Search results for: ecological materials
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8096

Search results for: ecological materials

6476 Development of a Suitable Model for Energy Storage in Residential Buildings in Ahvaz Using Energy Plus Software

Authors: Farideh Azimi, Sam Vahedi Tafreshi

Abstract:

This research tries to study the residential buildings in Ahvaz, the common materials used, and the impact of passive methods of energy storage (as one of the most effective ways to reduce energy consumption in residential complexes) in order to achieve patterns for construction of residential buildings in Ahvaz conditions to reduce energy consumption. In this research, after studying Ahvaz conditions, the components of an existing building were simulated in Energy Plus software, and the climatic data of Ahvaz station was introduced to software. Then to achieve the most optimal conditions of energy consumption in Ahvaz conditions, each of the residential building elements was optimized. The results of simulation showed that using inactive materials and design including double glass, outside wall insulation, inverted roof, etc. in the buildings can reduce energy consumption in the hot and dry climate of Ahvaz. Among the parameters investigated, the inverted roof was the most effective energy saving pattern. According to the results of simulation of the entire building with the most optimal parameters, energy consumption can be saved by a mean of 12.51% in buildings of Ahvaz, and the obtained pattern can also be used in similar climates.

Keywords: residential buildings, thermal comfort, energy storage, Energy Plus software, Ahvaz

Procedia PDF Downloads 364
6475 Antimicrobial and Phytochemical Screening of Stem Bark Extracts of Lovoa trichiliodes (Harm) and Trichilia heudelotii Planc (Harm)

Authors: Benjamin O. Opawale, Anthony K. Onifade, Ayodele O. Ogundare

Abstract:

The phytochemical and antimicrobial activities of stem bark extracts (cold water, ethanol and acetone) of Lovoa trichiliodes and Trichilia heudelotii were investigated using standard methods. The percentage yield of the extracts ranged from 3.90 to 6.53% and 9.63 to 10.20% respectively for the plant materials. Phytochemical screening of the plant materials revealed the presence of alkaloids, saponins, tannins, phlobatanins, phenols, anthraquinones and glycosides. Terpenes, cardenolides and flavonoids were absent in the two plants. All the extracts remarkably inhibited the growth of Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Enterococcus faecalis, Klebsiella pneumoniae, Salmonella typhii, Aspergillus flavus, Candida albicans and Candida glabrata. The mean diameter of the zone of inhibition exhibited by the extracts was between 8.00 and 22.33mm while the minimum inhibitory concentration (MIC) was between 2.5 and 200mg/ml. However, the cold water extracts of L. trichiliodes stem bark exhibited no inhibitory activity against the organisms. The results of this investigation confirmed the folkloric uses of these plants for the treatment of various infectious diseases.

Keywords: antimicrobial, infectious diseases, phytochemical, T. heudelotii

Procedia PDF Downloads 290
6474 Improving Photocatalytic Efficiency of TiO2 Films Incorporated with Natural Geopolymer for Sunlight-Driven Water Purification

Authors: Satam Alotibi, Haya A. Al-Sunaidi, Almaymunah M. AlRoibah, Zahraa H. Al-Omaran, Mohammed Alyami, Fatehia S. Alhakami, Abdellah Kaiba, Mazen Alshaaer, Talal F. Qahtan

Abstract:

This research study presents a novel approach to harnessing the potential of natural geopolymer in conjunction with TiO₂ nanoparticles (TiO₂ NPs) for the development of highly efficient photocatalytic materials for water decontamination. The study begins with the formulation of a geopolymer paste derived from natural sources, which is subsequently applied as a coating on glass substrates and allowed to air-dry at room temperature. The result is a series of geopolymer-coated glass films, serving as the foundation for further experimentation. To enhance the photocatalytic capabilities of these films, a critical step involves immersing them in a suspension of TiO₂ nanoparticles (TiO₂ NPs) in water for varying durations. This immersion process yields geopolymer-loaded TiO₂ NPs films with varying concentrations, setting the stage for comprehensive characterization and analysis. A range of advanced analytical techniques, including UV-Vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM), were meticulously employed to assess the structural, morphological, and chemical properties of the geopolymer-based TiO₂ films. These analyses provided invaluable insights into the materials' composition and surface characteristics. The culmination of this research effort sees the geopolymer-based TiO₂ films being repurposed as immobilized photocatalytic reactors for water decontamination under natural sunlight irradiation. Remarkably, the results revealed exceptional photocatalytic performance that exceeded the capabilities of conventional TiO₂-based photocatalysts. This breakthrough underscores the significant potential of natural geopolymer as a versatile and highly effective matrix for enhancing the photocatalytic efficiency of TiO₂ nanoparticles in water treatment applications. In summary, this study represents a significant advancement in the quest for sustainable and efficient photocatalytic materials for environmental remediation. By harnessing the synergistic effects of natural geopolymer and TiO₂ nanoparticles, these geopolymer-based films exhibit outstanding promise in addressing water decontamination challenges and contribute to the development of eco-friendly solutions for a cleaner and healthier environment.

Keywords: geopolymer, TiO2 nanoparticles, photocatalytic materials, water decontamination, sustainable remediation

Procedia PDF Downloads 71
6473 Mechanical and Thermal Characterization of Washout Tooling for Resin Transfer Molding

Authors: Zachary N. Wing

Abstract:

Compared to autoclave based processes, Resin Transfer Molding (RTM) offers several key advantages. This includes high internal and external complexity, less waste, lower volatile emissions, higher production rates, and excellent surface finish. However, the injection of high pressure-high temperature resin presents a tooling challenge in cases where trapped geometries exist. Tooling materials that can sustain these conditions and be easily removed would expand the use of RTM. We have performed research on developing an RTM suitable tooling material called 'RTMCore' for use in forming trapped geometries. RTMCore tooling materials can withstand the injection of high temperature-high pressure resin but be easily removed with tap water. RTM properties and performance capabilities are reviewed against other washout systems. Our research will cover the preliminary characterization of tooling system properties, mechanical behavior, and initial results from an RTM manufacturing trial. Preliminary results show the material can sustain pressures greater than 13 MPa and temperatures greater than 150°C.

Keywords: RTM, resin transfer molding, trapped geometries, washout tooling

Procedia PDF Downloads 160
6472 Environmental Degradation of Natural Resources in Broghil National Park in the High Mountains of Pakistan – Empirical Evidence From Local Community and Geoinformatics

Authors: Siddique Ullah Baig, Alisha Manzoor

Abstract:

The remotest, mountainous, and icy Broghil Valley is a high-profile protected area as a national park, which hosts one of the highest altitude permanent human settlements on the earth. This park hosts a distributed but diverse range of habitats. Due to a lack of infrastructures, higher altitudes, and harsh environmental conditions, poverty-stricken inhabitants mostly rely on its resources, causing ecological dis-balance. This study aims to investigate the environmental degradation of natural resources of the park based on empirical evidence from stakeholders and geoinformatics. The result shows that one-fourth of the park is a gently undulating basin dotted with water bodies / grass, and agricultural land and three fourth is entirely rugged with steep mountains and glaciers. There are virtually no forests as the arid cold tundra climate and high altitude prevent tree growth. Rapid three-decadal land cover changes have led to ecological disequilibrium of the park, narrowing the traditional diverse food base, decreasing the resilience of biodiversity and local livelihoods as crop-land has shifted towards fallow, alpine-grass to peat-land and snow/glacial ice area to bare-soil/rocks. The local community believes in exploiting whatever vegetation or organic material is available for use as food, fodder, and fuel. The permanent presence of the community and limited cost-effective options in the park will be a challenge forever to maintain undisturbed natural processes as the objective of a national park.

Keywords: Broghil National Park, natural resources, environmental degradation, land cover

Procedia PDF Downloads 72
6471 Effect of Equal Channel Angular Pressing Process on Impact Property of Pure Copper

Authors: Fahad Al-Mufadi, F. Djavanroodi

Abstract:

Ultrafine grained (UFG) and nanostructured (NS) materials have experienced a rapid development during the last decade and made profound impact on every field of materials science and engineering. The present work has been undertaken to develop ultra-fine grained pure copper by severe plastic deformation method and to examine the impact property by different characterizing tools. For this aim, equal channel angular pressing die with the channel angle, outer corner angle and channel diameter of 90°, 17° and 20 mm had been designed and manufactured. Commercial pure copper billets were ECAPed up to four passes by route BC at the ambient temperature. The results indicated that there is a great improvement at the hardness measurement, yield strength and ultimate tensile strength after ECAP process. It is found that the magnitudes of HV reach 136HV from 52HV after the final pass. Also, about 285% and 125% enhancement at the YS and UTS values have been obtained after the fourth pass as compared to the as-received conditions, respectively. On the other hand, the elongation to failure and impact energy have been reduced by imposing ECAP process and pass numbers. It is needed to say that about 56% reduction in the impact energy have been attained for the samples as contrasted to annealed specimens.

Keywords: SPD, ECAP, pure cu, impact property

Procedia PDF Downloads 261
6470 Vegetable Oil-Based Anticorrosive Coatings for Metals Protection

Authors: Brindusa Balanuca, Raluca Stan, Cristina Ott, Matei Raicopol

Abstract:

The current study aims to develop anti corrosive coatings using vegetable oil (VO)-based polymers. Due to their chemical versatility, reduced costs and more important, higher hydrophobicity, VO’s are great candidates in the field of anti-corrosive materials. Lignin (Ln) derivatives were also used in this research study in order to achieve performant hydrophobic anti-corrosion layers. Methods Through a rational functionalization pathway, the selected VO (linseed oil) is converted to more reactive monomer – methacrylate linseed oil (noted MLO). The synthesized MLO cover the metals surface in a thin layer and through different polymerization techniques (using visible radiation or temperature, respectively) and well-established reaction conditions, is converted to a hydrophobic coating capable to protect the metals against corrosive factors. In order to increase the anti-corrosion protection, lignin (Ln) was selected to be used together with MLO macromonomer. Thus, super hydrophobic protective coatings will be formulated. Results The selected synthetic strategy to convert the VO in more reactive compounds – MLO – has led to a functionalization degree of greater than 80%. The obtained monomers were characterized through NMR and FT-IR by monitoring the characteristic signals after each synthesis step. Using H-NMR data, the functionalization degrees were established. VO-based and also VO-Ln anti corrosion formulations were both photochemical and thermal polymerized in specific reaction conditions (initiators, temperature range, reaction time) and were tested as anticorrosive coatings. Complete and advances characterization of the synthesized materials will be presented in terms of thermal, mechanical and morphological properties. The anticorrosive properties were also evaluated and will be presented. Conclusions Through the design strategy briefly presented, new composite materials for metal corrosion protection were successfully developed, using natural derivatives: vegetable oils and lignin, respectively.

Keywords: anticorrosion protection, hydrophobe layers, lignin, methacrylates, vegetable oil

Procedia PDF Downloads 172
6469 Ge₁₋ₓSnₓ Alloys with Tuneable Energy Band Gap on GaAs (100) Substrate Manufactured by a Modified Magnetron Co-Sputtering

Authors: Li Qian, Jinchao Tong, Daohua Zhang, Weijun Fan, Fei Suo

Abstract:

Photonic applications based on group IV semiconductors have always been an interest but also a challenge for the research community. We report manufacturing group IV Ge₁₋ₓSnₓ alloys with tuneable energy band gap on (100) GaAs substrate by a modified radio frequency magnetron co-sputtering. Images were taken by atomic force microscope, and scanning electron microscope clearly demonstrates a smooth surface profile, and Ge₁₋ₓSnₓ nano clusters are with the size of several tens of nanometers. Transmittance spectra were measured by Fourier Transform Infrared Spectroscopy that showed changing energy gaps with the variation in elementary composition. Calculation results by 8-band k.p method are consistent with measured gaps. Our deposition system realized direct growth of Ge₁₋ₓSnₓ thin film on GaAs (100) substrate by sputtering. This simple deposition method was modified to be able to grow high-quality photonic materials with tuneable energy gaps. This work provides an alternative and successful method for fabricating Group IV photonic semiconductor materials.

Keywords: GeSn, crystal growth, sputtering, photonic

Procedia PDF Downloads 150
6468 Effect of Nano-Alumina on the Mechanical Properties of Cold Recycled Asphalt

Authors: Shahab Hasani Nasab, Aran Aeini, Navid Kermanshahi

Abstract:

In order to reduce road building costs and reduce environmental damage, recycled materials can be used instead of mineral materials in the production of asphalt mixtures. Today, in most parts of the world, cold recycled asphalt with bitumen emulsion, has acceptable results. However, Cold Recycled Asphalt have some deficiency such as stripping, thermal cracking, and rutting. This requires the addition of additives to reduce this deficiency of recycled pavement with emulsified asphalt. In this research, nano-alumina and emulsified asphalt were used to modify the properties of recycled asphalt mixtures according to the technical specifications and the operation of cold recycling. Marshall test methods, dynamic creep test, and resiliency modulus test has been used to obtain the nano-alumina’s effects on asphalt mixture properties. The results show that the addition of nano-alumina would reduce the Marshall stability in samples but increases the rutting resistance. The resiliency modulus increases significantly with this additive.

Keywords: cold asphalt, cold recycling, nano-alumina, dynamic creep, bitumen emulsion

Procedia PDF Downloads 169
6467 A Study on the Pressure Void Ratio Relationship for Waste Material

Authors: Aktan Ozsoy, Ali Fırat Cabalar, Eyyub Karakan

Abstract:

Climate change is one of the biggest issues facing communities. Increasing population, growing economies, rapid industrialization are the main factors triggering it. On the other hand, the millions of tons of waste have generated by the period of rapid global growth not only harm to the environment but also lead to the use of valuable lands around the world as landfill sites. Moreover, it is rapidly consuming our resources and this forcing the human population and wildlife to share increasingly shrinking space. In this direction, it is vital to reuse waste materials with a sustainability philosophy. This study was carried out to contribute to the combat against climate change, conserve our natural resources and the environment. An oedometer (consolidation) test was performed on two waste materials combined in certain proportions to evaluate their sustainable usage. Crushed brick (BD) was mixed with rock powder (RP) in 0, 5, 10, 20, 30, 40, and 50% (dry weight of soil). The results obtained revealed the importance of the gradation of the material used in the consolidation test. It was found that there was a negligible difference between the initial and final void ratio of mixtures with brick dust added.

Keywords: waste material, oedometer test, environmental geotechnics, sustainability

Procedia PDF Downloads 76
6466 Adsorptive Membrane for Hemodialysis: Potential, Future Prospection and Limitation of MOF as Nanofillers

Authors: Musawira Iftikhar

Abstract:

The field of membrane materials is the most dynamic due to the constantly evolving requirements advancement of materials, to address challenges such as biocompatibility, protein-bound uremic toxins, blood coagulation, auto-immune responses, oxidative stress, and poor clearance of uremic toxins. Hemodialysis is a membrane filtration processes that is currently necessary for daily living of the patients with ESRD. Tens of millions of people with ESRD have benefited from hemodialysis over the past 60–70 years, both in terms of safeguarding life and a longer lifespan. Beyond challenges associated with the efficiency and separative properties of the membranes, ensuring hemocompatibility, or the safe circulation of blood outside the body for four hours every two days, remains a persistent challenge. This review explores the ongoing field of metal–Organic Frameworks (MOFs) and their applications in hemodialysis, offering a comprehensive examination of various MOFs employed to address challenges inherent in traditional hemodialysis methodologies. this This review included includes the experimental work done with various MOFs as a filler such as UiO-66, HKUST-1, MIL-101, and ZIF-8, which together lead to improved adsorption capacities for a range of uremic toxins and proteins. Furthermore, this review highlights how effectively MOF-based hemodialysis membranes remove a variety of uremic toxins, including p-cresol, urea, creatinine, and indoxyl sulfate and potential filler choices for the future. Future research efforts should focus on refining synthesis techniques, enhancing toxin selectivity, and investigating the long-term durability of MOF-based membranes. With these considerations, MOFs emerge as transformative materials in the quest to develop advanced and efficient hemodialysis technologies, holding the promise to significantly enhance patient outcomes and redefine the landscape of renal therapy.

Keywords: membrane, hemodailysis, metal organic frameworks, seperation, protein adsorbtion

Procedia PDF Downloads 61
6465 Metal-Organic Frameworks for Innovative Functional Textiles

Authors: Hossam E. Emam

Abstract:

Metal–organic frameworks (MOFs) are new hybrid materials investigated from 15 years ago; they synthesized from metals as inorganic center joined with multidentate organic linkers to form a 1D, 2D or 3D network structure. MOFs have unique properties such as pore crystalline structure, large surface area, chemical tenability and luminescent characters. These significant properties enable MOFs to be applied in many fields such like gas storage, adsorption/separation, drug delivery/biomedicine, catalysis, polymerization, magnetism and luminescence applications. Recently, many of published reports interested in superiority of MOFs for functionalization of textiles to exploit the unique properties of MOFs. Incorporation of MOFs is found to acquire the textiles some additional formidable functions to be used in considerable fields such like water treatment and fuel purification. Modification of textiles with MOFs could be easily performed by two main techniques; Ex-situ (preparation of MOFs then applied onto textiles) and in-situ (ingrowth of MOFs within textiles networks). Uniqueness of MOFs could be assimilated in acquirement of decorative color, antimicrobial character, anti-mosquitos character, ultraviolet radiation protective, self-clean, photo-luminescent and sensor character. Additionally, textiles treatment with MOFs make it applicable as filter in the adsorption of toxic gases, hazardous materials (such as pesticides, dyes and aromatics molecules) and fuel purification (such as removal of oxygenated, nitrogenated and sulfur compounds). Also, the porous structure of MOFs make it mostly utilized in control release of insecticides from the surface of the textile. Moreover, MOF@textiles as recyclable materials lead it applicable as photo-catalyst composites for photo-degradation of different dyes in the day light. Therefore, MOFs is extensively considered for imparting textiles with formidable properties as ingeniousness way for textile functionalization.

Keywords: MOF, functional textiles, water treatment, fuel purification, environmental applications

Procedia PDF Downloads 151
6464 Electroless Nickel Boron Deposition onto the SiC and B4C Ceramic Reinforced Materials

Authors: I. Kerti, G. Sezen, S. Daglilar

Abstract:

This present work is focused on studying to improve low wetting behaviour between liquid metal and ceramic particles. Ceramic particles like SiC and B4C have attracted great attention because of their usability as reinforcement for composite materials. However, poor wettability of particles is one of the major drawbacks of metal matrix composite production. Various methods have been studied to enhance the wetting properties between ceramic materials and metal substrates during ceramic reinforced metal matrix composites. Among these methods, autocatalytic nickel deposition is a unique process for the enhancement of the surface properties of ceramic particles. In fact, it is difficult to obtain continuous and uniform metallic coating on ceramic powders. In this study deposition of nickel boron layer on ceramic particles via autocatalytic plating in borohydride baths were investigated. Firstly, powders with different particle sizes were sensitized and activated respectively in order to ensure catalytic properties. Following the pre-treatment operations, particles were transferred into the coating bath containing nickel sulphate or nickel chloride as the Ni2+ source. The results show that a better bonding and uniform coating layer were obtained for Ni-B coatings with the Ni2+ source of NiCl2.6H2O as compared to NiSO4.6H2O. With the progress of the time, both particle surfaces are completely covered by a continuous and thin nickel boron layer. The surface morphology of the coatings that were analysed using scanning electron microscopy (SEM) show that SiC and B4C particles both distributed and different thickness of Ni-B nanolayers have been successfully coated onto the particles. The particles were mounted into a polimeric resin and polished in order to observe the thickness and the continuity of the coating layer. The composition of the coating layers were also evaluated by EDS analyses. The SEM morphologies and the EDS results of the coatings at different reaction times were adopted for detailed discussion of the Ni-B electroless plating mechanism.

Keywords: boron carbide, electroless coating, nickel boron deposition, silicon carbide

Procedia PDF Downloads 351
6463 Exploring the Application of Additive Manufacturing in the Production of Aerogels for the Purpose of Creating Environmentally Friendly Agricultural Formulations with Controlled Release Properties

Authors: Pram Abhayawardhana, Ali Reza Nazmi, Hossein Najaf Zadeh

Abstract:

This study examines the use of additive manufacturing (AM) to develop sustainable and intelligent agricultural formulations that can gradually release fertilisers. AM offers the ability to design customised formulations with precise geometries and controlled release properties while taking into account their mechanical, chemical, and environmental properties. The study specifically investigates the use of an aerogel matrix mixed with a potential fertiliser in agriculture. Highly porous 3D printed aerogel structures were designed to enable the slow release of fertilisers. The performance of the formulated mixture is evaluated against other commonly used materials for slow-release applications. The findings suggest that the 3D printed gel made has great potential for slow-release fertilisers, providing an environmentally friendly solution for agricultural practices. The combination of AM technology and sustainable materials can play a vital role in mitigating the negative environmental impact of traditional fertilisers, as well as improving the efficiency and sustainability of agricultural production.

Keywords: 3D printing, hydrogel, aerogel, fertiliser, agriculture

Procedia PDF Downloads 98
6462 Biogas from Cover Crops and Field Residues: Effects on Soil, Water, Climate and Ecological Footprint

Authors: Manfred Szerencsits, Christine Weinberger, Maximilian Kuderna, Franz Feichtinger, Eva Erhart, Stephan Maier

Abstract:

Cover or catch crops have beneficial effects for soil, water, erosion, etc. If harvested, they also provide feedstock for biogas without competition for arable land in regions, where only one main crop can be produced per year. On average gross energy yields of approx. 1300 m³ methane (CH4) ha-1 can be expected from 4.5 tonnes (t) of cover crop dry matter (DM) in Austria. Considering the total energy invested from cultivation to compression for biofuel use a net energy yield of about 1000 m³ CH4 ha-1 is remaining. With the straw of grain maize or Corn Cob Mix (CCM) similar energy yields can be achieved. In comparison to catch crops remaining on the field as green manure or to complete fallow between main crops the effects on soil, water and climate can be improved if cover crops are harvested without soil compaction and digestate is returned to the field in an amount equivalent to cover crop removal. In this way, the risk of nitrate leaching can be reduced approx. by 25% in comparison to full fallow. The risk of nitrous oxide emissions may be reduced up to 50% by contrast with cover crops serving as green manure. The effects on humus content and erosion are similar or better than those of cover crops used as green manure when the same amount of biomass was produced. With higher biomass production the positive effects increase even if cover crops are harvested and the only digestate is brought back to the fields. The ecological footprint of arable farming can be reduced by approx. 50% considering the substitution of natural gas with CH4 produced from cover crops.

Keywords: biogas, cover crops, catch crops, land use competition, sustainable agriculture

Procedia PDF Downloads 545
6461 Phase Composition Analysis of Ternary Alloy Materials for Gas Turbine Applications

Authors: Mayandi Ramanathan

Abstract:

Gas turbine blades see the most aggressive thermal stress conditions within the engine, due to high Turbine Entry Temperatures in the range of 1500 to 1600°C. The blades rotate at very high rotation rates and remove a significant amount of thermal power from the gas stream. At high temperatures, the major component failure mechanism is a creep. During its service over time under high thermal loads, the blade will deform, lengthen and rupture. High strength and stiffness in the longitudinal direction up to elevated service temperatures are certainly the most needed properties of turbine blades and gas turbine components. The proposed advanced Ti alloy material needs a process that provides a strategic orientation of metallic ordering, uniformity in composition and high metallic strength. The chemical composition of the proposed Ti alloy material (25% Ta/(Al+Ta) ratio), unlike Ti-47Al-2Cr-2Nb, has less excess Al that could limit the service life of turbine blades. Properties and performance of Ti-47Al-2Cr-2Nb and Ti-6Al-4V materials will be compared with that of the proposed Ti alloy material to generalize the performance metrics of various gas turbine components. This paper will involve the summary of the effects of additive manufacturing and heat treatment process conditions on the changes in the phase composition, grain structure, lattice structure of the material, tensile strength, creep strain rate, thermal expansion coefficient and fracture toughness at different temperatures. Based on these results, additive manufacturing and heat treatment process conditions will be optimized to fabricate turbine blade with Ti-43Al matrix alloyed with an optimized amount of refractory Ta metal. Improvement in service temperature of the turbine blades and corrosion resistance dependence on the coercivity of the alloy material will be reported. A correlation of phase composition and creep strain rate will also be discussed.

Keywords: high temperature materials, aerospace, specific strength, creep strain, phase composition

Procedia PDF Downloads 118
6460 Shock-Induced Densification in Glass Materials: A Non-Equilibrium Molecular Dynamics Study

Authors: Richard Renou, Laurent Soulard

Abstract:

Lasers are widely used in glass material processing, from waveguide fabrication to channel drilling. The gradual damage of glass optics under UV lasers is also an important issue to be addressed. Glass materials (including metallic glasses) can undergo a permanent densification under laser-induced shock loading. Despite increased interest on interactions between laser and glass materials, little is known about the structural mechanisms involved under shock loading. For example, the densification process in silica glasses occurs between 8 GPa and 30 GPa. Above 30 GPa, the glass material returns to the original density after relaxation. Investigating these unusual mechanisms in silica glass will provide an overall better understanding in glass behaviour. Non-Equilibrium Molecular Dynamics simulations (NEMD) were carried out in order to gain insight on the silica glass microscopic structure under shock loading. The shock was generated by the use of a piston impacting the glass material at high velocity (from 100m/s up to 2km/s). Periodic boundary conditions were used in the directions perpendicular to the shock propagation to model an infinite system. One-dimensional shock propagations were therefore studied. Simulations were performed with the STAMP code developed by the CEA. A very specific structure is observed in a silica glass. Oxygen atoms around Silicon atoms are organized in tetrahedrons. Those tetrahedrons are linked and tend to form rings inside the structure. A significant amount of empty cavities is also observed in glass materials. In order to understand how a shock loading is impacting the overall structure, the tetrahedrons, the rings and the cavities were thoroughly analysed. An elastic behaviour was observed when the shock pressure is below 8 GPa. This is consistent with the Hugoniot Elastic Limit (HEL) of 8.8 GPa estimated experimentally for silica glasses. Behind the shock front, the ring structure and the cavity distribution are impacted. The ring volume is smaller, and most cavities disappear with increasing shock pressure. However, the tetrahedral structure is not affected. The elasticity of the glass structure is therefore related to a ring shrinking and a cavity closing. Above the HEL, the shock pressure is high enough to impact the tetrahedral structure. An increasing number of hexahedrons and octahedrons are formed with the pressure. The large rings break to form smaller ones. The cavities are however not impacted as most cavities are already closed under an elastic shock. After the material relaxation, a significant amount of hexahedrons and octahedrons is still observed, and most of the cavities remain closed. The overall ring distribution after relaxation is similar to the equilibrium distribution. The densification process is therefore related to two structural mechanisms: a change in the coordination of silicon atoms and a cavity closing. To sum up, non-equilibrium molecular dynamics were carried out to investigate silica behaviour under shock loading. Analysing the structure lead to interesting conclusions upon the elastic and the densification mechanisms in glass materials. This work will be completed with a detailed study of the mechanism occurring above 30 GPa, where no sign of densification is observed after the material relaxation.

Keywords: densification, molecular dynamics simulations, shock loading, silica glass

Procedia PDF Downloads 223
6459 Hydrogen Storage Optimisation: Development of Advanced Tools for Improved Permeability Modelling in Materials

Authors: Sirine Sayed, Mahrez Ait Mohammed, Mourad Nachtane, Abdelwahed Barkaoui, Khalid Bouziane, Mostapha Tarfaoui

Abstract:

This study addresses a critical challenge in transitioning to a hydrogen-based economy by introducing and validating a one-dimensional (1D) tool for modelling hydrogen permeability through hybrid materials, focusing on tank applications. The model developed integrates rigorous experimental validation, published data, and advanced computational modelling using the PanDiffusion framework, significantly enhancing its validity and applicability. By elucidating complex interactions between material properties, storage system configurations, and operational parameters, the tool demonstrates its capability to optimize design and operational parameters in real-world scenarios, as illustrated through a case study of hydrogen leakage. This comprehensive approach to assessing hydrogen permeability contributes significantly to overcoming key barriers in hydrogen infrastructure development, potentially accelerating the widespread adoption of hydrogen technology across various industrial sectors and marking a crucial step towards a more sustainable energy future.

Keywords: hydrogen storage, composite tank, permeability modelling, PanDiffusion, energy carrier, transportation technology

Procedia PDF Downloads 23
6458 Multichannel Analysis of the Surface Waves of Earth Materials in Some Parts of Lagos State, Nigeria

Authors: R. B. Adegbola, K. F. Oyedele, L. Adeoti

Abstract:

We present a method that utilizes Multi-channel Analysis of Surface Waves, which was used to measure shear wave velocities with a view to establishing the probable causes of road failure, subsidence and weakening of structures in some Local Government Area, Lagos, Nigeria. Multi channel Analysis of Surface waves (MASW) data were acquired using 24-channel seismograph. The acquired data were processed and transformed into two-dimensional (2-D) structure reflective of depth and surface wave velocity distribution within a depth of 0–15m beneath the surface using SURFSEIS software. The shear wave velocity data were compared with other geophysical/borehole data that were acquired along the same profile. The comparison and correlation illustrates the accuracy and consistency of MASW derived-shear wave velocity profiles. Rigidity modulus and N-value were also generated. The study showed that the low velocity/very low velocity are reflective of organic clay/peat materials and thus likely responsible for the failed, subsidence/weakening of structures within the study areas.

Keywords: seismograph, road failure, rigidity modulus, N-value, subsidence

Procedia PDF Downloads 368
6457 Integration of Acoustic Solutions for Classrooms

Authors: Eyibo Ebengeobong Eddie, Halil Zafer Alibaba

Abstract:

The neglect of classroom acoustics is dominant in most educational facilities, meanwhile, hearing and listening is the learning process in this kind of facilities. A classroom should therefore be an environment that encourages listening, without an obstacles to understanding what is being taught. Although different studies have shown teachers to complain that noise is the everyday factor that causes stress in classroom, the capacity of individuals to understand speech is further affected by Echoes, Reverberation, and room modes. It is therefore necessary for classrooms to have an ideal acoustics to aid the intelligibility of students in the learning process. The influence of these acoustical parameters on learning and teaching in schools needs to be further researched upon to enhance the teaching and learning capacity of both teacher and student. For this reason, there is a strong need to provide and collect data to analyse and define the suitable quality of classrooms needed for a learning environment. Research has shown that acoustical problems are still experienced in both newer and older schools. However, recently, principle of acoustics has been analysed and room acoustics can now be measured with various technologies and sound systems to improve and solve the problem of acoustics in classrooms. These acoustic solutions, materials, construction methods and integration processes would be discussed in this paper.

Keywords: classroom, acoustics, materials, integration, speech intelligibility

Procedia PDF Downloads 418
6456 Particleboard Production from Atmospheric Plasma Treated Wheat Straw Particles

Authors: Štěpán Hýsek, Milan Podlena, Miloš Pavelek, Matěj Hodoušek, Martin Böhm, Petra Gajdačová

Abstract:

Particle boards have being used in the civil engineering as a decking for load bearing and non-load bearing vertical walls and horizontal panels (e. g. floors, ceiling, roofs) in a large scale. When the straw is used as non-wood material for manufacturing of lignocellulosic panels, problems with wax layer on the surface of the material can occur. Higher percentage of silica and wax cause the problems with the adhesion of the adhesive and this is the reason why it is necessary to break the surface layer for the better bonding effect. Surface treatment of the particles cause better mechanical properties, physical properties and the overall better results of the composite material are reached. Plasma application is one possibility how to modify the surface layer. The aim of this research is to modify the surface of straw particles by using cold plasma treatment. Surface properties of lignocellulosic materials were observed before and after cold plasma treatment. Cold plasma does not cause any structural changes deeply in the material. There are only changes in surface layers, which are required. Results proved that the plasma application influenced the properties of surface layers and the properties of composite material.

Keywords: composite, lignocellulosic materials, straw, cold plasma, surface treatment

Procedia PDF Downloads 332
6455 Plural Perspectives in Conservation Conflicts: The Role of Iconic Species

Authors: Jean Hugé, Francisco Benitez-Capistros, Giorgia Camperio-Ciani

Abstract:

Addressing conservation conflicts requires the consideration of multiple stakeholders' perspectives and knowledge claims, in order to inform complex and possibly contentious decision-making dilemmas. Hence, a better understanding of why people in particular contexts act in a particular way in a conservation conflict is needed. First, this contribution aims at providing and applying an approach to map and interpret the diversity of subjective viewpoints with regard to iconic species in conservation conflicts. Secondly, this contribution aims to feed the reflection on the possible consequences of the diversity of perspectives for the future management of wildlife (in particular iconic species), based on case studies in Galapagos and Malaysia. The use of the semi-quantitative Q methodology allowed us to identify various perspectives on conservation in different social-ecological contexts. While the presence of iconic species may lead to a more passionate and emotional debate, it may also provide more opportunities for finding common ground and for jointly developing acceptable management solutions that will depolarize emergent, long-lasting or latent conservation conflicts. Based on the research team’s experience in the field, and on the integration of ecological and social knowledge, methodological and management recommendations are made with regard to conservation conflicts involving iconic wildlife. The mere presence of iconic wildlife does not guarantee its centrality in conservation conflicts, and comparisons will be drawn between the cases of the giant tortoises (Chelonoidis spec.) in Galapagos, Ecuador and the Milky Stork (Mycteria cinerea) in western peninsular Malaysia. Acknowledging the diversity of viewpoints, reflecting how different stakeholders see, act and talk about wildlife management, highlights the need to develop pro-active and resilient strategies to deal with these issues.

Keywords: conservation conflicts, Q methodology, Galapagos, Malaysia, giant tortoise, milky stork

Procedia PDF Downloads 290
6454 Effects of Stokes Shift and Purcell Enhancement in Fluorescence Assisted Radiative Cooling

Authors: Xue Ma, Yang Fu, Dangyuan Lei

Abstract:

Passive daytime radiative cooling is an emerging technology which has attracted worldwide attention in recent years due to its huge potential in cooling buildings without the use of electricity. Various coating materials with different optical properties have been developed to improve the daytime radiative cooling performance. However, commercial cooling coatings comprising functional fillers with optical bandgaps within the solar spectral range suffers from severe intrinsic absorption, limiting their cooling performance. Fortunately, it has recently been demonstrated that introducing fluorescent materials into polymeric coatings can covert the absorbed sunlight to fluorescent emissions and hence increase the effective solar reflectance and cooling performance. In this paper, we experimentally investigate the key factors for fluorescence-assisted radiative cooling with TiO2-based white coatings. The surrounding TiO2 nanoparticles, which enable spatial and temporal light confinement through multiple Mie scattering, lead to Purcell enhancement of phosphors in the coating. Photoluminescence lifetimes of two phosphors (BaMgAl10O17:Eu2+ and (Sr, Ba)SiO4:Eu2+) exhibit significant reduction of ~61% and ~23%, indicating Purcell factors of 2.6 and 1.3, respectively. Moreover, smaller Stokes shifts of the phosphors are preferred to further diminish solar absorption. Field test of fluorescent cooling coatings demonstrate an improvement of ~4% solar reflectance for the BaMgAl10O17:Eu2+-based fluorescent cooling coating. However, to maximize solar reflectance, a white appearance is introduced based on multiple Mie scattering by the broad size distribution of fillers, which is visually pressurized and aesthetically bored. Besides, most colored pigments absorb visible light significantly and convert it to non-radiative thermal energy, offsetting the cooling effect. Therefore, current colored cooling coatings are facing the compromise between color saturation and cooling effect. To solve this problem, we introduced colored fluorescent materials into white coating based on SiO2 microspheres as a top layer, covering a white cooling coating based on TiO2. Compared with the colored pigments, fluorescent materials could re-emit the absorbed light, reducing the solar absorption introduced by coloration. Our work investigated the scattering properties of SiO2 dielectric spheres with different diameters and detailly discussed their impact on the PL properties of phosphors, paving the way for colored fluorescent-assisted cooling coting to application and industrialization.

Keywords: solar reflection, infrared emissivity, mie scattering, photoluminescent emission, radiative cooling

Procedia PDF Downloads 92
6453 Attitudes of Grade School and Kindergarten Teachers towards the Implementation of Mother-Tongue Based Language in Education

Authors: Irene Guatno Toribio

Abstract:

This study purported to determine and describe the attitudes of grade school and kindergarten teachers in District I, Division of City Schools in Parañaque towards the implementation of mother tongue-based multilingual education instruction. Employing a descriptive method of research, this study specifically looked into the attitudes of the participants towards the implementation of mother tongue-based language in terms of curricular content, teaching methods, instructional materials used, and administrative support. A total of nineteen teachers, eight (8) of which were kindergarten teachers and eleven (11) were grade one teachers. A self-made survey questionnaire was developed by the researcher and validated by the experts. This constituted the main instrument in gathering the needed data and information relative to the major concern of the study, which were analyzed and interpreted through the use of descriptive statistics. The findings of this study revealed that grade one and kindergarten teachers have a positive attitude towards the integration and inclusion of mother-tongue based language in the curriculum. In terms of suggested teaching methods, the kindergarten teacher’s attitude towards the use of storytelling and interactive activities is highly positive, while two groups of teachers both recommend the use of big books and painting kit as an instructional materials. While the kindergarten teachers would tend to cling on the use of big books, this was not the case for grade school teachers who would rather go for the use of painting kit which was not favored by the kindergarten teachers. Finally, in terms of administrative support, the grade one teacher is very satisfied when it comes to the support of their school administrator. While the kindergarten teachers has developed the feeling that the school administration has failed to give them enough materials in their activities, the grade school teachers, on the other hand, have developed the feeling that the same school administration might have failed to strictly evaluate the kindergarten teachers. Based on the findings of this study, it is recommended that the school administration must provide seminars to teachers to better equip them with the needed knowledge and competencies in implementing the Mother-Tongue Based, Multilingual Education (MTB-MLE).

Keywords: attitude, grade school, kindergarten teachers, mother-tongue

Procedia PDF Downloads 324
6452 Semiconducting Nanostructures Based Organic Pollutant Degradation Using Natural Sunlight for Water Remediation

Authors: Ankur Gupta, Jayant Raj Saurav, Shantanu Bhattacharya

Abstract:

In this work we report an effective water filtration system based on the photo catalytic performance of semiconducting dense nano-brushes under natural sunlight. During thin-film photocatalysis usually performed by a deposited layer of photocatalyst, a stagnant boundary layer is created near the catalyst which adversely affects the rate of adsorption because of diffusional restrictions. One strategy that may be used is to disrupt this laminar boundary layer by creating a super dense nanostructure near the surface of the catalyst. Further it is adequate to fabricate a structured filter element for a through pass of the water with as grown nanostructures coming out of the surface of such an element. So, the dye remediation is performed through solar means. This remediation was initially limited to lower efficiency because of diffusional restrictions but has now turned around as a fast process owing to the development of the filter materials with standing out dense nanostructures. The effect of increased surface area due to microholes on fraction adsorbed is also investigated and found that there is an optimum value of hole diameter for maximum adsorption.

Keywords: nano materials, photocatalysis, waste water treatment, water remediation

Procedia PDF Downloads 340
6451 Application of Rapid Prototyping to Create Additive Prototype Using Computer System

Authors: Meftah O. Bashir, Fatma A. Karkory

Abstract:

Rapid prototyping is a new group of manufacturing processes, which allows fabrication of physical of any complexity using a layer by layer deposition technique directly from a computer system. The rapid prototyping process greatly reduces the time and cost necessary to bring a new product to market. The prototypes made by these systems are used in a range of industrial application including design evaluation, verification, testing, and as patterns for casting processes. These processes employ a variety of materials and mechanisms to build up the layers to build the part. The present work was to build a FDM prototyping machine that could control the X-Y motion and material deposition, to generate two-dimensional and three-dimensional complex shapes. This study focused on the deposition of wax material. This work was to find out the properties of the wax materials used in this work in order to enable better control of the FDM process. This study will look at the integration of a computer controlled electro-mechanical system with the traditional FDM additive prototyping process. The characteristics of the wax were also analysed in order to optimize the model production process. These included wax phase change temperature, wax viscosity and wax droplet shape during processing.

Keywords: rapid prototyping, wax, manufacturing processes, shape

Procedia PDF Downloads 470
6450 Acoustic Absorption of Hemp Walls with Ground Granulated Blast Slag

Authors: Oliver Kinnane, Aidan Reilly, John Grimes, Sara Pavia, Rosanne Walker

Abstract:

Unwanted sound reflection can create acoustic discomfort and lead to problems of speech comprehensibility. Contemporary building techniques enable highly finished internal walls resulting in sound reflective surfaces. In contrast, sustainable construction materials using natural and vegetal materials, are often more porous and absorptive. Hemp shiv is used as an aggregate and when mixed with lime binder creates a low-embodied-energy concrete. Cement replacements such as ground granulated blast slag (GGBS), a byproduct of other industrial processes, are viewed as more sustainable alternatives to high-embodied-energy cement. Hemp concretes exhibit good hygrothermal performance. This has focused much research attention on them as natural and sustainable low-energy alternatives to standard concretes. A less explored benefit is the acoustic absorption capability of hemp-based concretes. This work investigates hemp-lime-GGBS concrete specifically, and shows that it exhibits high levels of sound absorption.

Keywords: hemp, hempcrete, acoustic absorption, GGBS

Procedia PDF Downloads 408
6449 Study of the Behavior of Copper Immersed in Sea Water of the Bay of Large Agadir by Electrochemical Methods

Authors: Aicha Chaouay, Lahsen Bazzi, Mustapha Hilali

Abstract:

Seawater has chemical and biological characteristics making it particularly aggressive in relation to the corrosion of many materials including copper and steels low or moderate allies. Note that these materials are widely used in the manufacture of port infrastructure in the marine environment. These structures are exposed to two types of corrosion including: general corrosion and localized corrosion caused by the presence of sulfite-reducing micro-organisms. This work contributes to the study of the problematic related to bacterial contamination of the marine environment of large Agadir and evaluating the impact of this pollution on the corrosion resistance of copper. For the realization of this work, we conducted monthly periodic draws between (October 2012 February 2013) of seawater from the Anza area of the Bay of Agadir. Thus, after each sampling, a study of the electro chemical corrosion behavior of copper was carried out. Electro chemical corrosion parameters such as the corrosion potential, the corrosion current density, the charge transfer resistance and the double layer capacity were evaluated. The electro chemical techniques used in this work are: the route potentiodynamic polarization curves and electro chemical impedance.

Keywords: Bay of Agadir, microbial contamination, seawater (Morocco), corrosion, copper

Procedia PDF Downloads 516
6448 Room Temperature Ionic Liquids Filled Mixed Matrix Membranes for CO2 Separation

Authors: Asim Laeeq Khan, Mazhar Amjad Gilani, Tayub Raza

Abstract:

The use of fossil fuels for energy generation leads to the emission of greenhouse gases particularly CO2 into the atmosphere. To date, several techniques have been proposed for the efficient removal of CO2 from flue gas mixtures. Membrane technology is a promising choice due to its several inherent advantages such as low capital cost, high energy efficiency, and low ecological footprint. One of the goals in the development of membranes is to achieve high permeability and selectivity. Mixed matrix membranes comprising of inorganic fillers embedded in polymer matrix are a class of membranes that have showed improved separation properties. One of the biggest challenges in the commercialization if mixed matrix membranes are the removal of non-selective voids existing at the polymer-filler interface. In this work, mixed matrix membranes were prepared using polysulfone as polymer matrix and ordered mesoporous MCM-41 as filler materials. A new approach to removing the interfacial voids was developed by introducing room temperature ionic (RTIL) at the polymer-filler interface. The results showed that the imidazolium based RTIL not only provided wettability characteristics but also helped in further improving the separation properties. The removal of interfacial voids and good contact between polymer and filler was verified by SEM measurement. The synthesized membranes were tested in a custom built gas permeation set-up for the measurement of gas permeability and ideal gas selectivity. The results showed that the mixed matrix membranes showed significantly higher CO2 permeability in comparison to the pristine membrane. In order to have further insight into the role of fillers, diffusion and solubility measurements were carried out. The results showed that the presence of highly porous fillers resulted in increasing the diffusion coefficient while the solubility showed a slight drop. The RTIL filled membranes showed higher CO2/CH4 and CO2/N2 selectivity than unfilled membranes while the permeability dropped slightly. The increase in selectivity was due to the highly selective RTIL used in this work. The study revealed that RTIL filled mixed matrix membranes are an interesting candidate for gas separation membranes.

Keywords: ionic liquids, CO2 separation, membranes, mixed matrix membranes

Procedia PDF Downloads 482
6447 Immersive Environment as an Occupant-Centric Tool for Architecture Criticism and Architectural Education

Authors: Golnoush Rostami, Farzam Kharvari

Abstract:

In recent years, developments in the field of architectural education have resulted in a shift from conventional teaching methods to alternative state-of-the-art approaches in teaching methods and strategies. Criticism in architecture has been a key player both in the profession and education, but it has been mostly offered by renowned individuals. Hence, not only students or other professionals but also critics themselves may not have the option to experience buildings and rely on available 2D materials, such as images and plans, that may not result in a holistic understanding and evaluation of buildings. On the other hand, immersive environments provide students and professionals the opportunity to experience buildings virtually and reflect their evaluation by experiencing rather than judging based on 2D materials. Therefore, the aim of this study is to compare the effect of experiencing buildings in immersive environments and 2D drawings, including images and plans, on architecture criticism and architectural education. As a result, three buildings that have parametric brick facades were studied through 2D materials and in Unreal Engine v. 24 as an immersive environment among 22 architecture students that were selected using convenient sampling and were divided into two equal groups using simple random sampling. This study used mixed methods, including quantitative and qualitative methods; the quantitative section was carried out by a questionnaire, and deep interviews were used for the qualitative section. A questionnaire was developed for measuring three constructs, including privacy regulation based on Altman’s theory, the sufficiency of illuminance levels in the building, and the visual status of the view (visually appealing views based on obstructions that may have been caused by facades). Furthermore, participants had the opportunity to reflect their understanding and evaluation of the buildings in individual interviews. Accordingly, the collected data from the questionnaires were analyzed using independent t-test and descriptive analyses in IBM SPSS Statistics v. 26, and interviews were analyzed using the content analysis method. The results of the interviews showed that the participants who experienced the buildings in the immersive environment were able to have a thorough and more precise evaluation of the buildings in comparison to those who studied them through 2D materials. Moreover, the analyses of the respondents’ questionnaires revealed that there were statistically significant differences between measured constructs among the two groups. The outcome of this study suggests that integrating immersive environments into the profession and architectural education as an effective and efficient tool for architecture criticism is vital since these environments allow users to have a holistic evaluation of buildings for vigorous and sound criticism.

Keywords: immersive environments, architecture criticism, architectural education, occupant-centric evaluation, pre-occupancy evaluation

Procedia PDF Downloads 140