offers access to resources including energy, water, transport and chemicals for food production at low marginal cost. Scalable agricultural production can benefit from the nexus of resources (water, energy, transport) offered by mining activity in remote locations. A decision support bioeconomic model for controlled environment vertical farms was used. Four submodels were used: crop structure, nutrient requirements, resource-crop integration, and economic. They escalate to a macro mathematical model. A demonstrable dynamic systems framework is needed to prove productive outcomes are feasible. We demonstrate a generalized bioeconomic macro model for controlled environment production systems in minesites using systems dynamics modeling methodology. Despite the complexity of bioeconomic modelling of resource-agricultural dynamic processes and interactions, the economic potential greater than general economic models would assume. Scalability of production as an input becomes a key success feature.

Keywords: crop production systems, mathematical model, mining, agriculture, dynamic systems

Procedia PDF Downloads 77
1399 Techno-Economic Study on the Potential of Dimethyl Ether (DME) as a Substitute for LPG

Authors: Widya Anggraini Pamungkas, Rosana Budi Setyawati, Awaludin Fitroh Rifai, Candra Pangesti Setiawan, Anatta Wahyu Budiiman, Inayati, Joko Waluyo, Sunu Herwi Pranolo

Abstract:

The increase in LPG consumption in Indonesia is not balanced with the amount of supply. The high demand for LPG due to the success of the government's kerosene-to-LPG conversion program and the Covid-19 pandemic in 2020 led to an increase in LPG consumption in the household sector and caused Indonesia's trade balance to experience a deficit. The high consumption of LPG encourages the need for alternative fuels as a substitute or which aims to substitute LPG; one of the materials that can be used is Dimethyl Ether (DME). Dimethyl ether (DME) is an organic compound with the chemical formula CH 3. OCH 3 has a high cetane number and has characteristics similar to LPG. DME can be produced from various sources, such as coal, biomass and natural gas. Based on the economic analysis conducted at 10% IRR, coal has the largest NPV of Rp. 20,034,837,497,241 with a payback period of 3.86 years, then biomass with an NPV of Rp. 10,401,526,072,850 and a payback period of 5.16. the latter is natural gas with an NPV of IDR 7,401,272,559,191 and a payback period of 6.17 years. Of the three sources of raw materials used, if the sensitivity is calculated using the selling price of DME equal to the selling price of LPG, it will get an NPV value that is greater than the NPV value when using the current DME price. The advantages of coal as a raw material for DME are not only because it is profitable, namely: low price and abundant resources, but has high greenhouse gas emissions.

Keywords: LPG, DME, coal, biomass, natural gas

Procedia PDF Downloads 124
1398 Sarvathobhadram-Organic Initiative: Cooperative Model for Resilient Agriculture by Adopting System of Rice Intensification

Authors: Sreeni K. R.

Abstract:

Sarvathobhadram-Organic–Farmers Cooperative was helpful in supporting small and marginal farmers in customizing, adapting, and tailoring the system to their specific requirements. The Farmers Club, which has 50 members, was founded in May 2020 to create additional cash while also encouraging farmers to shift to organic farming. The club's mission is to ensure food security, livelihood, and entrepreneurship in the Anthikad Block Panchayat. The project addressed climate change and resilience, collaborating with government departments and utilizing convergence to maximize the schemes accessible to farmers in panchayath. The transformation was sluggish initially, but it accelerated over time, indicating that farmers have variable levels of satisfaction based on a variety of circumstances. This paper examines the changing trend in the area after adopting organic farming using the SRI method, the increase in production, and the success of the convergence method. It also attempts to find out various constraints faced by farmers during the paradigm shift from conventional methods to organic, and the results have proven that SRI should be considered as a potential cultivation method for all farmer's groups (Padasekharam).

Keywords: Sarvathobhadram-Organic, Thanniyam gram Panchayat, organic Joythi rice, convergence method, Jeevamirtham, natural methods, system of rice intensification

Procedia PDF Downloads 144
1397 Using Analytic Hierarchy Process as a Decision-Making Tool in Project Portfolio Management

Authors: Darius Danesh, Michael J. Ryan, Alireza Abbasi

Abstract:

Project Portfolio Management (PPM) is an essential component of an organisation’s strategic procedures, which requires attention of several factors to envisage a range of long-term outcomes to support strategic project portfolio decisions. To evaluate overall efficiency at the portfolio level, it is essential to identify the functionality of specific projects as well as to aggregate those findings in a mathematically meaningful manner that indicates the strategic significance of the associated projects at a number of levels of abstraction. PPM success is directly associated with the quality of decisions made and poor judgment increases portfolio costs. Hence, various Multi-Criteria Decision Making (MCDM) techniques have been designed and employed to support the decision-making functions. This paper reviews possible option to improve the decision-making outcomes in the organisational portfolio management processes using the Analytic Hierarchy Process (AHP) both from academic and practical perspectives and will examine the usability, certainty and quality of the technique. The results of the study will also provide insight into the technical risk associated with current decision-making model to underpin initiative tracking and strategic portfolio management.

Keywords: analytic hierarchy process, decision support systems, multi-criteria decision making, project portfolio management

Procedia PDF Downloads 321
1396 Smart-Textile Containers for Urban Mobility

Authors: René Vieroth, Christian Dils, M. V. Krshiwoblozki, Christine Kallmayer, Martin Schneider-Ramelow, Klaus-Dieter Lang

Abstract:

Green urban mobility in commercial and private contexts is one of the great challenges for the continuously growing cities all over the world. Bicycle based solutions are already and since a long time the key to success. Modern developments like e-bikes and high-end cargo-bikes complement the portfolio. Weight, aerodynamic drag, and security for the transported goods are the key factors for working solutions. Recent achievements in the field of smart-textiles allowed the creation of a totally new generation of intelligent textile cargo containers, which fulfill those demands. The fusion of technical textiles, design and electrical engineering made it possible to create an ecological solution which is very near to become a product. This paper shows all the details of this solution that includes an especially developed sensor textile for cut detection, a protective textile layer for intrusion prevention, an universal-charging-unit for energy harvesting from diverse sources and a low-energy alarm system with GSM/GPRS connection, GPS location and RFID interface.

Keywords: cargo-bike, cut-detection, e-bike, energy-harvesting, green urban mobility, logistics, smart-textiles, textile-integrity sensor

Procedia PDF Downloads 316
1395 A Potential Spin-orbit Torque Device Using the Tri-layer Structure

Authors: Chih-Wei Cheng, Wei-Jen Chan, Yu-Han Huang, Yi-Tsung Lin, Yen-Wei Huang, Min-Cheng Chen, Shou-Zen Chang, G. Chern, Yuan-Chieh Tseng

Abstract:

How to develop spin-orbit-torque (SOT) devices with the virtues of field-free, perpendicular magnetic anisotropy (PMA), and low switching current is one of the many challenges in spintronics today. We propose a CoFeB/Ta/CoFeB tri-layer antiferromagnetic SOT device that could meet the above requirements. The device’s PMA was developed by adopting CoFeB–MgO interface. The key to the success of this structure is to ensure that (i)changes of the inter-layer coupling(IEC) and CoFeB anisotropy can occur simultaneously; (ii) one of the CoFeB needs to have a slightly tilted moment in the beginning. When sufficient current is given, the SHEreverses the already-tiltedCoFeB, and the other CoFeB can be reversed simultaneously by the IEC with the field-free nature. Adjusting the thickness of Ta can modify the coupling state to reduce the switching current while the field-free nature was preserved. Micromagnetic simulation suggests that the Néel orange peel effect (NOPE) is non-negligible due to interface roughness and coupling effect in the presence of perpendicular anisotropy. Fortunately, the Néel field induced by the NOPE appears to favor the field-free reversal.

Keywords: CoFeB, spin-orbit torque, antiferromagnetic, MRAM, trilayer

Procedia PDF Downloads 117
1394 Enhanced CNN for Rice Leaf Disease Classification in Mobile Applications

Authors: Kayne Uriel K. Rodrigo, Jerriane Hillary Heart S. Marcial, Samuel C. Brillo

Abstract:

Rice leaf diseases significantly impact yield production in rice-dependent countries, affecting their agricultural sectors. As part of precision agriculture, early and accurate detection of these diseases is crucial for effective mitigation practices and minimizing crop losses. Hence, this study proposes an enhancement to the Convolutional Neural Network (CNN), a widely-used method for Rice Leaf Disease Image Classification, by incorporating MobileViTV2—a recently advanced architecture that combines CNN and Vision Transformer models while maintaining fewer parameters, making it suitable for broader deployment on edge devices. Our methodology utilizes a publicly available rice disease image dataset from Kaggle, which was validated by a university structural biologist following the guidelines provided by the Philippine Rice Institute (PhilRice). Modifications to the dataset include renaming certain disease categories and augmenting the rice leaf image data through rotation, scaling, and flipping. The enhanced dataset was then used to train the MobileViTV2 model using the Timm library. The results of our approach are as follows: the model achieved notable performance, with 98% accuracy in both training and validation, 6% training and validation loss, and a Receiver Operating Characteristic (ROC) curve ranging from 95% to 100% for each label. Additionally, the F1 score was 97%. These metrics demonstrate a significant improvement compared to a conventional CNN-based approach, which, in a previous 2022 study, achieved only 78% accuracy after using 5 convolutional layers and 2 dense layers. Thus, it can be concluded that MobileViTV2, with its fewer parameters, outperforms traditional CNN models, particularly when applied to Rice Leaf Disease Image Identification. For future work, we recommend extending this model to include datasets validated by international rice experts and broadening the scope to accommodate biotic factors such as rice pest classification, as well as abiotic stressors such as climate, soil quality, and geographic information, which could improve the accuracy of disease prediction.

Keywords: convolutional neural network, MobileViTV2, rice leaf disease, precision agriculture, image classification, vision transformer

Procedia PDF Downloads 30
1393 Floodnet: Classification for Post Flood Scene with a High-Resolution Aerial Imaginary Dataset

Authors: Molakala Mourya Vardhan Reddy, Kandimala Revanth, Koduru Sumanth, Beena B. M.

Abstract:

Emergency response and recovery operations are severely hampered by natural catastrophes, especially floods. Understanding post-flood scenarios is essential to disaster management because it facilitates quick evaluation and decision-making. To this end, we introduce FloodNet, a brand-new high-resolution aerial picture collection created especially for comprehending post-flood scenes. A varied collection of excellent aerial photos taken during and after flood occurrences make up FloodNet, which offers comprehensive representations of flooded landscapes, damaged infrastructure, and changed topographies. The dataset provides a thorough resource for training and assessing computer vision models designed to handle the complexity of post-flood scenarios, including a variety of environmental conditions and geographic regions. Pixel-level semantic segmentation masks are used to label the pictures in FloodNet, allowing for a more detailed examination of flood-related characteristics, including debris, water bodies, and damaged structures. Furthermore, temporal and positional metadata improve the dataset's usefulness for longitudinal research and spatiotemporal analysis. For activities like flood extent mapping, damage assessment, and infrastructure recovery projection, we provide baseline standards and evaluation metrics to promote research and development in the field of post-flood scene comprehension. By integrating FloodNet into machine learning pipelines, it will be easier to create reliable algorithms that will help politicians, urban planners, and first responders make choices both before and after floods. The goal of the FloodNet dataset is to support advances in computer vision, remote sensing, and disaster response technologies by providing a useful resource for researchers. FloodNet helps to create creative solutions for boosting communities' resilience in the face of natural catastrophes by tackling the particular problems presented by post-flood situations.

Keywords: image classification, segmentation, computer vision, nature disaster, unmanned arial vehicle(UAV), machine learning.

Procedia PDF Downloads 81
1392 The Effect of Extrusion Processing on Solubility and Molecular Weight of Water-Soluble Arabinoxylan

Authors: Abdulmannan Fadel

Abstract:

Arabinoxylan is a non-starch polysaccharide (NSP), which is one of the most important polysaccharides contained within cereal grains. Wheat endosperm pentosan and rice bran contain a significant amount of arabinoxylan (7% in rice bran and 10-12% in wheat endosperm pentosan). Several methods have been used for arabinoxylan extraction with varying degrees of success e.g. enzymatic and alkaline treatment. Yet, the use of extrusion alone as a pre-treatment to increase the yield and reduce the molecular weight in wheat endosperm pentosan and rice bran has not been investigated. The samples (wheat pentosan and rice bran) were extruded using a Twin-screw extruder at a range of screw speeds (80 and 160 rpm) and barrel temperatures range (80 to 140°C) with a throughput of 30 Kg hr-1 and moisture content of 25%. Arabinoxylans were extracted with water and the extraction yield and molecular weight was determined using size exclusion high-pressure liquid chromatography system. It was found that increasing screw speed from 80 rpm to 160 rpm, did not effect the extraction yield (p < 0.05) of arabinoxylan from either the wheat endosperm pentosan or the rice bran. However, the molecular weight of the extracted arabinoxylans from pentosan was found to decrease with increasing screw speed in wheat endosperm pentosan. These low molecular weight arabinoxylans have been suggested as immunomodulators.

Keywords: arabinoxylans, extrusion, wheat endosperm pentosan, rice bran

Procedia PDF Downloads 417
1391 Investigating the Effective Parameters in Determining the Type of Traffic Congestion Pricing Schemes in Urban Streets

Authors: Saeed Sayyad Hagh Shomar

Abstract:

Traffic congestion pricing – as a strategy in travel demand management in urban areas to reduce traffic congestion, air pollution and noise pollution – has drawn many attentions towards itself. Unlike the satisfying findings in this method, there are still problems in determining the best functional congestion pricing scheme with regard to the situation. The so-called problems in this process will result in further complications and even the scheme failure. That is why having proper knowledge of the significance of congestion pricing schemes and the effective factors in choosing them can lead to the success of this strategy. In this study, first, a variety of traffic congestion pricing schemes and their components are introduced; then, their functional usage is discussed. Next, by analyzing and comparing the barriers, limitations and advantages, the selection criteria of pricing schemes are described. The results, accordingly, show that the selection of the best scheme depends on various parameters. Finally, based on examining the effective parameters, it is concluded that the implementation of area-based schemes (cordon and zonal) has been more successful in non-diversion of traffic. That is considering the topology of the cities and the fact that traffic congestion is often created in the city centers, area-based schemes would be notably functional and appropriate.

Keywords: congestion pricing, demand management, flat toll, variable toll

Procedia PDF Downloads 391
1390 Appraisal of Incentive Schemes for Employees: A Case of Construction Smes

Authors: B. M. Arthur-Aidoo, C. O. Aigbavboa, W. D. Thwala

Abstract:

The performance of construction employees cannot be underestimated if the success of construction projects are to be achieved. This is because the construction industry has been characterised as labour oriented sector, which most of its activities being executed by labour. In the construction sector, employees are driven by incentive schemes which perform encourage and motivate workers for higher efficiency and higher output. The construction sector, however, depends mainly on its labour. In view of the sector's high dependency on its employees, that there must be a significant incentive scheme which must be established to act as a stimulus to drive high performance from employees among the various known incentive packages. This study, therefore, seeks to appraise the incentive packages adopted by construction SMEs. To establish reliable findings that will contribute to knowledge, the study utilised an exploratory approach via semi-structured interviews among sampled construction professionals with the requisite expertise on employees' incentive schemes. The study further established that although incentive schemes are classified in various ways and mediums that act as stimuli to encourage high performance among employees, some are more influential and impacts performance than others. Additionally, the study concludes that medical allowance, holiday with pay, free working tools, and training for employees were ranked the most influential incentives that promote high outputs by workers within the construction SME sector.

Keywords: appraisal, construction, employees, incentive, small and medium-sized enterprises, SMEs

Procedia PDF Downloads 140
1389 Understanding the Impact of Resilience Training on Cognitive Performance in Military Personnel

Authors: Haji Mohammad Zulfan Farhi Bin Haji Sulaini, Mohammad Azeezudde’en Bin Mohd Ismaon

Abstract:

The demands placed on military athletes extend beyond physical prowess to encompass cognitive resilience in high-stress environments. This study investigates the effects of resilience training on the cognitive performance of military athletes, shedding light on the potential benefits and implications for optimizing their overall readiness. In a rapidly evolving global landscape, armed forces worldwide are recognizing the importance of cognitive resilience alongside physical fitness. The study employs a mixed-methods approach, incorporating quantitative cognitive assessments and qualitative data from military athletes undergoing resilience training programs. Cognitive performance is evaluated through a battery of tests, including measures of memory, attention, decision-making, and reaction time. The participants, drawn from various branches of the military, are divided into experimental and control groups. The experimental group undergoes a comprehensive resilience training program, while the control group receives traditional physical training without a specific focus on resilience. The initial findings indicate a substantial improvement in cognitive performance among military athletes who have undergone resilience training. These improvements are particularly evident in domains such as attention and decision-making. The experimental group demonstrated enhanced situational awareness, quicker problem-solving abilities, and increased adaptability in high-stress scenarios. These results suggest that resilience training not only bolsters mental toughness but also positively impacts cognitive skills critical to military operations. In addition to quantitative assessments, qualitative data is collected through interviews and surveys to gain insights into the subjective experiences of military athletes. Preliminary analysis of these narratives reveals that participants in the resilience training program report higher levels of self-confidence, emotional regulation, and an improved ability to manage stress. These psychological attributes contribute to their enhanced cognitive performance and overall readiness. Moreover, this study explores the potential long-term benefits of resilience training. By tracking participants over an extended period, we aim to assess the durability of cognitive improvements and their effects on overall mission success. Early results suggest that resilience training may serve as a protective factor against the detrimental effects of prolonged exposure to stressors, potentially reducing the risk of burnout and psychological trauma among military athletes. This research has significant implications for military organizations seeking to optimize the performance and well-being of their personnel. The findings suggest that integrating resilience training into the training regimen of military athletes can lead to a more resilient and cognitively capable force. This, in turn, may enhance mission success, reduce the risk of injuries, and improve the overall effectiveness of military operations. In conclusion, this study provides compelling evidence that resilience training positively impacts the cognitive performance of military athletes. The preliminary results indicate improvements in attention, decision-making, and adaptability, as well as increased psychological resilience. As the study progresses and incorporates long-term follow-ups, it is expected to provide valuable insights into the enduring effects of resilience training on the cognitive readiness of military athletes, contributing to the ongoing efforts to optimize military personnel's physical and mental capabilities in the face of ever-evolving challenges.

Keywords: military athletes, cognitive performance, resilience training, cognitive enhancement program

Procedia PDF Downloads 81
1388 Reducing Crash Risk at Intersections with Safety Improvements

Authors: Upal Barua

Abstract:

Crash risk at intersections is a critical safety issue. This paper examines the effectiveness of removing an existing off-set at an intersection by realignment, in reducing crashes. Empirical Bayes method was applied to conduct a before-and-after study to assess the effect of this safety improvement. The Transportation Safety Improvement Program in Austin Transportation Department completed several safety improvement projects at high crash intersections with a view to reducing crashes. One of the common safety improvement techniques applied was the realignment of intersection approaches removing an existing off-set. This paper illustrates how this safety improvement technique is applied at a high crash intersection from inception to completion. This paper also highlights the significant crash reductions achieved from this safety improvement technique applying Empirical Bayes method in a before-and-after study. The result showed that realignment of intersection approaches removing an existing off-set can reduce crashes by 53%. This paper also features the state of the art techniques applied in planning, engineering, designing and construction of this safety improvement, key factors driving the success, and lessons learned in the process.

Keywords: crash risk, intersection, off-set, safety improvement technique, before-and-after study, empirical Bayes method

Procedia PDF Downloads 245
1387 The Impact of the General Data Protection Regulation on Human Resources Management in Schools

Authors: Alexandra Aslanidou

Abstract:

The General Data Protection Regulation (GDPR), concerning the protection of natural persons within the European Union with regard to the processing of personal data and on the free movement of such data, became applicable in the European Union (EU) on 25 May 2018 and transformed the way personal data were being treated under the Data Protection Directive (DPD) regime, generating sweeping organizational changes to both public sector and business. A social practice that is considerably influenced in the way of its day-to-day operations is Human Resource (HR) management, for which the importance of GDPR cannot be underestimated. That is because HR processes personal data coming in all shapes and sizes from many different systems and sources. The significance of the proper functioning of an HR department, specifically in human-centered, service-oriented environments such as the education field, is decisive due to the fact that HR operations in schools, conducted effectively, determine the quality of the provided services and consequently have a considerable impact on the success of the educational system. The purpose of this paper is to analyze the decisive role that GDPR plays in HR departments that operate in schools and in order to practically evaluate the aftermath of the Regulation during the first months of its applicability; a comparative use cases analysis in five highly dynamic schools, across three EU Member States, was attempted.

Keywords: general data protection regulation, human resource management, educational system

Procedia PDF Downloads 101
1386 Multilayer Ceramic Capacitors: Based Force Sensor Array for Occlusal Force Measurement

Authors: Sheng-Che Chen, Keng-Ren Lin, Che-Hsin Lin, Hao-Yuan Tseng, Chih-Han Chang

Abstract:

Teeth play an important role in providing the essential nutrients. The force loading of chewing on the crow is important condition to evaluate long-term success of many dental treatments. However, the quantification of the force regarding forces are distributed over the dental crow is still not well recognized. This study presents an industrial-grade piezoelectric-based multilayer ceramic capacitors (MLCCs) force sensor for measuring the distribution of the force distribute over the first molar. The developed sensor array is based on a flexible polyimide electrode and barium titanate-based MLCCs. MLCCs are commonly used in the electronic industry and it is a typical electric component composed of BaTiO₃, which is used as a capacitive material. The most important is that it also can be used as a force-sensing component by its piezoelectric property. In this study, to increase the sensitivity as well as to reduce the variation of different MLCCs, a treatment process is utilized. The MLCC force sensors are able to measure large forces (above 500 N), making them suitable for measuring the bite forces on the tooth crown. Moreover, the sensors also show good force response and good repeatability.

Keywords: force sensor array, multilayer ceramic capacitors, occlusal force, piezoelectric

Procedia PDF Downloads 412
1385 Model Canvas and Process for Educational Game Design in Outcome-Based Education

Authors: Ratima Damkham, Natasha Dejdumrong, Priyakorn Pusawiro

Abstract:

This paper explored the solution in game design to help game designers in the educational game designing using digital educational game model canvas (DEGMC) and digital educational game form (DEGF) based on Outcome-based Education program. DEGMC and DEGF can help designers develop an overview of the game while designing and planning their own game. The way to clearly assess players’ ability from learning outcomes and support their game learning design is by using the tools. Designers can balance educational content and entertainment in designing a game by using the strategies of the Business Model Canvas and design the gameplay and players’ ability assessment from learning outcomes they need by referring to the Constructive Alignment. Furthermore, they can use their design plan in this research to write their Game Design Document (GDD). The success of the research was evaluated by four experts’ perspectives in the education and computer field. From the experiments, the canvas and form helped the game designers model their game according to the learning outcomes and analysis of their own game elements. This method can be a path to research an educational game design in the future.

Keywords: constructive alignment, constructivist theory, educational game, outcome-based education

Procedia PDF Downloads 355
1384 Understanding Informal Settlements: The Role of Geo-Information Tools

Authors: Musyimi Mbathi

Abstract:

Information regarding social, political, demographic, economic and other attributes of human settlement is important for decision makers at all levels of planning, as they have to grapple with dynamic environments often associated with settlements. At the local level, it is particularly important for both communities and urban managers to have accurate and reliable information regarding all planning attributes. Settlement mapping, in particular, informal settlements mapping in Kenya, has over the past few years been carried out using modern tools like Geographic information systems (GIS) and remote sensing for spatial data analysis and planning. GIS tools offer a platform for integration of spatial and non-spatial data as well as visualisation of the settlements. The capabilities offered by these tools have enabled communities to participate especially in the planning and management of new infrastructure as well as settlement upgrading. Land tenure based projects within informal settlements have also relied on GIS and related tools with considerable success. Additionally, the adoption of participatory approaches and use of geo-information tools helped to provide a basis for all inclusive planning thus promoting accountability, transparency, legitimacy, and other dimensions of governance within human settlement planning. The paper examines the context and application of geo-information tools for planning within low-income settlements of Kenya. A case study of Kiambiu settlement will be used to demonstrate how the tools have been applied for planning and decision-making purposes.

Keywords: informal settlements, GIS, governance, modern tools

Procedia PDF Downloads 501
1383 Levels of Plastic Waste and Fish Landed By Beach Seine Fishers in Coastal Ghana

Authors: Francis Gbogbo, Angelica Ama Essandoh, Wendy Teresa Baffoe, Henry Groos, Charles Mario Boateng, Emmanuel Robert Blankson

Abstract:

Baseline data on plastic landing by fishers and monitoring of this is important in evaluating the success of plastic waste management efforts. This study investigated plastic and fish landed by beach seine fishers in Ghana, together with the rate of plastic deposition on an adjoining beach. Plastic constituted 31.6% of the total catch, and 41.7% of the fish landed by weight. There were significant differences between the average weight of fish (139.58±53.6kg) and plastic (65.73±14.6kg) landed per fishing session and the catch per unit effort of fish (183.4±76.7 kg/day) and plastic (88.4±35.2 kg/day). The mean weight of plastic landed per fishing session was higher than the mean weight of each of the 26 species of fisheries. The rate of plastic deposition on the beach was 8.1±2.5 plastic items per m2 per tidal cycle or 0.35±0.11kg plastic per m2 per tidal cycle, with food packs and tableware dominating the deposited plastic. The results suggested that ongoing water sachets and plastic bottle recycling in Ghana are yielding results and calls for targeted efforts in plastic food packs and tableware management.

Keywords: fishig, landing, plastic waste, intertidal area, fishing effort

Procedia PDF Downloads 96
1382 Treating Voxels as Words: Word-to-Vector Methods for fMRI Meta-Analyses

Authors: Matthew Baucum

Abstract:

With the increasing popularity of fMRI as an experimental method, psychology and neuroscience can greatly benefit from advanced techniques for summarizing and synthesizing large amounts of data from brain imaging studies. One promising avenue is automated meta-analyses, in which natural language processing methods are used to identify the brain regions consistently associated with certain semantic concepts (e.g. “social”, “reward’) across large corpora of studies. This study builds on this approach by demonstrating how, in fMRI meta-analyses, individual voxels can be treated as vectors in a semantic space and evaluated for their “proximity” to terms of interest. In this technique, a low-dimensional semantic space is built from brain imaging study texts, allowing words in each text to be represented as vectors (where words that frequently appear together are near each other in the semantic space). Consequently, each voxel in a brain mask can be represented as a normalized vector sum of all of the words in the studies that showed activation in that voxel. The entire brain mask can then be visualized in terms of each voxel’s proximity to a given term of interest (e.g., “vision”, “decision making”) or collection of terms (e.g., “theory of mind”, “social”, “agent”), as measured by the cosine similarity between the voxel’s vector and the term vector (or the average of multiple term vectors). Analysis can also proceed in the opposite direction, allowing word cloud visualizations of the nearest semantic neighbors for a given brain region. This approach allows for continuous, fine-grained metrics of voxel-term associations, and relies on state-of-the-art “open vocabulary” methods that go beyond mere word-counts. An analysis of over 11,000 neuroimaging studies from an existing meta-analytic fMRI database demonstrates that this technique can be used to recover known neural bases for multiple psychological functions, suggesting this method’s utility for efficient, high-level meta-analyses of localized brain function. While automated text analytic methods are no replacement for deliberate, manual meta-analyses, they seem to show promise for the efficient aggregation of large bodies of scientific knowledge, at least on a relatively general level.

Keywords: FMRI, machine learning, meta-analysis, text analysis

Procedia PDF Downloads 450
1381 Predicting Wealth Status of Households Using Ensemble Machine Learning Algorithms

Authors: Habtamu Ayenew Asegie

Abstract:

Wealth, as opposed to income or consumption, implies a more stable and permanent status. Due to natural and human-made difficulties, households' economies will be diminished, and their well-being will fall into trouble. Hence, governments and humanitarian agencies offer considerable resources for poverty and malnutrition reduction efforts. One key factor in the effectiveness of such efforts is the accuracy with which low-income or poor populations can be identified. As a result, this study aims to predict a household’s wealth status using ensemble Machine learning (ML) algorithms. In this study, design science research methodology (DSRM) is employed, and four ML algorithms, Random Forest (RF), Adaptive Boosting (AdaBoost), Light Gradient Boosted Machine (LightGBM), and Extreme Gradient Boosting (XGBoost), have been used to train models. The Ethiopian Demographic and Health Survey (EDHS) dataset is accessed for this purpose from the Central Statistical Agency (CSA)'s database. Various data pre-processing techniques were employed, and the model training has been conducted using the scikit learn Python library functions. Model evaluation is executed using various metrics like Accuracy, Precision, Recall, F1-score, area under curve-the receiver operating characteristics (AUC-ROC), and subjective evaluations of domain experts. An optimal subset of hyper-parameters for the algorithms was selected through the grid search function for the best prediction. The RF model has performed better than the rest of the algorithms by achieving an accuracy of 96.06% and is better suited as a solution model for our purpose. Following RF, LightGBM, XGBoost, and AdaBoost algorithms have an accuracy of 91.53%, 88.44%, and 58.55%, respectively. The findings suggest that some of the features like ‘Age of household head’, ‘Total children ever born’ in a family, ‘Main roof material’ of their house, ‘Region’ they lived in, whether a household uses ‘Electricity’ or not, and ‘Type of toilet facility’ of a household are determinant factors to be a focal point for economic policymakers. The determinant risk factors, extracted rules, and designed artifact achieved 82.28% of the domain expert’s evaluation. Overall, the study shows ML techniques are effective in predicting the wealth status of households.

Keywords: ensemble machine learning, households wealth status, predictive model, wealth status prediction

Procedia PDF Downloads 43