Search results for: defective ground
507 Effect of Deficit Irrigation on Barley Yield and Water Productivity through Field Experiment and Modeling at Koga Irrigation Scheme, Amhara Region, Ethiopia
Authors: Bekalu Melis Alehegn, Dagnenet Sultan Alemu
Abstract:
The insufficiency of water is the most severe restraint for the expansion of agriculture in arid and semi-arid areas. An important strategy for increasing water productivity and improving water productivity deficit irrigation at different growth stages is important to advance the yield and Water Productivity of barley in water scarce areas. A field experiment was conducted at the Koga irrigation scheme in Ethiopia to examine barley yield response to different irrigation regimes and validate the aqua crop model. The experimental setup comprised six randomized treatments (T) with three replications for one irrigation season because of financial limitations. The irrigation regimes were selected 100%, 75%, and 50% application levels in different growth stages of gross irrigation requirements using trial and error in order to select the optimal water application level. The treatments were: no stress at all (T1), 25% stressed during all crop stages (T2), 50% stressed at all stages (T3), 50% stressed at the development stage (T4), 50% stressed at mid-stage (T5) and 50% stress at initial and late season (T6). The agronomic parameters, including canopy cover, biomass, and grain yield, were collected to compare the ground-based crop yield and the aqua crop model. The results showed that the initial and late stages and stress 25% through the whole season were the right time for practice deficit irrigation without significant yield reduction. The highest (2.62kg/m³) and the lowest (2.03 kg/m³) water productivity were found under T3 and T4, respectively. The stress of 50% at the mid-growth stage and stress 50% of the full irrigation water requirement at all growth stages significantly (α=5%) affected the canopy expansion, biomass and yield production. The aqua Crop model performed well in simulating the yield of barley for most of the treatments (R2 = 0.84 and RMSE = 0.7 t ha–¹).Keywords: aqua crop, barley, deficit irrigation, irrigation regimes, water productivity
Procedia PDF Downloads 26506 Studies on the Existing Status of MSW Management in Agartala City and Recommendation for Improvement
Authors: Subhro Sarkar, Umesh Mishra
Abstract:
Agartala Municipal Council (AMC) is the municipal body which regulates and governs the Agartala city. MSW management may be proclaimed as a tool which rests on the principles of public health, economy, engineering and other aesthetic or environmental factors by dealing with the controlled generation, collection, transport, processing and disposal of MSW. Around 220-250 MT of solid waste per day is collected by AMC out of which 12-14 MT is plastic and is disposed of in Devendra Chandra Nagar dumping ground (33 acres), nearly 12-15 km from the city. A survey was performed to list down the prevailing operations conducted by the AMC which includes road sweeping, garbage lifting, carcass removal, biomedical waste collection, dumping, and incineration. Different types of vehicles are engaged to carry out these operations. Door to door collection of garbage is done from the houses with the help of 220 tricycles issued by 53 NGOs. The location of the dustbin containers were earmarked which consisted of 4.5 cum, 0.6 cum containers and 0.1 cum containers, placed at various locations within the city. The total household waste was categorized as organic, recyclable and other wastes. It was found that East Pratapgarh ward produced 99.3% organic waste out of the total MSW generated in that ward which is maximum among all the wards. A comparison of the waste generation versus the family size has been made. A questionnaire for the survey of MSW from household and market place was prepared. The average waste generated (in kg) per person per day was found out for each of the wards. It has been noted that East Jogendranagar ward had a maximum per person per day waste generation of 0.493 kg/day.In view of the studies made, it has been found that AMC has failed to implement MSWM in an effective way because of the unavailability of suitable facilities for treatment and disposal of the large amount of MSW. It has also been noted that AMC is not following the standard procedures of handling MSW. Transportation system has also been found less effective leading to waste of time, money and manpower.Keywords: MSW, waste generation, solid waste disposal, management
Procedia PDF Downloads 317505 The Design of Multiple Detection Parallel Combined Spread Spectrum Communication System
Authors: Lixin Tian, Wei Xue
Abstract:
Many jobs in society go underground, such as mine mining, tunnel construction and subways, which are vital to the development of society. Once accidents occur in these places, the interruption of traditional wired communication is not conducive to the development of rescue work. In order to realize the positioning, early warning and command functions of underground personnel and improve rescue efficiency, it is necessary to develop and design an emergency ground communication system. It is easy to be subjected to narrowband interference when performing conventional underground communication. Spreading communication can be used for this problem. However, general spread spectrum methods such as direct spread communication are inefficient, so it is proposed to use parallel combined spread spectrum (PCSS) communication to improve efficiency. The PCSS communication not only has the anti-interference ability and the good concealment of the traditional spread spectrum system, but also has a relatively high frequency band utilization rate and a strong information transmission capability. So, this technology has been widely used in practice. This paper presents a PCSS communication model-multiple detection parallel combined spread spectrum (MDPCSS) communication system. In this paper, the principle of MDPCSS communication system is described, that is, the sequence at the transmitting end is processed in blocks and cyclically shifted to facilitate multiple detection at the receiving end. The block diagrams of the transmitter and receiver of the MDPCSS communication system are introduced. At the same time, the calculation formula of the system bit error rate (BER) is introduced, and the simulation and analysis of the BER of the system are completed. By comparing with the common parallel PCSS communication, we can draw a conclusion that it is indeed possible to reduce the BER and improve the system performance. Furthermore, the influence of different pseudo-code lengths selected on the system BER is simulated and analyzed, and the conclusion is that the larger the pseudo-code length is, the smaller the system error rate is.Keywords: cyclic shift, multiple detection, parallel combined spread spectrum, PN code
Procedia PDF Downloads 137504 Landslide and Liquefaction Vulnerability Analysis Using Risk Assessment Analysis and Analytic Hierarchy Process Implication: Suitability of the New Capital of the Republic of Indonesia on Borneo Island
Authors: Rifaldy, Misbahudin, Khalid Rizky, Ricky Aryanto, M. Alfiyan Bagus, Fahri Septianto, Firman Najib Wibisana, Excobar Arman
Abstract:
Indonesia is a country that has a high level of disaster because it is on the ring of fire, and there are several regions with three major plates meeting in the world. So that disaster analysis must always be done to see the potential disasters that might always occur, especially in this research are landslides and liquefaction. This research was conducted to analyze areas that are vulnerable to landslides and liquefaction hazards and their relationship with the assessment of the issue of moving the new capital of the Republic of Indonesia to the island of Kalimantan with a total area of 612,267.22 km². The method in this analysis uses the Analytical Hierarchy Process and consistency ratio testing as a complex and unstructured problem-solving process into several parameters by providing values. The parameters used in this analysis are the slope, land cover, lithology distribution, wetness index, earthquake data, peak ground acceleration. Weighted overlay was carried out from all these parameters using the percentage value obtained from the Analytical Hierarchy Process and confirmed its accuracy with a consistency ratio so that a percentage of the area obtained with different vulnerability classification values was obtained. Based on the analysis results obtained vulnerability classification from very high to low vulnerability. There are (0.15%) 918.40083 km² of highly vulnerable, medium (20.75%) 127,045,44815 km², low (56.54%) 346,175.886188 km², very low (22.56%) 138,127.484832 km². This research is expected to be able to map landslides and liquefaction disasters on the island of Kalimantan and provide consideration of the suitability of regional development of the new capital of the Republic of Indonesia. Also, this research is expected to provide input or can be applied to all regions that are analyzing the vulnerability of landslides and liquefaction or the suitability of the development of certain regions.Keywords: analytic hierarchy process, Borneo Island, landslide and liquefaction, vulnerability analysis
Procedia PDF Downloads 176503 Seasonal Assessment of Snow Cover Dynamics Based on Aerospace Multispectral Data on Livingston Island, South Shetland Islands in Antarctica and on Svalbard in Arctic
Authors: Temenuzhka Spasova, Nadya Yanakieva
Abstract:
Snow modulates the hydrological cycle and influences the functioning of ecosystems and is a significant resource for many populations whose water is harvested from cold regions. Snow observations are important for validating climate models. The accumulation and rapid melt of snow are two of the most dynamical seasonal environmental changes on the Earth’s surface. The actuality of this research is related to the modern tendencies of the remote sensing application in the solution of problems of different nature in the ecological monitoring of the environment. The subject of the study is the dynamic during the different seasons on Livingstone Island, South Shetland Islands in Antarctica and on Svalbard in Arctic. The objects were analyzed and mapped according to the Еuropean Space Agency data (ESA), acquired by sensors Sentinel-1 SAR (Synthetic Aperture Radar), Sentinel 2 MSI and GIS. Results have been obtained for changes in snow coverage during the summer-winter transition and its dynamics in the two hemispheres. The data used is of high time-spatial resolution, which is an advantage when looking at the snow cover. The MSI images are with different spatial resolution at the Earth surface range. The changes of the environmental objects are shown with the SAR images and different processing approaches. The results clearly show that snow and snow melting can be best registered by using SAR data via hh- horizontal polarization. The effect of the researcher on aerospace data and technology enables us to obtain different digital models, structuring and analyzing results excluding the subjective factor. Because of the large extent of terrestrial snow coverage and the difficulties in obtaining ground measurements over cold regions, remote sensing and GIS represent an important tool for studying snow areas and properties from regional to global scales.Keywords: climate changes, GIS, remote sensing, SAR images, snow coverage
Procedia PDF Downloads 219502 Centrifuge Modelling Approach on Sysmic Loading Analysis of Clay: A Geotechnical Study
Authors: Anthony Quansah, Tresor Ntaryamira, Shula Mushota
Abstract:
Models for geotechnical centrifuge testing are usually made from re-formed soil, allowing for comparisons with naturally occurring soil deposits. However, there is a fundamental omission in this process because the natural soil is deposited in layers creating a unique structure. Nonlinear dynamics of clay material deposit is an essential part of changing the attributes of ground movements when subjected to solid seismic loading, particularly when diverse intensification conduct of speeding up and relocation are considered. The paper portrays a review of axis shaking table tests and numerical recreations to explore the offshore clay deposits subjected to seismic loadings. These perceptions are accurately reenacted by DEEPSOIL with appropriate soil models and parameters reviewed from noteworthy centrifuge modeling researches. At that point, precise 1-D site reaction investigations are performed on both time and recurrence spaces. The outcomes uncover that for profound delicate clay is subjected to expansive quakes, noteworthy increasing speed lessening may happen close to the highest point of store because of soil nonlinearity and even neighborhood shear disappointment; nonetheless, huge enhancement of removal at low frequencies are normal in any case the forces of base movements, which proposes that for dislodging touchy seaward establishments and structures, such intensified low-recurrence relocation reaction will assume an essential part in seismic outline. This research shows centrifuge as a tool for creating a layered sample important for modelling true soil behaviour (such as permeability) which is not identical in all directions. Currently, there are limited methods for creating layered soil samples.Keywords: seismic analysis, layered modeling, terotechnology, finite element modeling
Procedia PDF Downloads 155501 Technology Futures in Global Militaries: A Forecasting Method Using Abstraction Hierarchies
Authors: Mark Andrew
Abstract:
Geopolitical tensions are at a thirty-year high, and the pace of technological innovation is driving asymmetry in force capabilities between nation states and between non-state actors. Technology futures are a vital component of defence capability growth, and investments in technology futures need to be informed by accurate and reliable forecasts of the options for ‘systems of systems’ innovation, development, and deployment. This paper describes a method for forecasting technology futures developed through an analysis of four key systems’ development stages, namely: technology domain categorisation, scanning results examining novel systems’ signals and signs, potential system-of systems’ implications in warfare theatres, and political ramifications in terms of funding and development priorities. The method has been applied to several technology domains, including physical systems (e.g., nano weapons, loitering munitions, inflight charging, and hypersonic missiles), biological systems (e.g., molecular virus weaponry, genetic engineering, brain-computer interfaces, and trans-human augmentation), and information systems (e.g., sensor technologies supporting situation awareness, cyber-driven social attacks, and goal-specification challenges to proliferation and alliance testing). Although the current application of the method has been team-centred using paper-based rapid prototyping and iteration, the application of autonomous language models (such as GPT-3) is anticipated as a next-stage operating platform. The importance of forecasting accuracy and reliability is considered a vital element in guiding technology development to afford stronger contingencies as ideological changes are forecast to expand threats to ecology and earth systems, possibly eclipsing the traditional vulnerabilities of nation states. The early results from the method will be subjected to ground truthing using longitudinal investigation.Keywords: forecasting, technology futures, uncertainty, complexity
Procedia PDF Downloads 114500 Aerodynamic Design and Optimization of Vertical Take-Off and Landing Type Unmanned Aerial Vehicles
Authors: Enes Gunaltili, Burak Dam
Abstract:
The airplane history started with the Wright brothers' aircraft and improved day by day. With the help of this advancements, big aircrafts replace with small and unmanned air vehicles, so in this study we design this type of air vehicles. First of all, aircrafts mainly divided into two main parts in our day as a rotary and fixed wing aircrafts. The fixed wing aircraft generally use for transport, cargo, military and etc. The rotary wing aircrafts use for same area but there are some superiorities from each other. The rotary wing aircraft can take off vertically from the ground, and it can use restricted area. On the other hand, rotary wing aircrafts generally can fly lower range than fixed wing aircraft. There are one kind of aircraft consist of this two types specifications. It is named as VTOL (vertical take-off and landing) type aircraft. VTOLs are able to takeoff and land vertically and fly horizontally. The VTOL aircrafts generally can fly higher range from the rotary wings but can fly lower range from the fixed wing aircraft but it gives beneficial range between them. There are many other advantages of VTOL aircraft from the rotary and fixed wing aircraft. Because of that, VTOLs began to use for generally military, cargo, search, rescue and mapping areas. Within this framework, this study answers the question that how can we design VTOL as a small unmanned aircraft systems for search and rescue application for benefiting the advantages of fixed wing and rotary wing aircrafts by eliminating the disadvantages of them. To answer that question and design VTOL aircraft, multidisciplinary design optimizations (MDO), some theoretical terminologies, formulations, simulations and modelling systems based on CFD (Computational Fluid Dynamics) is used in same time as design methodology to determine design parameters and steps. As a conclusion, based on tests and simulations depend on design steps, suggestions on how the VTOL aircraft designed and advantages, disadvantages, and observations for design parameters are listed, then VTOL is designed and presented with the design parameters, advantages, and usage areas.Keywords: airplane, rotary, fixed, VTOL, CFD
Procedia PDF Downloads 282499 Effects of Earthquake Induced Debris to Pedestrian and Community Street Network Resilience
Authors: Al-Amin, Huanjun Jiang, Anayat Ali
Abstract:
Reinforced concrete frames (RC), especially Ordinary RC frames, are prone to structural failures/collapse during seismic events, leading to a large proportion of debris from the structures, which obstructs adjacent areas, including streets. These blocked areas severely impede post-earthquake resilience. This study uses computational simulation (FEM) to investigate the amount of debris generated by the seismic collapse of an ordinary reinforced concrete moment frame building and its effects on the adjacent pedestrian and road network. A three-story ordinary reinforced concrete frame building, primarily designed for gravity load and earthquake resistance, was selected for analysis. Sixteen different ground motions were applied and scaled up until the total collapse of the tested building to evaluate the failure mode under various seismic events. Four types of collapse direction were identified through the analysis, namely aligned (positive and negative) and skewed (positive and negative), with aligned collapse being more predominant than skewed cases. The amount and distribution of debris around the collapsed building were assessed to investigate the interaction between collapsed buildings and adjacent street networks. An interaction was established between a building that collapsed in an aligned direction and the adjacent pedestrian walkway and narrow street located in an unplanned old city. The FEM model was validated against an existing shaking table test. The presented results can be utilized to simulate the interdependency between the debris generated from the collapse of seismic-prone buildings and the resilience of street networks. These findings provide insights for better disaster planning and resilient infrastructure development in earthquake-prone regions.Keywords: building collapse, earthquake-induced debris, ORC moment resisting frame, street network
Procedia PDF Downloads 85498 Utility, Satisfaction and Necessity of Urban Parks: An Empirical Study of Two Suburban Parks of Kolkata Metropolitan Area, India
Authors: Jaydip De
Abstract:
Urban parks are open places, green fields and riverside gardens usually maintained by public or private authorities, or eventually by both jointly; and utilized for a multidimensional purpose by the citizens. These parks are indeed the lung of urban centers. In urban socio-environmental setup, parks are the nucleus of social integration, community building, and physical development. In contemporary cities, these green places seem to perform as the panacea of congested, complex and stressful urban life. The alarmingly increasing urban population and the resultant congestion of high-rises are making life wearisome in neo-liberal cities. This has made the citizen always quest for open space and fresh air. In such a circumstance, the mere existence of parks is not capable of satisfying the growing aspirations. Therefore in this endeavour, a structured attempt is so made to empirically identify the utility, visitors’ satisfaction, and future needs through the cases of two urban parks of Kolkata Metropolitan Area, India. This study is principally based upon primary information collected through visitors’ perception survey conducted at the Chinsurah ground and Chandernagore strand. The correlation between different utility categories is identified and analyzed systematically. At the same time, indices like Weighted Satisfaction Score (WSS), Facility wise Satisfaction Index (FSI), Urban Park Satisfaction Index (UPSI) and Urban Park Necessity Index (UPNI) are advocated to quantify the visitors’ satisfaction and future necessities. It is explored that the most important utilities are passive in nature. Simultaneously, satisfaction levels of visitors are average, and their requirements are centred on the daily needs of the next generation, i.e., the children. Further, considering the visitors’ opinion planning measures are promulgated for holistic development of urban parks to revitalize sustainability of citified life.Keywords: citified life, future needs, visitors’ satisfaction, urban parks, utility
Procedia PDF Downloads 178497 Infant Care Practice in Hadiya Culture: Case Study of Harche Auyaya
Authors: Dawit Thomas
Abstract:
Feeding and weaning practices vary from culture to culture and depend on different child-rearing values. The socio-cultural dimensions that influence the acceptable infant feeding practices are varied and complex. Understanding cultural differences in beliefs and practices relating to infant feeding is important to enhance designing programs for delivering successful psychological, social, physiological and economic well-being of mothers and infants. The main purpose of this study was exploring mothers infant feeding practices in the context of Hadiyya culture. After purposively selecting Harche Huyaya Uyaya Kebele eight infant feeding mothers were selected using snowball sampling technique. The study employed interviews and focus group discussion. The study found out early initiation and prolonged breastfeeding and early complementary feeding in some instances immediately after birth. In addition, infants were not forced to wean unless the mothers encounter pressing issues like pregnancy and health related problems. Furthermore, the main weaning techniques were putting unpleasant materials on the tip of nipples and sending infants to grandparents home. The study also found out gender difference in weaning, i.e., early initiation of weaning for girls. This can be indicative of gender-based bias on weaning practice. Finally, health extension workers, office of women and children affairs and Hadiyya Zone Tourism office should organize awareness raising programs to preserve vital infant feeding practices like prolonged breastfeeding and length of weaning. In addition, the offices should raise awareness among communities on negative side effects of sending infant to grandparents home that may weaken infant-mothers attachment and create favorable ground for the development of phobia.Keywords: feeding, infant, practices, weaning
Procedia PDF Downloads 324496 The Changes of Chemical Composition of Rice Straw Treated by a Biodecomposer Developed from Rumen Bacterial of Buffalo
Authors: A. Natsir, M. Nadir, S. Syahrir, A. Mujnisa
Abstract:
In tropical countries such as in Indonesia, rice straw plays an important role in fulfilling the needs of feed for ruminant, especially during the dry season in which the availability of forage is very limited. However, the main problem of using rice straw as a feedstuff is low digestibility due to the existence of the links between lignin and cellulose or hemicellulose, and imbalance of its minerals content. One alternative to solve this problem is by application of biodecomposer (BS) derived from rumen bacterial of the ruminant. This study was designed to assess the effects of BS application on the changes of the chemical composition of rice straw. Four adults local buffalo raised under typical feeding conditions were used as a source of inoculum for BS development. The animal was fed for a month with a diet consisted of rice straw and elephant grass before taking rumen fluid samples. Samples of rumen fluid were inoculated in the carboxymethyl cellulose (CMC) media under anaerobic condition for 48 hours at 37°C. The mixture of CMC media and microbes are ready to be used as a biodecomposer following incubation of the mixture under anaerobic condition for 7 days at 45°C. The effectiveness of BS then assessed by applying the BS on the straw according to completely randomized design consisted of four treatments and three replication. One hundred g of ground coarse rice straw was used as the substrate. The BS was applied to the rice straw substrate with the following composition: Rice straw without BS (P0), rice straw + 5% BS (P1), rice straw +10% BS (P2), and rice straw + 15% BS. The mixture of rice straw and BS then fermented under anaerobic for four weeks. Following the fermentation, the chemical composition of rice straw was evaluated. The results indicated that the crude protein content of rice straw significantly increased (P < 0.05) as the level of BS increased. On the other hand, the concentration of crude fiber of the rice straw was significantly decreased (P < 0.05) as the level of BS increased. Other nutrients such as minerals did not change (P > 0.05) due to the treatments. In conclusion, application of BS developed from rumen bacterial of buffalo has a promising prospect to be used as a biological agent to improve the quality of rice straw as feeding for ruminant.Keywords: biodecomposer, local buffalo, rumen microbial, chemical composition
Procedia PDF Downloads 208495 Potential Risk Assessment Due to Groundwater Quality Deterioration and Quantifying the Major Influencing Factors Using Geographical Detectors in the Gunabay Watershed of Ethiopia
Authors: Asnakew Mulualem Tegegne, Tarun Kumar Lohani, , Abunu Atlabachew Eshete
Abstract:
Groundwater quality has become deteriorated due to natural and anthropogenic activities. Poor water quality has a potential risk to human health and the environment. Therefore, the study aimed to assess the potential risk of groundwater quality contamination levels and public health risks in the Gunabay watershed. For this task, seventy-eight groundwater samples were collected from thirty-nine locations in the dry and wet seasons during 2022. The ground water contamination index was applied to assess the overall quality of groundwater. Six major driving forces (temperature, population density, soil, land cover, recharge, and geology) and their quantitative impact of each factor on groundwater quality deterioration were demonstrated using Geodetector. The results showed that low groundwater quality was detected in urban and agricultural land. Especially nitrate contamination was highly linked to groundwater quality deterioration and public health risks, and a medium contamination level was observed in the area. This indicates that the inappropriate application of fertilizer on agricultural land and wastewater from urban areas has a great impact on shallow aquifers in the study area. Furthermore, the major influencing factors are ranked as soil type (0.33–0.31)>recharge (0.17–0.15)>temperature (0.13–0.08)>population density (0.1–0.08)>land cover types (0.07– 0.04)>lithology (0.05–0.04). The interaction detector revealed that the interaction between soil ∩ recharge, soil ∩ temperature, and soil ∩ land cover, temperature ∩ recharge is more influential to deteriorate groundwater quality in both seasons. Identification and quantification of the major influencing factors may provide new insight into groundwater resource management.Keywords: groundwater contamination index, geographical detectors, public health · influencing factors, and water resources management
Procedia PDF Downloads 16494 Tracking of Intramuscular Stem Cells by Magnetic Resonance Diffusion Weighted Imaging
Authors: Balakrishna Shetty
Abstract:
Introduction: Stem Cell Imaging is a challenging field since the advent of Stem Cell treatment in humans. Series of research on tagging and tracking the stem cells has not been very effective. The present study is an effort by the authors to track the stem cells injected into calf muscles by Magnetic Resonance Diffusion Weighted Imaging. Materials and methods: Stem Cell injection deep into the calf muscles of patients with peripheral vascular disease is one of the recent treatment modalities followed in our institution. 5 patients who underwent deep intramuscular injection of stem cells as treatment were included for this study. Pre and two hours Post injection MRI of bilateral calf regions was done using 1.5 T Philips Achieva, 16 channel system using 16 channel torso coils. Axial STIR, Axial Diffusion weighted images with b=0 and b=1000 values with back ground suppression (DWIBS sequence of Philips MR Imaging Systems) were obtained at 5 mm interval covering the entire calf. The invert images were obtained for better visualization. 120ml of autologous bone marrow derived stem cells were processed and enriched under c-GMP conditions and reduced to 40ml solution containing mixture of above stem cells. Approximately 40 to 50 injections, each containing 0.75ml of processed stem cells, was injected with marked grids over the calf region. Around 40 injections, each of 1ml normal saline, is injected into contralateral leg as control. Results: Significant Diffusion hyper intensity is noted at the site of injected stem cells. No hyper intensity noted before the injection and also in the control side where saline was injected conclusion: This is one of the earliest studies in literature showing diffusion hyper intensity in intramuscularly injected stem cells. The advantages and deficiencies in this study will be discussed during the presentation.Keywords: stem cells, imaging, DWI, peripheral vascular disease
Procedia PDF Downloads 74493 A Case Study of Rainfall Derived Inflow/Infiltration in a Separate Sewer System in Gwangju, Korea
Authors: Bumjo Kim, Hyun Jin Kim, Joon Ha Kim
Abstract:
The separate sewer system is that collects the wastewater as a sewer pipe and rainfall as a stormwater pipe separately, and then sewage is treated in the wastewater treatment plant, the stormwater is discharged to rivers or lakes through stormwater drainage pipes. Unfortunately, even for separate sewer systems, it is not possible to prevent Rainfall Driven Inflow/Infiltration(RDII) completely to the sewer pipe. Even if the sewerage line is renovated, there is an ineluctable RDII due to the combined sewer system in the house or the difficulty of sewage maintenance in private areas. The basic statistical analysis was performed using environmental data including rainfall, sewage, water qualities and groundwater level in the strict of Gwangju in South Korea. During rainfall in the target area, RDII showed an increased rate of 13.4 ~ 53.0% compared to that of a clear day and showed a rapid hydrograph response of 0.3 ~ 3.0 hr. As a result of water quality analysis, BOD5 concentration decreased by 17.3 % and salinity concentration decreased by 8.8 % at the representative spot in the project area compared to the sunny day during rainfall. In contrast to the seasonal fluctuation range of 0.38 m ~ 0.55 m in groundwater in Gwangju area and 0.58 m ~ 0.78 m in monthly fluctuation range, while the difference between groundwater level and the depth of sewer pipe laying was 2.70 m on average, which is larger than the range of fluctuation. Comprehensively, it can be concluded that the increasing of flowrate at sewer line is due to not infiltration water caused by groundwater level rise, construction failure, cracking due to joint failure or conduit deterioration, rainfall was directly inflowed into the sewer line rapidly. Acknowledgements: This work was supported by the 'Climate Technology Development and Application' research project (#K07731) through a grant provided by GIST in 2017.Keywords: ground water, rainfall, rainfall driven inflow/infiltration, separate sewer system
Procedia PDF Downloads 159492 The Burden and the Consequences of Waste Management in Nigeria: Geophysical Approach
Authors: Joseph Omeiza Alao
Abstract:
The wobbly state of waste management and the high level of environmental irresponsibility is a threat to environmental security, which invariably endangered public health, regional groundwater systems and atmospheric condition. The dumping of waste materials in water bodies and gutters and the frequent burning of waste materials heaped at dumpsites as well depict the highest level of environmental indiscipline. These unruly human factors have compelled this study to apply four different techniques for environmental impact assessment and the possible public health risks of poor waste management in Nigeria. The techniques include a geophysical survey (resistivity data acquisition), dispatched questionnaire surveys, physiochemical water analysis and a physical survey of several dumpsites. While the resistivity data indicates high-level dumpsite leachate invading the ground soil down to the water table, the physiochemical water analysis depicts high content of BOD (401 – 711) mg/l, COD (731 – 1312) mg/l, TDS (419 – 1871) mg/l and heavy metals (0.014 – 1.971) mg/l present in the regional groundwater systems, which have altered the chemistry of the regional groundwater. The resistivity data shows that the overburdened soil layer overlaying the regional groundwater systems was very low (4.5 Ωm – 151 Ωm) as against the existing data (180 Ωm – 3500 Ωm). However, the physical surveys and the dispatched questionnaire surveys explore the depth of environmental irresponsibility among the citizen. While the imprints of gross environmental indiscipline may be absolutely irreversible, adequate knowledge of the environmental implications of careless waste disposal. After a critical examination of the current waste management strategies in Nigeria, the study suggests a future direction for environmental security and sustainability. Several influential regional factors, such as geology, climatic conditions, and hydrology, were also discussed.Keywords: groundwater, environmental indiscipline, waste management, water analysis, leachate plumes, public health
Procedia PDF Downloads 68491 Empowering Teachers to Bolster Vocational Education in Cameroon
Authors: Ambissah Asah Brigitte
Abstract:
This research is guided by observations in the types of education offered at the secondary level in Cameroon. The secondary education system in Cameroon comprises two types of education, including General Education and Technical and Vocational Education. Although General Education and, Technical and Vocational Education are given equal importance by public authorities, General Education remains on the thriving trend, enjoying the greatest enrolment. In the meantime, Technical and Vocational Education is still to reach the adequate momentum expected to fostering the country’s full-fledged development, as specified in the National Development Strategy, which is the blue print of State policies in Cameroon for the 2020-2030 decade. Vocational Education is credited for its ability to foster a country’s development, since it teaches students the precise skills and knowledge needed to carry out a specific craft, technical skill or trade. Yet, formal training on Vocational Education for teachers offers a pale face in secondary education. This limits the ability of the educational system to nurture vocations and provide the country’s economy with the manpower necessary to achieving development goals. This article seeks to analyse how concretely does the institutional framework spur vocational skills in secondary school teachers. It overviews the instruments instituting Vocational Education at the secondary level in Cameroon, then assesses their effective implementation on the ground. Questionnaires addressed to both active teachers and vocational education policy-makers serve to collect data which are analysed using descriptive statistics. The final objective is to contribute in the debate urging to rethink the role of teachers in bolstering Vocational Education, which is the cornerstone of industrial development. This is true everywhere in the world. In Cameroon and in Africa in general, teachers must be empowered in this field with specific sets of competencies they will need to pass on to learners. They equally need to be given opportunities to acquire and adapt their knowledge and teaching skills accordingly.Keywords: vocational education, cameroon, institutional framework, national development, competencies and skills
Procedia PDF Downloads 73490 Using Hierarchical Modelling to Understand the Role of Plantations in the Abundance of Koalas, Phascolarctos cinereus
Authors: Kita R. Ashman, Anthony R. Rendall, Matthew R. E. Symonds, Desley A. Whisson
Abstract:
Forest cover is decreasing globally, chiefly due to the conversion of forest to agricultural landscapes. In contrast, the area under plantation forestry is increasing significantly. For wildlife occupying landscapes where native forest is the dominant land cover, plantations generally represent a lower value habitat; however, plantations established on land formerly used for pasture may benefit wildlife by providing temporary forest habitat and increasing connectivity. This study investigates the influence of landscape, site, and climatic factors on koala population density in far south-west Victoria where there has been extensive plantation establishment. We conducted koala surveys and habitat characteristic assessments at 72 sites across three habitat types: plantation, native vegetation blocks, and native vegetation strips. We employed a hierarchical modeling framework for estimating abundance and constructed candidate multinomial N-mixture models to identify factors influencing the abundance of koalas. We detected higher mean koala density in plantation sites (0.85 per ha) than in either native block (0.68 per ha) or native strip sites (0.66 per ha). We found five covariates of koala density and using these variables, we spatially modeled koala abundance and discuss factors that are key in determining large-scale distribution and density of koala populations. We provide a distribution map that can be used to identify high priority areas for population management as well as the habitat of high conservation significance for koalas. This information facilitates the linkage of ecological theory with the on-ground implementation of management actions and may guide conservation planning and resource management actions to consider overall landscape configuration as well as the spatial arrangement of plantations adjacent to the remnant forest.Keywords: abundance modelling, arboreal mammals plantations, wildlife conservation
Procedia PDF Downloads 115489 Ending Wars Over Water: Evaluating the Extent to Which Artificial Intelligence Can Be Used to Predict and Prevent Transboundary Water Conflicts
Authors: Akhila Potluru
Abstract:
Worldwide, more than 250 bodies of water are transboundary, meaning they cross the political boundaries of multiple countries. This creates a system of hydrological, economic, and social interdependence between communities reliant on these water sources. Transboundary water conflicts can occur as a result of this intense interdependence. Many factors contribute to the sparking of transboundary water conflicts, ranging from natural hydrological factors to hydro-political interactions. Previous attempts to predict transboundary water conflicts by analysing changes or trends in the contributing factors have typically failed because patterns in the data are hard to identify. However, there is potential for artificial intelligence and machine learning to fill this gap and identify future ‘hotspots’ up to a year in advance by identifying patterns in data where humans can’t. This research determines the extent to which AI can be used to predict and prevent transboundary water conflicts. This is done via a critical literature review of previous case studies and datasets where AI was deployed to predict water conflict. This research not only delivered a more nuanced understanding of previously undervalued factors that contribute toward transboundary water conflicts (in particular, culture and disinformation) but also by detecting conflict early, governance bodies can engage in processes to de-escalate conflict by providing pre-emptive solutions. Looking forward, this gives rise to significant policy implications and water-sharing agreements, which may be able to prevent water conflicts from developing into wide-scale disasters. Additionally, AI can be used to gain a fuller picture of water-based conflicts in areas where security concerns mean it is not possible to have staff on the ground. Therefore, AI enhances not only the depth of our knowledge about transboundary water conflicts but also the breadth of our knowledge. With demand for water constantly growing, competition between countries over shared water will increasingly lead to water conflict. There has never been a more significant time for us to be able to accurately predict and take precautions to prevent global water conflicts.Keywords: artificial intelligence, machine learning, transboundary water conflict, water management
Procedia PDF Downloads 105488 Comparison and Improvement of the Existing Cone Penetration Test Results: Shear Wave Velocity Correlations for Hungarian Soils
Authors: Ákos Wolf, Richard P. Ray
Abstract:
Due to the introduction of Eurocode 8, the structural design for seismic and dynamic effects has become more significant in Hungary. This has emphasized the need for more effort to describe the behavior of structures under these conditions. Soil conditions have a significant effect on the response of structures by modifying the stiffness and damping of the soil-structural system and by modifying the seismic action as it reaches the ground surface. Shear modulus (G) and shear wave velocity (vs), which are often measured in the field, are the fundamental dynamic soil properties for foundation vibration problems, liquefaction potential and earthquake site response analysis. There are several laboratory and in-situ measurement techniques to evaluate dynamic soil properties, but unfortunately, they are often too expensive for general design practice. However, a significant number of correlations have been proposed to determine shear wave velocity or shear modulus from Cone Penetration Tests (CPT), which are used more and more in geotechnical design practice in Hungary. This allows the designer to analyze and compare CPT and seismic test result in order to select the best correlation equations for Hungarian soils and to improve the recommendations for the Hungarian geologic conditions. Based on a literature review, as well as research experience in Hungary, the influence of various parameters on the accuracy of results will be shown. This study can serve as a basis for selecting and modifying correlation equations for Hungarian soils. Test data are taken from seven locations in Hungary with similar geologic conditions. The shear wave velocity values were measured by seismic CPT. Several factors are analyzed including soil type, behavior index, measurement depth, geologic age etc. for their effect on the accuracy of predictions. The final results show an improved prediction method for Hungarian soilsKeywords: CPT correlation, dynamic soil properties, seismic CPT, shear wave velocity
Procedia PDF Downloads 246487 The Influence of Bentonite on the Rheology of Geothermal Grouts
Authors: A. N. Ghafar, O. A. Chaudhari, W. Oettel, P. Fontana
Abstract:
This study is a part of the EU project GEOCOND-Advanced materials and processes to improve performance and cost-efficiency of shallow geothermal systems and underground thermal storage. In heat exchange boreholes, to improve the heat transfer between the pipes and the surrounding ground, the space between the pipes and the borehole wall is normally filled with geothermal grout. Traditionally, bentonite has been a crucial component in most commercially available geothermal grouts to assure the required stability and impermeability. The investigations conducted in the early stage of this project during the benchmarking tests on some commercial grouts showed considerable sensitivity of the rheological properties of the tested grouts to the mixing parameters, i.e., mixing time and velocity. Further studies on this matter showed that bentonite, which has been one of the important constituents in most grout mixes, was probably responsible for such behavior. Apparently, proper amount of shear should be applied during the mixing process to sufficiently activate the bentonite. The higher the amount of applied shear the more the activation of bentonite, resulting in change in the grout rheology. This explains why, occasionally in the field applications, the flow properties of the commercially available geothermal grouts using different mixing conditions (mixer type, mixing time, mixing velocity) are completely different than expected. A series of tests were conducted on the grout mixes, with and without bentonite, using different mixing protocols. The aim was to eliminate/reduce the sensitivity of the rheological properties of the geothermal grouts to the mixing parameters by replacing bentonite with polymeric (non-clay) stabilizers. The results showed that by replacing bentonite with a proper polymeric stabilizer, the sensitivity of the grout mix on mixing time and velocity was to a great extent diminished. This can be considered as an alternative for the developers/producers of geothermal grouts to provide enhanced materials with less uncertainty in obtained results in the field applications.Keywords: flow properties, geothermal grout, mixing time, mixing velocity, rheological properties
Procedia PDF Downloads 125486 Remote Sensing and GIS Based Methodology for Identification of Low Crop Productivity in Gautam Buddha Nagar District
Authors: Shivangi Somvanshi
Abstract:
Poor crop productivity in salt-affected environment in the country is due to insufficient and untimely canal supply to agricultural land and inefficient field water management practices. This could further degrade due to inadequate maintenance of canal network, ongoing secondary soil salinization and waterlogging, worsening of groundwater quality. Large patches of low productivity in irrigation commands are occurring due to waterlogging and salt-affected soil, particularly in the scarcity rainfall year. Satellite remote sensing has been used for mapping of areas of low crop productivity, waterlogging and salt in irrigation commands. The spatial results obtained for these problems so far are less reliable for further use due to rapid change in soil quality parameters over the years. The existing spatial databases of canal network and flow data, groundwater quality and salt-affected soil were obtained from the central and state line departments/agencies and were integrated with GIS. Therefore, an integrated methodology based on remote sensing and GIS has been developed in ArcGIS environment on the basis of canal supply status, groundwater quality, salt-affected soils, and satellite-derived vegetation index (NDVI), salinity index (NDSI) and waterlogging index (NSWI). This methodology was tested for identification and delineation of area of low productivity in the Gautam Buddha Nagar district (Uttar Pradesh). It was found that the area affected by this problem lies mainly in Dankaur and Jewar blocks of the district. The problem area was verified with ground data and was found to be approximately 78% accurate. The methodology has potential to be used in other irrigation commands in the country to obtain reliable spatial data on low crop productivity.Keywords: remote sensing, GIS, salt affected soil, crop productivity, Gautam Buddha Nagar
Procedia PDF Downloads 286485 The Revitalization of South-south Cooperation: Evaluation of South African Direct Investment in Cameroon
Authors: Albert Herve Nkolo Mpoko
Abstract:
The Foreign Direct Investment (FDI) landscape in Cameroon has garnered significant attention from both European and Asian nations due to perceived benefits such as capital infusion, technology transfer, and potential for economic expansion. However, it is noteworthy that South Africa's investment presence remains comparatively subdued in Cameroon, lagging behind that of Europe and Asia. Equally surprising is the limited footprint of Africa's economic powerhouse within other African economies. This study delved into four specific facets of South African investment in Cameroon. Initially, it focused on identifying South African companies operating within Cameroon. Subsequently, the analysis encompassed assessing the correlation between South African investment and poverty alleviation. Additionally, the study examined the nexus between South African investment and technological advancement, and underscored the significance of investment incentives in both countries Key findings of the research shed light on several crucial points. South Africa ought to reassess its economic engagement with Francophone Africa, particularly Cameroon. Despite existing policies aimed at fostering investment, there remains substantial ground to cover in this realm. The proliferation of South African enterprises in Cameroon holds the potential to ameliorate poverty and foster employment opportunities across both nations. The advent of South African firms in Cameroon can catalyse technological advancements within the region. Data collection involved surveying 100 executives from the respective administrations and conducting ten interviews. The gathered data underwent triangulation, wherein quantitative findings were juxtaposed with qualitative insights. In conclusion, the study underscores the underutilization of Cameroon by South Africa, emphasizing the untapped potential for mutual economic growth. Furthermore, it posits that the success of South Africa's multinational corporations abroad could serve as a pivotal pillar for sustaining its domestic economy.Keywords: FDI, transfer of technology, South-South cooperation, mutual economic growth
Procedia PDF Downloads 46484 Autonomous Exploration, Navigation and Mapping Payload Integrated on a Quadruped Robot
Authors: Julian Y. Raheema, Michael R. Hess, Raymond C. Provost, Mark Bilinski
Abstract:
The world is rapidly moving towards advancing and utilizing artificial intelligence and autonomous robotics. The ground-breaking Boston Dynamics quadruped robot, SPOT, was designed for industrial and commercial tasks requiring limited autonomous navigation. Out of the box, SPOT has route memorization and playback – it can repeat a path that it has been manually piloted through, but it cannot autonomously navigate an area that has not been previously explored. The presented SPOT payload package is built on ROS framework to support autonomous navigation and mapping of an unexplored environment. The package is fully integrated with SPOT to take advantage of motor controls and collision avoidance that comes natively with the robot. The payload runs all computations onboard, takes advantage of visual odometry SLAM and uses an Intel RealSense depth camera and Velodyne LiDAR sensor to generate 2D and 3D maps while in autonomous navigation mode. These maps are fused into the navigation stack to generate a costmap to enable the robot to safely navigate the environment without causing damage to the surroundings or the robot. The operator defines the operational zone and start location and then sends the explore command to have SPOT explore, generate 2D and 3D maps of the environment and return to the start location to await the operator's next command. The benefit of the presented package is that it is much lighter weight and less expensive than previous approaches and, importantly, operates in GPS-denied scenarios, which is ideal for indoor mapping. There are numerous applications that are hazardous to humans for SPOT enhanced with the autonomy payload, including disaster response, nuclear inspection, mine inspection, and so on. Other less extreme uses cases include autonomous 3D and 2D scanning of facilities for inspection, engineering and construction purposes.Keywords: autonomous, SLAM, quadruped, mapping, exploring, ROS, robotics, navigation
Procedia PDF Downloads 90483 Comparison of Catalyst Support for High Pressure Reductive Amination
Authors: Tz-Bang Du, Cheng-Han Hsieh, Li-Ping Ju, Hung-Jie Liou
Abstract:
Polyether amines synthesize by secondary hydroxyl polyether diol play an important role in epoxy hardener. The low molecular weight product is used in low viscosity and high transparent polyamine product for the logo, ground cover, especially for wind turbine blade, while the high molecular weight products are used in advanced agricultures such as a high-speed railway. High-pressure reductive amination process is required for producing these amines. In the condition of higher than 150 atm pressure and 200 degrees Celsius temperature, supercritical ammonia is used as a reactant and also a solvent. It would be a great challenge to select a catalyst support for such high-temperature alkaline circumstance. In this study, we have established a six-autoclave-type (SAT) high-pressure reactor for amination catalyst screening, which six experiment conditions with different temperature and pressure could be examined at the same time. We synthesized copper-nickel catalyst on different shaped alumina catalyst support and evaluated the catalyst activity for high-pressure reductive amination of polypropylene glycol (PPG) by SAT reactor. Ball type gamma alumina, ball type activated alumina and pellet type gamma alumina catalyst supports are evaluated in this study. Gamma alumina supports have shown better activity on PPG reductive amination than activated alumina support. In addition, the catalysts are evaluated in fixed bed reactor. The diamine product was successfully synthesized via this catalyst and the strength of the catalysts is measured. The crush strength of blank supports is about 13.5 lb for both gamma alumina and activated alumina. The strength increases to 20.3 lb after synthesized to be copper-nickel catalyst. After test in the fixed bed high-pressure reductive amination process for 100 hours, the crush strength of the used catalyst is 3.7 lb for activated alumina support, 12.0 lb for gamma alumina support. The gamma alumina is better than activated alumina to use as catalyst support in high-pressure reductive amination process.Keywords: high pressure reductive amination, copper nickel catalyst, polyether amine, alumina
Procedia PDF Downloads 229482 The Investigation of Fiber Reinforcement Self-Compacting Concrete and Fiber Reinforcement Concrete
Authors: Orod Zarrin, Mohesn Ramezan Shirazi, Hassan Moniri
Abstract:
The use of pile foundations technique is developed to support structures and buildings on soft soil. The most important dynamic load that can affect the pile structure is earthquake vibrations. From the 1960s the comprehensive investigation of pile foundations during earthquake excitation indicate that, piles are subject to damage by affecting the superstructure integrity and serviceability. The main part of these research has been focused on the behavior of liquefiable soil and lateral spreading load on piles. During an earthquake, two types of stresses can damage the pile head, inertial load that is caused by superstructure and deformation which caused by the surrounding soil. Soil deformation and inertial load are associated with the acceleration developed in an earthquake. The acceleration amplitude at the ground surface depends on the magnitude of earthquakes, soil properties and seismic source distance. According to the investigation, the damage is between the liquefiable and non-liquefiable layers and also soft and stiff layers. This damage crushes the pile head by increasing the inertial load which is applied by the superstructure. On the other hand, the cracks on the piles due to the surrounding soil are directly related to the soil profile and causes cracks from small to large. And researchers have been listed the large cracks reason such as liquefaction, lateral spreading and inertial load. In the field of designing, elastic response of piles are always a challenge for designer in liquefaction soil, by allowing deflection at top of piles. Moreover, absence of plastic hinges in piles should be insured, because the damage in the piles is not observed directly. In this study, the performance and behavior of pile foundations during liquefaction and lateral spreading are investigated. And emphasize on the soil behavior in the liquefiable and non-liquefiable layers by different aspect of piles damage such as ranking, location and degree of damage are going to discuss.Keywords: self-compacting concrete, fiber, tensile strength, post-cracking, direct and inverse technique
Procedia PDF Downloads 239481 Performance Study of Geopolymer Concrete by Partial Replacement of Fly Ash with Cement and Full Replacement of River Sand by Crushed Sand
Authors: Asis Kumar Khan, Rajeev Kumar Goel
Abstract:
Recent infrastructure growth all around the world lead to increase in demand for concrete day by day. Cement being binding material for concrete the usage of cement also gone up significantly. Cement manufacturing utilizes abundant natural resources and causes environment pollution by releasing a huge quantity of CO₂ into the atmosphere. So, it is high time to look for alternates to reduce the cement consumption in concrete. Geopolymer concrete is one such material which utilizes the industrial waste such as fly ash, ground granulated blast furnace slag and low-cost alkaline liquids such as sodium hydroxide and sodium silicate to produce the concrete. On the other side, river sand is becoming very expensive due to its large-scale depletion at source and the high cost of transportation. In this view, river sand is replaced by crushed sand in this study. In this work, an attempt has been made to understand the durability parameters of geopolymer concrete by partially replacing fly ash with cement. Fly ash is replaced by cement at various levels e.g., from 0 to 50%. Concrete cubes of 100x100x100mm were used for investigating different durability parameters. The various parameters studied includes compressive strength, split tensile strength, drying shrinkage, sodium sulphate attack resistance, sulphuric acid attack resistance and chloride permeability. Highest compressive strength & highest split tensile strength is observed in 30% replacement level. Least drying is observed with 30% replacement level. Very good resistance for sulphuric acid & sodium sulphate is found with 30% replacement. However, it was not possible to find out the chloride permeability due to the high conductivity of geopolymer samples of all replacement levels.Keywords: crushed sand, compressive strength, drying shrinkage, geopolymer concrete, split tensile strength, sodium sulphate attack resistance, sulphuric acid attack resistance
Procedia PDF Downloads 295480 Hybrid CNN-SAR and Lee Filtering for Enhanced InSAR Phase Unwrapping and Coherence Optimization
Authors: Hadj Sahraoui Omar, Kebir Lahcen Wahib, Bennia Ahmed
Abstract:
Interferometric Synthetic Aperture Radar (InSAR) coherence is a crucial parameter for accurately monitoring ground deformation and environmental changes. However, coherence can be degraded by various factors such as temporal decorrelation, atmospheric disturbances, and geometric misalignments, limiting the reliability of InSAR measurements (Omar Hadj‐Sahraoui and al. 2019). To address this challenge, we propose an innovative hybrid approach that combines artificial intelligence (AI) with advanced filtering techniques to optimize interferometric coherence in InSAR data. Specifically, we introduce a Convolutional Neural Network (CNN) integrated with the Lee filter to enhance the performance of radar interferometry. This hybrid method leverages the strength of CNNs to automatically identify and mitigate the primary sources of decorrelation, while the Lee filter effectively reduces speckle noise, improving the overall quality of interferograms. We develop a deep learning-based model trained on multi-temporal and multi-frequency SAR datasets, enabling it to predict coherence patterns and enhance low-coherence regions. This hybrid CNN-SAR with Lee filtering significantly reduces noise and phase unwrapping errors, leading to more precise deformation maps. Experimental results demonstrate that our approach improves coherence by up to 30% compared to traditional filtering techniques, making it a robust solution for challenging scenarios such as urban environments, vegetated areas, and rapidly changing landscapes. Our method has potential applications in geohazard monitoring, urban planning, and environmental studies, offering a new avenue for enhancing InSAR data reliability through AI-powered optimization combined with robust filtering techniques.Keywords: CNN-SAR, Lee Filter, hybrid optimization, coherence, InSAR phase unwrapping, speckle noise reduction
Procedia PDF Downloads 10479 Yield and Sward Composition Responses of Natural Grasslands to Treatments Meeting Sustainability
Authors: D. Díaz Fernández, I. Csízi, K. Pető, G. Nagy
Abstract:
An outstanding part of the animal products are based on the grasslands, due to the fact that the grassland ecosystems can be found all over the globe. In places where economical and successful crop production cannot be managed, the grassland based animal husbandry can be an efficient way of food production. In addition, these ecosystems have an important role in carbon sequestration, and with their rich flora – and fauna connected to it – in conservation of biodiversity. The protection of nature, and the sustainable agriculture is getting more and more attention in the European Union, but, looking at the consumers’ needs, the production of healthy food cannot be neglected either. Because of these facts, the effects of two specific composts - which are officially authorized in organic farming, in Agri-environment Schemes and Natura 2000 programs – on grass yields and sward compositions were investigated in a field trial. The investigation took place in Hungary, on a natural grassland based on solonetz soil. Three rates of compost (10 t/ha, 20 t/ha, 30 t/ha) were tested on 3 m X 10 m experimental plots. Every treatment had four replications and both type of compost had four-four control plots too, this way 32 experimental plots were included in the investigations. The yield of the pasture was harvested two-times (in May and in September) and before cutting the plots, measurements on botanical compositions were made. Samples for laboratory analysis were also taken. Dry matter yield of pasture showed positive responses to the rates of composts. The increase in dry matter yield was partly due to some positive changes in sward composition. It means that the proportions of grass species with higher yield potential increased in ground cover of the sward without depressing out valuable native species of diverse natural grasslands. The research results indicate that the use of organic compost can be an efficient way to increase grass yields in a sustainable way.Keywords: compost application, dry matter yield, native grassland, sward composition
Procedia PDF Downloads 249478 Estimating the Impact of Appliance Energy Efficiency Improvement on Residential Energy Demand in Tema City, Ghana
Authors: Marriette Sakah, Samuel Gyamfi, Morkporkpor Delight Sedzro, Christoph Kuhn
Abstract:
Ghana is experiencing rapid economic development and its cities command an increasingly dominant role as centers of both production and consumption. Cities run on energy and are extremely vulnerable to energy scarcity, energy price escalations and health impacts of very poor air quality. The overriding concern in Ghana and other West African states is bridging the gap between energy demand and supply. Energy efficiency presents a cost-effective solution for supply challenges by enabling more coverage with current power supply levels and reducing the need for investment in additional generation capacity and grid infrastructure. In Ghana, major issues for energy policy formulation in residential applications include lack of disaggregated electrical energy consumption data and lack of thorough understanding with regards to socio-economic influences on energy efficiency investment. This study uses a bottom up approach to estimate baseline electricity end-use as well as the energy consumption of best available technologies to enable estimation of energy-efficiency resource in terms of relative reduction in total energy use for Tema city, Ghana. A ground survey was conducted to assess the probable consumer behavior in response to energy efficiency initiatives to enable estimation of the amount of savings that would occur in response to specific policy interventions with regards to funding and incentives provision targeted at households. Results show that 16% - 54% reduction in annual electricity consumption is reasonably achievable depending on the level of incentives provision. The saved energy could supply 10000 - 34000 additional households if the added households use only best available technology. Political support and consumer awareness are necessary to translate energy efficiency resources into real energy savings.Keywords: achievable energy savings, energy efficiency, Ghana, household appliances
Procedia PDF Downloads 214