Search results for: protein-protein interaction networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6614

Search results for: protein-protein interaction networks

4994 Aggregation Scheduling Algorithms in Wireless Sensor Networks

Authors: Min Kyung An

Abstract:

In Wireless Sensor Networks which consist of tiny wireless sensor nodes with limited battery power, one of the most fundamental applications is data aggregation which collects nearby environmental conditions and aggregates the data to a designated destination, called a sink node. Important issues concerning the data aggregation are time efficiency and energy consumption due to its limited energy, and therefore, the related problem, named Minimum Latency Aggregation Scheduling (MLAS), has been the focus of many researchers. Its objective is to compute the minimum latency schedule, that is, to compute a schedule with the minimum number of timeslots, such that the sink node can receive the aggregated data from all the other nodes without any collision or interference. For the problem, the two interference models, the graph model and the more realistic physical interference model known as Signal-to-Interference-Noise-Ratio (SINR), have been adopted with different power models, uniform-power and non-uniform power (with power control or without power control), and different antenna models, omni-directional antenna and directional antenna models. In this survey article, as the problem has proven to be NP-hard, we present and compare several state-of-the-art approximation algorithms in various models on the basis of latency as its performance measure.

Keywords: data aggregation, convergecast, gathering, approximation, interference, omni-directional, directional

Procedia PDF Downloads 229
4993 Hybrid Localization Schemes for Wireless Sensor Networks

Authors: Fatima Babar, Majid I. Khan, Malik Najmus Saqib, Muhammad Tahir

Abstract:

This article provides range based improvements over a well-known single-hop range free localization scheme, Approximate Point in Triangulation (APIT) by proposing an energy efficient Barycentric coordinate based Point-In-Triangulation (PIT) test along with PIT based trilateration. These improvements result in energy efficiency, reduced localization error and improved localization coverage compared to APIT and its variants. Moreover, we propose to embed Received signal strength indication (RSSI) based distance estimation in DV-Hop which is a multi-hop localization scheme. The proposed localization algorithm achieves energy efficiency and reduced localization error compared to DV-Hop and its available improvements. Furthermore, a hybrid multi-hop localization scheme is also proposed that utilize Barycentric coordinate based PIT test and both range based (Received signal strength indicator) and range free (hop count) techniques for distance estimation. Our experimental results provide evidence that proposed hybrid multi-hop localization scheme results in two to five times reduction in the localization error compare to DV-Hop and its variants, at reduced energy requirements.

Keywords: Localization, Trilateration, Triangulation, Wireless Sensor Networks

Procedia PDF Downloads 467
4992 Substituted Thiazole Analogues as Anti-Tumor Agents

Authors: Menna Ewida, Dalal Abou El-Ella, Dina Lasheen, Huessin El-Subbagh

Abstract:

Introduction: Vascular Endothelial Growth Factor receptor (VEGF) is a signal protein produced by cells that stimulates vasculogenesis to create new blood vessels. VEGF family binds to three trans-membrane tyrosine kinase receptors,Dihydrofolate reductase (DHFR) is an enzyme of crucial importance in medicinal chemistry. DHFR catalyzes the reduction 7,8 dihydro-folate to tetrahydrofolate and intimately couples with thymidylate synthase which is a pivotal enzyme that catalysis the reductive methylation of deoxyuridine monophosphate (dUMP) to deoxythymidine monophosphate (dTMP) utilizing N5,N10-methylene tetrahydrofolate as a cofactor which functions as the source of the methyl group. Purpose: Novel substituted Thiazole agents were designed as DHFR and VEGF-TK inhibitors with increased synergistic activity and decreased side effects. Methods: Five series of compounds were designed with a rational that mimic the pharmacophoric features present in the reported active compounds that target DHFR & VEGFR. These molecules were docked against Methotrexate & Sorafenib as controls. An in silico ADMET study was also performed to validate the bioavailability of the newly designed compounds. The in silico molecular docking & ADMET study were also applied to the non-classical antifolates for comparison. The interaction energy comparable to that of MTX for DHFRI and Sorafenib for VEGF-TKI activity were recorded. Results: Compound 5 exhibited the highest interaction energy when docked against Sorafenib, While Compound 9 showed the highest interaction energy when docked against MTX with the perfect binding mode. Comparable results were also obtained for the ADMET study. Most of the compounds showed absorption within (95-99) zone which varies according to the type of substituents. Conclusions: The Substituted Thiazole Analogues could be a suitable template for antitumor drugs that possess enhanced bioavailability and act as DHFR and VEGF-TK inhibitors.

Keywords: anti-tumor agents, DHFR, drug design, molecular modeling, VEGFR-TKIs

Procedia PDF Downloads 235
4991 Wind Power Forecasting Using Echo State Networks Optimized by Big Bang-Big Crunch Algorithm

Authors: Amir Hossein Hejazi, Nima Amjady

Abstract:

In recent years, due to environmental issues traditional energy sources had been replaced by renewable ones. Wind energy as the fastest growing renewable energy shares a considerable percent of energy in power electricity markets. With this fast growth of wind energy worldwide, owners and operators of wind farms, transmission system operators, and energy traders need reliable and secure forecasts of wind energy production. In this paper, a new forecasting strategy is proposed for short-term wind power prediction based on Echo State Networks (ESN). The forecast engine utilizes state-of-the-art training process including dynamical reservoir with high capability to learn complex dynamics of wind power or wind vector signals. The study becomes more interesting by incorporating prediction of wind direction into forecast strategy. The Big Bang-Big Crunch (BB-BC) evolutionary optimization algorithm is adopted for adjusting free parameters of ESN-based forecaster. The proposed method is tested by real-world hourly data to show the efficiency of the forecasting engine for prediction of both wind vector and wind power output of aggregated wind power production.

Keywords: wind power forecasting, echo state network, big bang-big crunch, evolutionary optimization algorithm

Procedia PDF Downloads 572
4990 Multi-Scale Control Model for Network Group Behavior

Authors: Fuyuan Ma, Ying Wang, Xin Wang

Abstract:

Social networks have become breeding grounds for the rapid spread of rumors and malicious information, posing threats to societal stability and causing significant public harm. Existing research focuses on simulating the spread of information and its impact on users through propagation dynamics and applies methods such as greedy approximation strategies to approximate the optimal control solution at the global scale. However, the greedy strategy at the global scale may fall into locally optimal solutions, and the approximate simulation of information spread may accumulate more errors. Therefore, we propose a multi-scale control model for network group behavior, introducing individual and group scales on top of the greedy strategy’s global scale. At the individual scale, we calculate the propagation influence of nodes based on their structural attributes to alleviate the issue of local optimality. At the group scale, we conduct precise propagation simulations to avoid introducing cumulative errors from approximate calculations without increasing computational costs. Experimental results on three real-world datasets demonstrate the effectiveness of our proposed multi-scale model in controlling network group behavior.

Keywords: influence blocking maximization, competitive linear threshold model, social networks, network group behavior

Procedia PDF Downloads 21
4989 Thermodynamics of Random Copolymers in Solution

Authors: Maria Bercea, Bernhard A. Wolf

Abstract:

The thermodynamic behavior for solutions of poly (methyl methacrylate-ran-t-butyl methacrylate) of variable composition as compared with the corresponding homopolymers was investigated by light scattering measurements carried out for dilute solutions and vapor pressure measurements of concentrated solutions. The complex dependencies of the Flory Huggins interaction parameter on concentration and copolymer composition in solvents of different polarity (toluene and chloroform) can be understood by taking into account the ability of the polymers to rearrange in a response to changes in their molecular surrounding. A recent unified thermodynamic approach was used for modeling the experimental data, being able to describe the behavior of the different solutions by means of two adjustable parameters, one representing the effective number of solvent segments and another one accounting for the interactions between the components. Thus, it was investigated how the solvent quality changes with the composition of the copolymers through the Gibbs energy of mixing as a function of polymer concentration. The largest reduction of the Gibbs energy at a given composition of the system was observed for the best solvent. The present investigation proves that the new unified thermodynamic approach is a general concept applicable to homo- and copolymers, independent of the chain conformation or shape, molecular and chemical architecture of the components and of other dissimilarities, such as electrical charges.

Keywords: random copolymers, Flory Huggins interaction parameter, Gibbs energy of mixing, chemical architecture

Procedia PDF Downloads 281
4988 Effects of Feed Forms on Growth Pattern, Behavioural Responses and Fecal Microbial Load of Pigs Fed Diets Supplemented with Saccaromyces cereviseae Probiotics

Authors: O. A. Adebiyi, A. O. Oni, A. O. K. Adeshehinwa, I. O. Adejumo

Abstract:

In forty nine (49) days, twenty four (24) growing pigs (Landrace x Large white) with an average weight of 17 ±2.1kg were allocated to four experimental treatments T1 (dry mash without probiotics), T2 (wet feed without probiotics), T3 (dry mash + Saccaromyces cereviseae probiotics) and T4 (wet feed + Saccaromyces cereviseae probiotics) which were replicated three times with two pigs per replicate in a completely randomised design. The basal feed (dry feed) was formulated to meet the nutritional requirement of the animal with crude protein of 18.00% and metabolisable energy of 2784.00kcal/kgME. Growth pattern, faecal microbial load and behavioural activities (eating, drinking, physical pen interaction and frequency of visiting the drinking troughs) were accessed. Pigs fed dry mash without probiotics (T1) had the highest daily feed intake among the experimental animals (1.10kg) while pigs on supplemented diets (T3 and T4) had an average daily feed intake of 0.95kg. However, the feed conversion ratio was significantly (p < 0.05) affected with pigs on T3 having least value of 6.26 compared those on T4 (wet feed + Saccaromyces cereviseae) with means of 7.41. Total organism counts varied significantly (p < 0.05) with pigs on T1, T2, T3 and T4 with mean values of 179.50 x106cfu; 132.00 x 106cfu; 32.00 x 106cfu and 64.50 x 106cfu respectively. Coliform count was also significantly (p < 0.05) different among the treatments with corresponding values of 117.50 x 106cfu; 49.00 x 106cfu, 8.00 x 106cfu for pigs in T1, T2 and T4 respectively. The faecal Saccaromyces cereviseae was significantly lower in pigs fed supplemented diets compared to their counterparts on unsupplemented diets. This could be due to the inability of yeast organisms to be voided easily through feaces. The pigs in T1 spent the most time eating (7.88%) while their counterparts on T3 spent the least time eating. The corresponding physical pen interaction times expressed in percentage of a day for pigs in T1, T2, T3 and T4 are 6.22%, 5.92%, 4.04% and 4.80% respectively. These behavioural responses exhibited by these pigs (T3) showed that little amount of dry feed supplemented with probiotics is needed for better performance. The water intake increases as a result of the dryness of the feed with consequent decrease in pen interaction and more time was spent resting than engaging in other possible vice-habit like fighting or tail biting. Pigs fed dry feed (T3) which was supplemented with Saccaromyces cereviseae probiotics had a better overall performance, least faecal microbial load than wet fed pigs either supplemented with Saccaromyces cereviseae or non-supplemented.

Keywords: behaviour, feed forms, feed utilization, growth, microbial

Procedia PDF Downloads 354
4987 Novel Molecular Mechanisms Involved in Macrophage Phenotypic Polarization

Authors: Mansi Srivastava, Uzma Saqib, Adnan Naim, Anjali Roy, Dongfang Liu, Deepak Bhatnagar, Ravinder Ravinder, Mirza S. Baig

Abstract:

Macrophages polarize to proinflammatory M1 or anti-inflammatory M2 states with distinct physiological functions. This transition within the M1 to M2 phenotypes decides the nature, duration, and severity of an inflammatory response. However, inspite of a substantial understanding of the fate of these phenotypes, the underlying molecular mechanisms are not well understood. We have investigated the role of Neuronal nitric oxide synthase (NOS1) mediated regulation of Activator protein 1 (AP-1) transcription factor in macrophages as a critical effector of macrophage phenotypic change. Activator protein 1 (AP-1) is a group of dimeric transcription factors composed of jun, Fos, and ATF family proteins. We determined that NOS1-derived nitric oxide (NO) facilitate Fos and jun interaction which induces IL12 & IL23 expression. Pharmacological inhibition of NOS1 inhibits Fos and jun interaction but increases ATF2 and Fos dimerization. Switching of Fos and jun dimer to ATF2 and jun dimerization switches phenotype from IL–12high IL-23high IL-10low to IL–12low IL-23lowIL-10high phenotype, respectively. Together, these findings highlight a key role of the TLR4-NOS1-AP1 signaling axis in regulating macrophage polarization.

Keywords: inflammation, macrophage, lipopolysaccharide (LPS), proinflammatory cytokines, activator protein 1 (AP-1), neuronal nitric oxide synthase (NOS1)

Procedia PDF Downloads 285
4986 A Mathematical Analysis of Behavioural Epidemiology: Drugs Users Transmission Dynamics Based on Level Education for Susceptible Population

Authors: Firman Riyudha, Endrik Mifta Shaiful

Abstract:

The spread of drug users is one kind of behavioral epidemiology that becomes a threat to every country in the world. This problem caused various crisis simultaneously, including financial or economic crisis, social, health, until human crisis. Most drug users are teenagers at school age. A new deterministic model would be constructed to determine the dynamics of the spread of drug users by considering level of education in a susceptible population. Based on the analytical model, two equilibria points were obtained; there were E₀ (zero user) and E₁ (endemic equilibrium). Existence of equilibrium and local stability of equilibria depended on the Basic Reproduction Ratio (R₀). This parameter was defined as the expected rate of secondary prevalence and primary prevalence in virgin population along spreading primary prevalence. The zero-victim equilibrium would be locally asymptotically stable if R₀ < 1 while if R₀ > 1 the endemic equilibrium would be locally asymptotically stable. The result showed that R₀ was proportional to the rate of interaction of each susceptible population based on educational level with the users' population. It is concluded that there was a need to be given a control in interaction, so that drug users population could be minimized. Numerical simulations were also provided to support analytical results.

Keywords: drugs users, level education, mathematical model, stability

Procedia PDF Downloads 475
4985 Affective Robots: Evaluation of Automatic Emotion Recognition Approaches on a Humanoid Robot towards Emotionally Intelligent Machines

Authors: Silvia Santano Guillén, Luigi Lo Iacono, Christian Meder

Abstract:

One of the main aims of current social robotic research is to improve the robots’ abilities to interact with humans. In order to achieve an interaction similar to that among humans, robots should be able to communicate in an intuitive and natural way and appropriately interpret human affects during social interactions. Similarly to how humans are able to recognize emotions in other humans, machines are capable of extracting information from the various ways humans convey emotions—including facial expression, speech, gesture or text—and using this information for improved human computer interaction. This can be described as Affective Computing, an interdisciplinary field that expands into otherwise unrelated fields like psychology and cognitive science and involves the research and development of systems that can recognize and interpret human affects. To leverage these emotional capabilities by embedding them in humanoid robots is the foundation of the concept Affective Robots, which has the objective of making robots capable of sensing the user’s current mood and personality traits and adapt their behavior in the most appropriate manner based on that. In this paper, the emotion recognition capabilities of the humanoid robot Pepper are experimentally explored, based on the facial expressions for the so-called basic emotions, as well as how it performs in contrast to other state-of-the-art approaches with both expression databases compiled in academic environments and real subjects showing posed expressions as well as spontaneous emotional reactions. The experiments’ results show that the detection accuracy amongst the evaluated approaches differs substantially. The introduced experiments offer a general structure and approach for conducting such experimental evaluations. The paper further suggests that the most meaningful results are obtained by conducting experiments with real subjects expressing the emotions as spontaneous reactions.

Keywords: affective computing, emotion recognition, humanoid robot, human-robot-interaction (HRI), social robots

Procedia PDF Downloads 235
4984 Open and Distance Learning (ODL) Education in Nigeria: Challenge of Academic Quality

Authors: Edu Marcelina, Sule Sheidu A., Nsor Eunice

Abstract:

As open and distance education is gradually becoming an acceptable means of solving the problem of access in higher education, quality has now become one of the main concerns among institutions and stakeholders of open and distance learning (ODL) and the education sector in general. This study assessed the challenges of academic quality in the open and distance learning (ODL) education in Nigeria using Distance Learning Institute (DLI), University of Lagos and National Open University of Nigeria as a case. In carrying out the study, a descriptive survey research design was employed. A researcher-designed and validated questionnaire was used to elicit responses that translated to the quantitative data for this study. The sample comprised 665 students of the Distance Learning Institute (DLI), and National Open University of Nigeria (NOUN), carefully selected through the method of simple random sampling. Data collected from the study were analyzed using Chi-Square (X2) at 0.05 Level of significance. The results of the analysis revealed that; the use of ICT tools is a factor in ensuring quality in the Open and Distance Learning (ODL) operations; the quality of the materials made available to ODL students will determine the quality of education that will be received by the students; and the time scheduled for students for self-study, online lecturing/interaction and face to face study and the quality of education in Open and Distance Learning Institutions has a lot of impact on the quality of education the students receive. Based on the findings, a number of recommendations were made.

Keywords: open and distance learning, quality, ICT, face-to-face interaction

Procedia PDF Downloads 377
4983 Modeling and Minimizing the Effects of Ferroresonance for Medium Voltage Transformers

Authors: Mohammad Hossein Mohammadi Sanjani, Ashknaz Oraee, Arian Amirnia, Atena Taheri, Mohammadreza Arabi, Mahmud Fotuhi-Firuzabad

Abstract:

Ferroresonance effects cause overvoltage in medium voltage transformers and isolators used in electrical networks. Ferroresonance effects are nonlinear and occur between the network capacitor and the nonlinear inductance of the voltage transformer during saturation. This phenomenon is unwanted for transformers since it causes overheating, introduction of high dynamic forces in primary coils, and rise of voltage in primary coils for the voltage transformer. Furthermore, it results in electrical and thermal failure of the transformer. Expansion of distribution lines, design of the transformer in smaller sizes, and the increase of harmonics in distribution networks result in an increase of ferroresonance. There is limited literature available to improve the effects of ferroresonance; therefore, optimizing its effects for voltage transformers is of great importance. In this study, comprehensive modeling of a medium voltage block-type voltage transformer is performed. In addition, a recent model is proposed to improve the performance of voltage transformers during the occurrence of ferroresonance using damping oscillations. Also, transformer design optimization is presented in this study to show further improvements in the performance of the voltage transformer. The recently proposed model is experimentally tested and verified on a medium voltage transformer in the laboratory, and simulation results show a large reduction of the effects of ferroresonance.

Keywords: optimization, voltage transformer, ferroresonance, modeling, damper

Procedia PDF Downloads 101
4982 Investigating the Flow Physics within Vortex-Shockwave Interactions

Authors: Frederick Ferguson, Dehua Feng, Yang Gao

Abstract:

No doubt, current CFD tools have a great many technical limitations, and active research is being done to overcome these limitations. Current areas of limitations include vortex-dominated flows, separated flows, and turbulent flows. In general, turbulent flows are unsteady solutions to the fluid dynamic equations, and instances of these solutions can be computed directly from the equations. One of the approaches commonly implemented is known as the ‘direct numerical simulation’, DNS. This approach requires a spatial grid that is fine enough to capture the smallest length scale of the turbulent fluid motion. This approach is called the ‘Kolmogorov scale’ model. It is of interest to note that the Kolmogorov scale model must be captured throughout the domain of interest and at a correspondingly small-time step. In typical problems of industrial interest, the ratio of the length scale of the domain to the Kolmogorov length scale is so great that the required grid set becomes prohibitively large. As a result, the available computational resources are usually inadequate for DNS related tasks. At this time in its development, DNS is not applicable to industrial problems. In this research, an attempt is made to develop a numerical technique that is capable of delivering DNS quality solutions at the scale required by the industry. To date, this technique has delivered preliminary results for both steady and unsteady, viscous and inviscid, compressible and incompressible, and for both high and low Reynolds number flow fields that are very accurate. Herein, it is proposed that the Integro-Differential Scheme (IDS) be applied to a set of vortex-shockwave interaction problems with the goal of investigating the nonstationary physics within the resulting interaction regions. In the proposed paper, the IDS formulation and its numerical error capability will be described. Further, the IDS will be used to solve the inviscid and viscous Burgers equation, with the goal of analyzing their solutions over a considerable length of time, thus demonstrating the unsteady capabilities of the IDS. Finally, the IDS will be used to solve a set of fluid dynamic problems related to flow that involves highly vortex interactions. Plans are to solve the following problems: the travelling wave and vortex problems over considerable lengths of time, the normal shockwave–vortex interaction problem for low supersonic conditions and the reflected oblique shock–vortex interaction problem. The IDS solutions obtained in each of these solutions will be explored further in efforts to determine the distributed density gradients and vorticity, as well as the Q-criterion. Parametric studies will be conducted to determine the effects of the Mach number on the intensity of vortex-shockwave interactions.

Keywords: vortex dominated flows, shockwave interactions, high Reynolds number, integro-differential scheme

Procedia PDF Downloads 137
4981 Reliable and Error-Free Transmission through Multimode Polymer Optical Fibers in House Networks

Authors: Tariq Ahamad, Mohammed S. Al-Kahtani, Taisir Eldos

Abstract:

Optical communications technology has made enormous and steady progress for several decades, providing the key resource in our increasingly information-driven society and economy. Much of this progress has been in finding innovative ways to increase the data carrying capacity of a single optical fiber. In this research article we have explored basic issues in terms of security and reliability for secure and reliable information transfer through the fiber infrastructure. Conspicuously, one potentially enormous source of improvement has however been left untapped in these systems: fibers can easily support hundreds of spatial modes, but today’s commercial systems (single-mode or multi-mode) make no attempt to use these as parallel channels for independent signals. Bandwidth, performance, reliability, cost efficiency, resiliency, redundancy, and security are some of the demands placed on telecommunications today. Since its initial development, fiber optic systems have had the advantage of most of these requirements over copper-based and wireless telecommunications solutions. The largest obstacle preventing most businesses from implementing fiber optic systems was cost. With the recent advancements in fiber optic technology and the ever-growing demand for more bandwidth, the cost of installing and maintaining fiber optic systems has been reduced dramatically. With so many advantages, including cost efficiency, there will continue to be an increase of fiber optic systems replacing copper-based communications. This will also lead to an increase in the expertise and the technology needed to tap into fiber optic networks by intruders. As ever before, all technologies have been subject to hacking and criminal manipulation, fiber optics is no exception. Researching fiber optic security vulnerabilities suggests that not everyone who is responsible for their networks security is aware of the different methods that intruders use to hack virtually undetected into fiber optic cables. With millions of miles of fiber optic cables stretching across the globe and carrying information including but certainly not limited to government, military, and personal information, such as, medical records, banking information, driving records, and credit card information; being aware of fiber optic security vulnerabilities is essential and critical. Many articles and research still suggest that fiber optics is expensive, impractical and hard to tap. Others argue that it is not only easily done, but also inexpensive. This paper will briefly discuss the history of fiber optics, explain the basics of fiber optic technologies and then discuss the vulnerabilities in fiber optic systems and how they can be better protected. Knowing the security risks and knowing the options available may save a company a lot embarrassment, time, and most importantly money.

Keywords: in-house networks, fiber optics, security risk, money

Procedia PDF Downloads 420
4980 Fish Markets in Sierra Leone: Size, Structure, Distribution Networks and Opportunities for Aquaculture Development

Authors: Milton Jusu, Moses Koroma

Abstract:

Efforts by the Ministry of Fisheries and Marine Resources and its development partners to introduce “modern” aquaculture in Sierra Leone since the 1970s have not been successful. A number of reasons have been hypothesized, including the suggestion that the market infrastructure and demand for farmed fish were inadequate to stimulate large-scale and widespread aquaculture production in the country. We have assessed the size, structure, networks and opportunities in fish markets using a combination of Participatory Rural Appraisals (PRAs) and questionnaire surveys conducted in a sample of 29 markets (urban, weekly, wholesale and retail) and two hundred traders. The study showed that the local fish markets were dynamic, with very high variations in demand and supply. The markets sampled supplied between 135.2 and 9947.6 tonnes/year. Mean prices for fresh fish varied between US$1.12 and US$3.89/kg depending on species, with smoked catfish and shrimps commanding prices as high as US$7.4/kg. It is unlikely that marine capture fisheries can increase their current production levels, and these may, in fact, already be over-exploited and declining. Marine fish supplies are particularly low between July and September. More careful attention to the timing of harvests (rainy season, not dry season) and to species (catfish, not tilapia) (could help in the successful adoption of aquaculture.

Keywords: fisheries and aquaculture, fish market, marine fish supplies, harvests

Procedia PDF Downloads 72
4979 Assessing the Effect of Grid Connection of Large-Scale Wind Farms on Power System Small-Signal Angular Stability

Authors: Wenjuan Du, Jingtian Bi, Tong Wang, Haifeng Wang

Abstract:

Grid connection of a large-scale wind farm affects power system small-signal angular stability in two aspects. Firstly, connection of the wind farm brings about the change of load flow and configuration of a power system. Secondly, the dynamic interaction is introduced by the wind farm with the synchronous generators (SGs) in the power system. This paper proposes a method to assess the two aspects of the effect of the wind farm on power system small-signal angular stability. The effect of the change of load flow/system configuration brought about by the wind farm can be examined separately by displacing wind farms with constant power sources, then the effect of the dynamic interaction of the wind farm with the SGs can be also computed individually. Thus, a clearer picture and better understanding on the power system small-signal angular stability as affected by grid connection of the large-scale wind farm are provided. In the paper, an example power system with grid connection of a wind farm is presented to demonstrate the proposed approach.

Keywords: power system small-signal angular stability, power system low-frequency oscillations, electromechanical oscillation modes, wind farms, double fed induction generator (DFIG)

Procedia PDF Downloads 483
4978 Suicide Conceptualization in Adolescents through Semantic Networks

Authors: K. P. Valdés García, E. I. Rodríguez Fonseca, L. G. Juárez Cantú

Abstract:

Suicide is a global, multidimensional and dynamic problem of mental health, which requires a constant study for its understanding and prevention. When research of this phenomenon is done, it is necessary to consider the different characteristics it may have because of the individual and sociocultural variables, the importance of this consideration is related to the generation of effective treatments and interventions. Adolescents are a vulnerable population due to the characteristics of the development stage. The investigation was carried out with the objective of identifying and describing the conceptualization of adolescents of suicide, and in this process, we find possible differences between men and women. The study was carried out in Saltillo, Coahuila, Mexico. The sample was composed of 418 volunteer students aged between 11 and 18 years. The ethical aspects of the research were reviewed and considered in all the processes of the investigation with the participants, their parents and the schools to which they belonged, psychological attention was offered to the participants and preventive workshops were carried in the educational institutions. Natural semantic networks were the instrument used, since this hybrid method allows to find and analyze the social concept of a phenomenon; in this case, the word suicide was used as an evocative stimulus and participants were asked to evoke at least five words and a maximum 10 that they thought were related to suicide, and then hierarchize them according to the closeness with the construct. The subsequent analysis was carried with Excel, yielding the semantic weights, affective loads and the distances between each of the semantic fields established according to the words reported by the subjects. The results showed similarities in the conceptualization of suicide in adolescents, men and women. Seven semantic fields were generated; the words were related in the discourse analysis: 1) death, 2) possible triggering factors, 3) associated moods, 4) methods used to carry it out, 5) psychological symptomatology that could affect, 6) words associated with a rejection of suicide, and finally, 7) specific objects to carry it out. One of the necessary aspects to consider in the investigations of complex issues such as suicide is to have a diversity of instruments and techniques that adjust to the characteristics of the population and that allow to understand the phenomena from the social constructs and not only theoretical. The constant study of suicide is a pressing need, the loss of a life from emotional difficulties that can be solved through psychiatry and psychological methods requires governments and professionals to pay attention and work with the risk population.

Keywords: adolescents, psychological construct, semantic networks, suicide

Procedia PDF Downloads 109
4977 Evolving Convolutional Filter Using Genetic Algorithm for Image Classification

Authors: Rujia Chen, Ajit Narayanan

Abstract:

Convolutional neural networks (CNN), as typically applied in deep learning, use layer-wise backpropagation (BP) to construct filters and kernels for feature extraction. Such filters are 2D or 3D groups of weights for constructing feature maps at subsequent layers of the CNN and are shared across the entire input. BP as a gradient descent algorithm has well-known problems of getting stuck at local optima. The use of genetic algorithms (GAs) for evolving weights between layers of standard artificial neural networks (ANNs) is a well-established area of neuroevolution. In particular, the use of crossover techniques when optimizing weights can help to overcome problems of local optima. However, the application of GAs for evolving the weights of filters and kernels in CNNs is not yet an established area of neuroevolution. In this paper, a GA-based filter development algorithm is proposed. The results of the proof-of-concept experiments described in this paper show the proposed GA algorithm can find filter weights through evolutionary techniques rather than BP learning. For some simple classification tasks like geometric shape recognition, the proposed algorithm can achieve 100% accuracy. The results for MNIST classification, while not as good as possible through standard filter learning through BP, show that filter and kernel evolution warrants further investigation as a new subarea of neuroevolution for deep architectures.

Keywords: neuroevolution, convolutional neural network, genetic algorithm, filters, kernels

Procedia PDF Downloads 186
4976 The Impact of AI on Higher Education

Authors: Georges Bou Ghantous

Abstract:

This literature review examines the transformative impact of Artificial Intelligence (AI) on higher education, highlighting both the potential benefits and challenges associated with its adoption. The review reveals that AI significantly enhances personalized learning by tailoring educational experiences to individual student needs, thereby boosting engagement and learning outcomes. Automated grading systems streamline assessment processes, allowing educators to focus on improving instructional quality and student interaction. AI's data-driven insights provide valuable analytics, helping educators identify trends in at-risk students and refine teaching strategies. Moreover, AI promotes enhanced instructional innovation through the adoption of advanced teaching methods and technologies, enriching the educational environment. Administrative efficiency is also improved as AI automates routine tasks, freeing up time for educators to engage in research and curriculum development. However, the review also addresses the challenges that accompany AI integration, such as data privacy concerns, algorithmic bias, dependency on technology, reduced human interaction, and ethical dilemmas. This balanced exploration underscores the need for careful consideration of both the advantages and potential hurdles in the implementation of AI in higher education.

Keywords: administrative efficiency, data-driven insights, data privacy, ethical dilemmas, higher education, personalized learning

Procedia PDF Downloads 26
4975 Ambient Vibration Test and Numerical Modelling of Wind Turbine Towers including Soil Structure Interaction

Authors: Heba Kamal, Ghada Saudi

Abstract:

Due to The rapid expansion of energy and growing number of wind turbines construction in earthquake areas, a design method for simple and accurate evaluation of seismic load to ensure structural integrity is required. In Egypt, there are some appropriate places to build wind turbine towers lie in active seismically regions, so accurate analysis is necessary for prediction of seismic loads with consideration of intensity of the earthquake, soil and structural characteristics. In this research, seismic behavior of wind turbine towers Gamesa Type G52 in Zafarana Wind Farm Egypt is investigated using experimental work by ambient vibration test, and fully dynamic analysis based on time history from El Aqaba Earthquake 1995 using 3D by PLAXIS 3D software, including the soil structure interaction effect. The results obtained from dynamic analyses are discussed. From this study, it is concluded that, the fully dynamic seismic analysis based on used PLAXIS 3D with the aid of the full scale ambient vibration test gives almost good simulation for the seismic loads that can be applied to wind turbine tower design in Egypt.

Keywords: Wind turbine towers, Zafarana Wind Farm, Gamesa Type G52, ambient vibration test

Procedia PDF Downloads 208
4974 Investigating the Relationship between Job Satisfaction, Role Identity, and Turnover Intention for Nurses in Outpatient Department

Authors: Su Hui Tsai, Weir Sen Lin, Rhay Hung Weng

Abstract:

There are numerous outpatient departments at hospitals with enormous amounts of outpatients. Although the work of outpatient nursing staff does not include the ward, emergency and critical care units that involve patient life-threatening conditions, the work is cumbersome and requires facing and dealing with a large number of outpatients in a short period of time. Therefore, nursing staff often do not feel satisfied with their work and cannot identify with their professional role, leading to intentions to leave their job. Thus, the main purpose of this study is to explore the correlation between the job satisfaction and role identity of nursing staff with turnover intention. This research was conducted using a questionnaire, and the subjects were outpatient nursing staff in three regional hospitals in Southern Taiwan. A total of 175 questionnaires were distributed, and 166 valid questionnaires were returned. After collecting the data, the reliability and validity of the study variables were confirmed by confirmatory factor analysis. The influence of role identity and job satisfaction on nursing staff’s turnover intention was analyzed by descriptive analysis, one-way ANOVA, Pearson correlation analysis and multiple regression analysis. Results showed that 'role identity' had significant differences in different types of marriages. Job satisfaction of 'grasp of environment' had significant differences in different levels of education. Job satisfaction of 'professional growth' and 'shifts and days off' showed significant differences in different types of marriages. 'Role identity' and 'job satisfaction' were negatively correlated with turnover intention respectively. Job satisfaction of 'salary and benefits' and 'grasp of environment' were significant predictors of role identity. The higher the job satisfaction of 'salary and benefits' and 'grasp of environment', the higher the role identity. Job satisfaction of 'patient and family interaction' were significant predictors of turnover intention. The lower the job satisfaction of 'patient and family interaction', the higher the turnover intention. This study found that outpatient nursing staff had the lowest satisfaction towards salary structure. It is recommended that bonuses, promotion opportunities and other incentives be established to increase the role identity of outpatient nursing staff. The results showed that the higher the job satisfaction of 'salary and benefits' and 'grasp of environment', the higher the role identity. It is recommended that regular evaluations be conducted to reward nursing staff with excellent service and invite nursing staff to share their work experiences and thoughts, to enhance nursing staff’s expectation and identification of their occupational role, as well as instilling the concept of organizational service and organizational expectations of emotional display. The results showed that the lower the job satisfaction of 'patient and family interaction', the higher the turnover intention. It is recommended that interpersonal communication and workplace violence prevention educational training courses be organized to enhance the communication and interaction of nursing staff with patients and their families.

Keywords: outpatient, job satisfaction, turnover, intention

Procedia PDF Downloads 146
4973 Developing A Third Degree Of Freedom For Opinion Dynamics Models Using Scales

Authors: Dino Carpentras, Alejandro Dinkelberg, Michael Quayle

Abstract:

Opinion dynamics models use an agent-based modeling approach to model people’s opinions. Model's properties are usually explored by testing the two 'degrees of freedom': the interaction rule and the network topology. The latter defines the connection, and thus the possible interaction, among agents. The interaction rule, instead, determines how agents select each other and update their own opinion. Here we show the existence of the third degree of freedom. This can be used for turning one model into each other or to change the model’s output up to 100% of its initial value. Opinion dynamics models represent the evolution of real-world opinions parsimoniously. Thus, it is fundamental to know how real-world opinion (e.g., supporting a candidate) could be turned into a number. Specifically, we want to know if, by choosing a different opinion-to-number transformation, the model’s dynamics would be preserved. This transformation is typically not addressed in opinion dynamics literature. However, it has already been studied in psychometrics, a branch of psychology. In this field, real-world opinions are converted into numbers using abstract objects called 'scales.' These scales can be converted one into the other, in the same way as we convert meters to feet. Thus, in our work, we analyze how this scale transformation may affect opinion dynamics models. We perform our analysis both using mathematical modeling and validating it via agent-based simulations. To distinguish between scale transformation and measurement error, we first analyze the case of perfect scales (i.e., no error or noise). Here we show that a scale transformation may change the model’s dynamics up to a qualitative level. Meaning that a researcher may reach a totally different conclusion, even using the same dataset just by slightly changing the way data are pre-processed. Indeed, we quantify that this effect may alter the model’s output by 100%. By using two models from the standard literature, we show that a scale transformation can transform one model into the other. This transformation is exact, and it holds for every result. Lastly, we also test the case of using real-world data (i.e., finite precision). We perform this test using a 7-points Likert scale, showing how even a small scale change may result in different predictions or a number of opinion clusters. Because of this, we think that scale transformation should be considered as a third-degree of freedom for opinion dynamics. Indeed, its properties have a strong impact both on theoretical models and for their application to real-world data.

Keywords: degrees of freedom, empirical validation, opinion scale, opinion dynamics

Procedia PDF Downloads 155
4972 Correlation between Speech Emotion Recognition Deep Learning Models and Noises

Authors: Leah Lee

Abstract:

This paper examines the correlation between deep learning models and emotions with noises to see whether or not noises mask emotions. The deep learning models used are plain convolutional neural networks (CNN), auto-encoder, long short-term memory (LSTM), and Visual Geometry Group-16 (VGG-16). Emotion datasets used are Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS), Crowd-sourced Emotional Multimodal Actors Dataset (CREMA-D), Toronto Emotional Speech Set (TESS), and Surrey Audio-Visual Expressed Emotion (SAVEE). To make it four times bigger, audio set files, stretch, and pitch augmentations are utilized. From the augmented datasets, five different features are extracted for inputs of the models. There are eight different emotions to be classified. Noise variations are white noise, dog barking, and cough sounds. The variation in the signal-to-noise ratio (SNR) is 0, 20, and 40. In summation, per a deep learning model, nine different sets with noise and SNR variations and just augmented audio files without any noises will be used in the experiment. To compare the results of the deep learning models, the accuracy and receiver operating characteristic (ROC) are checked.

Keywords: auto-encoder, convolutional neural networks, long short-term memory, speech emotion recognition, visual geometry group-16

Procedia PDF Downloads 75
4971 A Review on Medical Image Registration Techniques

Authors: Shadrack Mambo, Karim Djouani, Yskandar Hamam, Barend van Wyk, Patrick Siarry

Abstract:

This paper discusses the current trends in medical image registration techniques and addresses the need to provide a solid theoretical foundation for research endeavours. Methodological analysis and synthesis of quality literature was done, providing a platform for developing a good foundation for research study in this field which is crucial in understanding the existing levels of knowledge. Research on medical image registration techniques assists clinical and medical practitioners in diagnosis of tumours and lesion in anatomical organs, thereby enhancing fast and accurate curative treatment of patients. Literature review aims to provide a solid theoretical foundation for research endeavours in image registration techniques. Developing a solid foundation for a research study is possible through a methodological analysis and synthesis of existing contributions. Out of these considerations, the aim of this paper is to enhance the scientific community’s understanding of the current status of research in medical image registration techniques and also communicate to them, the contribution of this research in the field of image processing. The gaps identified in current techniques can be closed by use of artificial neural networks that form learning systems designed to minimise error function. The paper also suggests several areas of future research in the image registration.

Keywords: image registration techniques, medical images, neural networks, optimisaztion, transformation

Procedia PDF Downloads 178
4970 Aromatic Medicinal Plant Classification Using Deep Learning

Authors: Tsega Asresa Mengistu, Getahun Tigistu

Abstract:

Computer vision is an artificial intelligence subfield that allows computers and systems to retrieve meaning from digital images. It is applied in various fields of study self-driving cars, video surveillance, agriculture, Quality control, Health care, construction, military, and everyday life. Aromatic and medicinal plants are botanical raw materials used in cosmetics, medicines, health foods, and other natural health products for therapeutic and Aromatic culinary purposes. Herbal industries depend on these special plants. These plants and their products not only serve as a valuable source of income for farmers and entrepreneurs, and going to export not only industrial raw materials but also valuable foreign exchange. There is a lack of technologies for the classification and identification of Aromatic and medicinal plants in Ethiopia. The manual identification system of plants is a tedious, time-consuming, labor, and lengthy process. For farmers, industry personnel, academics, and pharmacists, it is still difficult to identify parts and usage of plants before ingredient extraction. In order to solve this problem, the researcher uses a deep learning approach for the efficient identification of aromatic and medicinal plants by using a convolutional neural network. The objective of the proposed study is to identify the aromatic and medicinal plant Parts and usages using computer vision technology. Therefore, this research initiated a model for the automatic classification of aromatic and medicinal plants by exploring computer vision technology. Morphological characteristics are still the most important tools for the identification of plants. Leaves are the most widely used parts of plants besides the root, flower and fruit, latex, and barks. The study was conducted on aromatic and medicinal plants available in the Ethiopian Institute of Agricultural Research center. An experimental research design is proposed for this study. This is conducted in Convolutional neural networks and Transfer learning. The Researcher employs sigmoid Activation as the last layer and Rectifier liner unit in the hidden layers. Finally, the researcher got a classification accuracy of 66.4 in convolutional neural networks and 67.3 in mobile networks, and 64 in the Visual Geometry Group.

Keywords: aromatic and medicinal plants, computer vision, deep convolutional neural network

Procedia PDF Downloads 438
4969 Genome-Wide Functional Analysis of Phosphatase in Cryptococcus neoformans

Authors: Jae-Hyung Jin, Kyung-Tae Lee, Yee-Seul So, Eunji Jeong, Yeonseon Lee, Dongpil Lee, Dong-Gi Lee, Yong-Sun Bahn

Abstract:

Cryptococcus neoformans causes cryptococcal meningoencephalitis mainly in immunocompromised patients as well as immunocompetent people. But therapeutic options are limited to treat cryptococcosis. Some signaling pathways including cyclic AMP pathway, MAPK pathway, and calcineurin pathway play a central role in the regulation of the growth, differentiation, and virulence of C. neoformans. To understand signaling networks regulating the virulence of C. neoformans, we selected the 114 putative phosphatase genes, one of the major components of signaling networks, in the genome of C. neoformans. We identified putative phosphatases based on annotation in C. neoformans var. grubii genome database provided by the Broad Institute and National Center for Biotechnology Information (NCBI) and performed a BLAST search of phosphatases of Saccharomyces cerevisiae, Aspergillus nidulans, Candida albicans and Fusarium graminearum to Cryptococcus neoformans. We classified putative phosphatases into 14 groups based on InterPro phosphatase domain annotation. Here, we constructed 170 signature-tagged gene-deletion strains through homologous recombination methods for 91 putative phosphatases. We examined their phenotypic traits under 30 different in vitro conditions, including growth, differentiation, stress response, antifungal resistance and virulence-factor production.

Keywords: human fungal pathogen, phosphatase, deletion library, functional genomics

Procedia PDF Downloads 364
4968 Effects of Deficit Watering and Potassium Fertigation on Growth and Yield Response of Cassava

Authors: Daniel O. Wasonga, Jouko Kleemola, Laura Alakukku, Pirjo Makela

Abstract:

Cassava (Manihot esculenta Crantz) is a major food crop for millions of people in the tropics. Growth and yield of cassava in the arid-tropics are seriously constrained by intermittent water deficit and low soil K content. Therefore, experiments were conducted to investigate the effects of interaction between water deficit and K fertigation on growth and yield response of biofortified cassava at early growth phase. Yellow cassava cultivar was grown under controlled glasshouse conditions in 5-L pots containing 1.7 kg of pre-fertilized potting mix. Plants were watered daily for 30 days after planting. Treatments were three watering levels (30%, severe water deficit; 60%, mild water deficit; 100%, well-watered), on which K (0.01, 1, 4, 16 and 32 mM) was split. Plants were harvested at 90 days after planting. Leaf area was smallest in plants grown with 30% watering and 0.01 mM K, and largest in plants grown with 100% watering and 32 mM K. Leaf, root, and total dry mass decreased in water-stressed plants. However, dry mass was markedly higher when plants were grown with 16 mM K under all watering levels in comparison to other K concentrations. The highest leaf, root and total dry mass were in plants with 100% watering and 16 mM K. In conclusion, K improved the growth of plants under water deficit and thus, K application on soils with low moisture and low K may improve the productivity of cassava.

Keywords: dry mass, interaction, leaf area, Manihot esculenta

Procedia PDF Downloads 117
4967 Real-Time Finger Tracking: Evaluating YOLOv8 and MediaPipe for Enhanced HCI

Authors: Zahra Alipour, Amirreza Moheb Afzali

Abstract:

In the field of human-computer interaction (HCI), hand gestures play a crucial role in facilitating communication by expressing emotions and intentions. The precise tracking of the index finger and the estimation of joint positions are essential for developing effective gesture recognition systems. However, various challenges, such as anatomical variations, occlusions, and environmental influences, hinder optimal functionality. This study investigates the performance of the YOLOv8m model for hand detection using the EgoHands dataset, which comprises diverse hand gesture images captured in various environments. Over three training processes, the model demonstrated significant improvements in precision (from 88.8% to 96.1%) and recall (from 83.5% to 93.5%), achieving a mean average precision (mAP) of 97.3% at an IoU threshold of 0.7. We also compared YOLOv8m with MediaPipe and an integrated YOLOv8 + MediaPipe approach. The combined method outperformed the individual models, achieving an accuracy of 99% and a recall of 99%. These findings underscore the benefits of model integration in enhancing gesture recognition accuracy and localization for real-time applications. The results suggest promising avenues for future research in HCI, particularly in augmented reality and assistive technologies, where improved gesture recognition can significantly enhance user experience.

Keywords: YOLOv8, mediapipe, finger tracking, joint estimation, human-computer interaction (HCI)

Procedia PDF Downloads 5
4966 Wave-Assisted Flapping Foil Propulsion: Flow Physics and Scaling Laws From Fluid-Structure Interaction Simulations

Authors: Rajat Mittal, Harshal Raut, Jung Hee Seo

Abstract:

Wave-assisted propulsion (WAP) systems convert wave energy into thrust using elastically mounted hydrofoils. We employ sharp-interface immersed boundary simulations to examine the effect of two key parameters on the flow physics, the fluid-structure interaction, as well as thrust performance of these systems - the stiffness of the torsional spring and the location of the rotational center. The variation in spring stiffness leads to different amplitude of pitch motion, phase difference with respect to heaving motion and thrust coefficient and we show the utility of ‘maps’ of energy exchange between the flow and the hydrofoil system, as a way to understand and predict this behavior. The Force Partitioning Method (FPM) is used to decompose the pressure forces into individual components and understand the mechanism behind increase in thrust. Next, a scaling law is presented for the thrust coefficient generated by heaving and pitching foil. The parameters within the scaling law are calculated based on direct-numerical simulations based parametric study utilized to generate the energy maps. The predictions of the proposed scaling law are then compared with those of a similar model from the literature, showing a noticeable improvement in the prediction of the thrust coefficient.

Keywords: propulsion, flapping foils, hydrodynamics, wave power

Procedia PDF Downloads 61
4965 Effect of Supplemental Phytase on the Digestibility of Crude Protein and Phosphorus of Rice Husk in Broiler Chicken

Authors: Ibinabo I. Ilaboya, Eustace A. Iyayi

Abstract:

Phosphorus (P) is an indispensable mineral in broiler diets. Rice husk contains phytate-P and other nutrients like protein, carbohydrates, which are poorly digested in broiler chickens. Broiler chickens (BC) lacks sufficient phytase to help hydrolyse phytate-bound P. Hence excess of P is excreted by these chickens into the environment causing environmental pollution. Supplementation of such diets with microbial phytase helps to improve the digestibility of these nutrients. The study was conducted to determine the effect of phytase supplementation on the digestibility of crude protein (CP) and P of rice husk in BC. Six semi-purified diets of three levels of total P (3.46, 4.91 and 6.37g/kg) without and with 1,000 units of phytase per kg were formulated. Titanium dioxide was added to the diets at the rate of 5g/kg as an indigestible marker. At 20dposthatch, 288 broilers (Abor Acre) were weighed and allotted to the diets with 6 replicates of 8 birds each in a randomized complete block design. The birds had free access to the experimental diets until day 26 post-hatch. Phytase supplementation increased (p < 0.05) digestibility of P from 75-93%. Rice husk and its interaction with phytase had no significant (p > 0.05) effect on P digestibility, whereas there was significant (p < 0.01) effect on the interaction of rice husk with phytase on CP digestibility. There were linear increases (p < 0.01) in digested P and CP with phytase supplementation. The P and CP losses from the BC was reduced with the addition of phytase. Results suggest that supplementation of rice husk-based diets with microbial phytase improved pre-caecal digestibility of P and CP in broilers.

Keywords: crude protein, phosphorus, phytase, rice husk

Procedia PDF Downloads 143