Search results for: data bank
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 24904

Search results for: data bank

23284 H∞ Sampled-Data Control for Linear Systems Time-Varying Delays: Application to Power System

Authors: Chang-Ho Lee, Seung-Hoon Lee, Myeong-Jin Park, Oh-Min Kwon

Abstract:

This paper investigates improved stability criteria for sampled-data control of linear systems with disturbances and time-varying delays. Based on Lyapunov-Krasovskii stability theory, delay-dependent conditions sufficient to ensure H∞ stability for the system are derived in the form of linear matrix inequalities(LMI). The effectiveness of the proposed method will be shown in numerical examples.

Keywords: sampled-data control system, Lyapunov-Krasovskii functional, time delay-dependent, LMI, H∞ control

Procedia PDF Downloads 311
23283 Logistics Information Systems in the Distribution of Flour in Nigeria

Authors: Cornelius Femi Popoola

Abstract:

This study investigated logistics information systems in the distribution of flour in Nigeria. A case study design was used and 50 staff of Honeywell Flour Mill was sampled for the study. Data generated through a questionnaire were analysed using correlation and regression analysis. The findings of the study revealed that logistic information systems such as e-commerce, interactive telephone systems and electronic data interchange positively correlated with the distribution of flour in Honeywell Flour Mill. Finding also deduced that e-commerce, interactive telephone systems and electronic data interchange jointly and positively contribute to the distribution of flour in Honeywell Flour Mill in Nigeria (R = .935; Adj. R2 = .642; F (3,47) = 14.739; p < .05). The study therefore recommended that Honeywell Flour Mill should upgrade their logistic information systems to computer-to-computer communication of business transactions and documents, as well adopt new technology such as, tracking-and-tracing systems (barcode scanning for packages and palettes), tracking vehicles with Global Positioning System (GPS), measuring vehicle performance with ‘black boxes’ (containing logistic data), and Automatic Equipment Identification (AEI) into their systems.

Keywords: e-commerce, electronic data interchange, flour distribution, information system, interactive telephone systems

Procedia PDF Downloads 535
23282 Cascaded Neural Network for Internal Temperature Forecasting in Induction Motor

Authors: Hidir S. Nogay

Abstract:

In this study, two systems were created to predict interior temperature in induction motor. One of them consisted of a simple ANN model which has two layers, ten input parameters and one output parameter. The other one consisted of eight ANN models connected each other as cascaded. Cascaded ANN system has 17 inputs. Main reason of cascaded system being used in this study is to accomplish more accurate estimation by increasing inputs in the ANN system. Cascaded ANN system is compared with simple conventional ANN model to prove mentioned advantages. Dataset was obtained from experimental applications. Small part of the dataset was used to obtain more understandable graphs. Number of data is 329. 30% of the data was used for testing and validation. Test data and validation data were determined for each ANN model separately and reliability of each model was tested. As a result of this study, it has been understood that the cascaded ANN system produced more accurate estimates than conventional ANN model.

Keywords: cascaded neural network, internal temperature, inverter, three-phase induction motor

Procedia PDF Downloads 331
23281 Big Data and Health: An Australian Perspective Which Highlights the Importance of Data Linkage to Support Health Research at a National Level

Authors: James Semmens, James Boyd, Anna Ferrante, Katrina Spilsbury, Sean Randall, Adrian Brown

Abstract:

‘Big data’ is a relatively new concept that describes data so large and complex that it exceeds the storage or computing capacity of most systems to perform timely and accurate analyses. Health services generate large amounts of data from a wide variety of sources such as administrative records, electronic health records, health insurance claims, and even smart phone health applications. Health data is viewed in Australia and internationally as highly sensitive. Strict ethical requirements must be met for the use of health data to support health research. These requirements differ markedly from those imposed on data use from industry or other government sectors and may have the impact of reducing the capacity of health data to be incorporated into the real time demands of the Big Data environment. This ‘big data revolution’ is increasingly supported by national governments, who have invested significant funds into initiatives designed to develop and capitalize on big data and methods for data integration using record linkage. The benefits to health following research using linked administrative data are recognised internationally and by the Australian Government through the National Collaborative Research Infrastructure Strategy Roadmap, which outlined a multi-million dollar investment strategy to develop national record linkage capabilities. This led to the establishment of the Population Health Research Network (PHRN) to coordinate and champion this initiative. The purpose of the PHRN was to establish record linkage units in all Australian states, to support the implementation of secure data delivery and remote access laboratories for researchers, and to develop the Centre for Data Linkage for the linkage of national and cross-jurisdictional data. The Centre for Data Linkage has been established within Curtin University in Western Australia; it provides essential record linkage infrastructure necessary for large-scale, cross-jurisdictional linkage of health related data in Australia and uses a best practice ‘separation principle’ to support data privacy and security. Privacy preserving record linkage technology is also being developed to link records without the use of names to overcome important legal and privacy constraint. This paper will present the findings of the first ‘Proof of Concept’ project selected to demonstrate the effectiveness of increased record linkage capacity in supporting nationally significant health research. This project explored how cross-jurisdictional linkage can inform the nature and extent of cross-border hospital use and hospital-related deaths. The technical challenges associated with national record linkage, and the extent of cross-border population movements, were explored as part of this pioneering research project. Access to person-level data linked across jurisdictions identified geographical hot spots of cross border hospital use and hospital-related deaths in Australia. This has implications for planning of health service delivery and for longitudinal follow-up studies, particularly those involving mobile populations.

Keywords: data integration, data linkage, health planning, health services research

Procedia PDF Downloads 208
23280 Spatial Variability of Brahmaputra River Flow Characteristics

Authors: Hemant Kumar

Abstract:

Brahmaputra River is known according to the Hindu mythology the son of the Lord Brahma. According to this name, the river Brahmaputra creates mass destruction during the monsoon season in Assam, India. It is a state situated in North-East part of India. This is one of the essential states out of the seven countries of eastern India, where almost all entire Brahmaputra flow carried out. The other states carry their tributaries. In the present case study, the spatial analysis performed in this specific case the number of MODIS data are acquired. In the method of detecting the change, the spray content was found during heavy rainfall and in the flooded monsoon season. By this method, particularly the analysis over the Brahmaputra outflow determines the flooded season. The charged particle-associated in aerosol content genuinely verifies the heavy water content below the ground surface, which is validated by trend analysis through rainfall spectrum data. This is confirmed by in-situ sampled view data from a different position of Brahmaputra River. Further, a Hyperion Hyperspectral 30 m resolution data were used to scan the sediment deposits, which is also confirmed by in-situ sampled view data from a different position.

Keywords: aerosol, change detection, spatial analysis, trend analysis

Procedia PDF Downloads 134
23279 Data Mining Model for Predicting the Status of HIV Patients during Drug Regimen Change

Authors: Ermias A. Tegegn, Million Meshesha

Abstract:

Human Immunodeficiency Virus and Acquired Immunodeficiency Syndrome (HIV/AIDS) is a major cause of death for most African countries. Ethiopia is one of the seriously affected countries in sub Saharan Africa. Previously in Ethiopia, having HIV/AIDS was almost equivalent to a death sentence. With the introduction of Antiretroviral Therapy (ART), HIV/AIDS has become chronic, but manageable disease. The study focused on a data mining technique to predict future living status of HIV/AIDS patients at the time of drug regimen change when the patients become toxic to the currently taking ART drug combination. The data is taken from University of Gondar Hospital ART program database. Hybrid methodology is followed to explore the application of data mining on ART program dataset. Data cleaning, handling missing values and data transformation were used for preprocessing the data. WEKA 3.7.9 data mining tools, classification algorithms, and expertise are utilized as means to address the research problem. By using four different classification algorithms, (i.e., J48 Classifier, PART rule induction, Naïve Bayes and Neural network) and by adjusting their parameters thirty-two models were built on the pre-processed University of Gondar ART program dataset. The performances of the models were evaluated using the standard metrics of accuracy, precision, recall, and F-measure. The most effective model to predict the status of HIV patients with drug regimen substitution is pruned J48 decision tree with a classification accuracy of 98.01%. This study extracts interesting attributes such as Ever taking Cotrim, Ever taking TbRx, CD4 count, Age, Weight, and Gender so as to predict the status of drug regimen substitution. The outcome of this study can be used as an assistant tool for the clinician to help them make more appropriate drug regimen substitution. Future research directions are forwarded to come up with an applicable system in the area of the study.

Keywords: HIV drug regimen, data mining, hybrid methodology, predictive model

Procedia PDF Downloads 132
23278 Internal Cycles from Hydrometric Data and Variability Detected Through Hydrological Modelling Results, on the Niger River, over 1901-2020

Authors: Salif Koné

Abstract:

We analyze hydrometric data at the Koulikoro station on the Niger River; this basin drains 120600 km2 and covers three countries in West Africa, Guinea, Mali, and Ivory Coast. Two subsequent decadal cycles are highlighted (1925-1936 and 1929-1939) instead of the presumed single decadal one from literature. Moreover, the observed hydrometric data shows a multidecadal 40-year period that is confirmed when graphing a spatial coefficient of variation of runoff over decades (starting at 1901-1910). Spatial runoff data are produced on 48 grids (0.5 degree by 0.5 degree) and through semi-distributed versions of both SimulHyd model and GR2M model - variants of a French Hydrologic model – standing for Genie Rural of 2 parameters at monthly time step. Both extremal decades in terms of runoff coefficient of variation are confronted: 1951-1960 has minimal coefficient of variation, and 1981-1990 shows the maximal value of it during the three months of high-water level (August, September, and October). The mapping of the relative variation of these two decadal situations allows hypothesizing as following: the scale of variation between both extremal situations could serve to fix boundary conditions for further simulations using data from climate scenario.

Keywords: internal cycles, hydrometric data, niger river, gr2m and simulhyd framework, runoff coefficient of variation

Procedia PDF Downloads 80
23277 A Novel Probabilistic Spatial Locality of Reference Technique for Automatic Cleansing of Digital Maps

Authors: A. Abdullah, S. Abushalmat, A. Bakshwain, A. Basuhail, A. Aslam

Abstract:

GIS (Geographic Information System) applications require geo-referenced data, this data could be available as databases or in the form of digital or hard-copy agro-meteorological maps. These parameter maps are color-coded with different regions corresponding to different parameter values, converting these maps into a database is not very difficult. However, text and different planimetric elements overlaid on these maps makes an accurate image to database conversion a challenging problem. The reason being, it is almost impossible to exactly replace what was underneath the text or icons; thus, pointing to the need for inpainting. In this paper, we propose a probabilistic inpainting approach that uses the probability of spatial locality of colors in the map for replacing overlaid elements with underlying color. We tested the limits of our proposed technique using non-textual simulated data and compared text removing results with a popular image editing tool using public domain data with promising results.

Keywords: noise, image, GIS, digital map, inpainting

Procedia PDF Downloads 334
23276 Evaluation of Urban Parks Based on POI Data: Taking Futian District of Shenzhen as an Example

Authors: Juanling Lin

Abstract:

The construction of urban parks is an important part of eco-city construction, and the intervention of big data provides a more scientific and rational platform for the assessment of urban parks by identifying and correcting the irrationality of urban park planning from the macroscopic level and then promoting the rational planning of urban parks. The study builds an urban park assessment system based on urban road network data and POI data, taking Futian District of Shenzhen as the research object, and utilizes the GIS geographic information system to assess the park system of Futian District in five aspects: park spatial distribution, accessibility, service capacity, demand, and supply-demand relationship. The urban park assessment system can effectively reflect the current situation of urban park construction and provide a useful exploration for realizing the rationality and fairness of urban park planning.

Keywords: urban parks, assessment system, POI, supply and demand

Procedia PDF Downloads 27
23275 Copula-Based Estimation of Direct and Indirect Effects in Path Analysis Model

Authors: Alam Ali, Ashok Kumar Pathak

Abstract:

Path analysis is a statistical technique used to evaluate the strength of the direct and indirect effects of variables. One or more structural regression equations are used to estimate a series of parameters in order to find the better fit of data. Sometimes, exogenous variables do not show a significant strength of their direct and indirect effect when the assumption of classical regression (ordinary least squares (OLS)) are violated by the nature of the data. The main motive of this article is to investigate the efficacy of the copula-based regression approach over the classical regression approach and calculate the direct and indirect effects of variables when data violates the OLS assumption and variables are linked through an elliptical copula. We perform this study using a well-organized numerical scheme. Finally, a real data application is also presented to demonstrate the performance of the superiority of the copula approach.

Keywords: path analysis, copula-based regression models, direct and indirect effects, k-fold cross validation technique

Procedia PDF Downloads 56
23274 The Teaching and Learning Process and Information and Communication Technologies from the Remote Perspective

Authors: Rosiris Maturo Domingues, Patricia Luissa Masmo, Cibele Cavalheiro Neves, Juliana Dalla Martha Rodriguez

Abstract:

This article reports the experience of the pedagogical consultants responsible for the curriculum development of Senac São Paulo courses when facing the emergency need to maintain the pedagogical process in their schools in the face of the Covid-19 pandemic. The urgent adjustment to distance education resulted in the improvement of the process and the adoption of new teaching and learning strategies mediated by technologies. The processes for preparing and providing guidelines for professional education courses were also readjusted. Thus, a bank of teaching-learning strategies linked to digital resources was developed, categorized, and identified by their didactic-pedagogical potential, having as an intersection didactic planning based on learning objectives based on Bloom's taxonomy (revised), given its convergence with the competency approach adopted by Senac. Methodologically, a relationship was established between connectivity and digital networks and digital evolution in school environments, culminating in new paradigms and processes of educational communication and new trends in teaching and learning. As a result, teachers adhered to the use of digital tools in their practices, transposing face-to-face classroom methodologies and practices to online media, whose criticism was the use of ICTs in an instrumental way, reducing methodologies and practices to teaching only transmissive. There was recognition of the insertion of technology as a facilitator of the educational process in a non-palliative way and the development of a web curriculum, now and fully, carried out in contexts of ubiquity.

Keywords: technologies, education, teaching-learning strategies, Bloom taxonomy

Procedia PDF Downloads 68
23273 Reversible Information Hitting in Encrypted JPEG Bitstream by LSB Based on Inherent Algorithm

Authors: Vaibhav Barve

Abstract:

Reversible information hiding has drawn a lot of interest as of late. Being reversible, we can restore unique computerized data totally. It is a plan where mystery data is put away in digital media like image, video, audio to maintain a strategic distance from unapproved access and security reason. By and large JPEG bit stream is utilized to store this key data, first JPEG bit stream is encrypted into all around sorted out structure and then this secret information or key data is implanted into this encrypted region by marginally changing the JPEG bit stream. Valuable pixels suitable for information implanting are computed and as indicated by this key subtle elements are implanted. In our proposed framework we are utilizing RC4 algorithm for encrypting JPEG bit stream. Encryption key is acknowledged by framework user which, likewise, will be used at the time of decryption. We are executing enhanced least significant bit supplanting steganography by utilizing genetic algorithm. At first, the quantity of bits that must be installed in a guaranteed coefficient is versatile. By utilizing proper parameters, we can get high capacity while ensuring high security. We are utilizing logistic map for shuffling of bits and utilization GA (Genetic Algorithm) to find right parameters for the logistic map. Information embedding key is utilized at the time of information embedding. By utilizing precise picture encryption and information embedding key, the beneficiary can, without much of a stretch, concentrate the incorporated secure data and totally recoup the first picture and also the original secret information. At the point when the embedding key is truant, the first picture can be recouped pretty nearly with sufficient quality without getting the embedding key of interest.

Keywords: data embedding, decryption, encryption, reversible data hiding, steganography

Procedia PDF Downloads 277
23272 Streamlining .NET Data Access: Leveraging JSON for Data Operations in .NET

Authors: Tyler T. Procko, Steve Collins

Abstract:

New features in .NET (6 and above) permit streamlined access to information residing in JSON-capable relational databases, such as SQL Server (2016 and above). Traditional methods of data access now comparatively involve unnecessary steps which compromise system performance. This work posits that the established ORM (Object Relational Mapping) based methods of data access in applications and APIs result in common issues, e.g., object-relational impedance mismatch. Recent developments in C# and .NET Core combined with a framework of modern SQL Server coding conventions have allowed better technical solutions to the problem. As an amelioration, this work details the language features and coding conventions which enable this streamlined approach, resulting in an open-source .NET library implementation called Codeless Data Access (CODA). Canonical approaches rely on ad-hoc mapping code to perform type conversions between the client and back-end database; with CODA, no mapping code is needed, as JSON is freely mapped to SQL and vice versa. CODA streamlines API data access by improving on three aspects of immediate concern to web developers, database engineers and cybersecurity professionals: Simplicity, Speed and Security. Simplicity is engendered by cutting out the “middleman” steps, effectively making API data access a whitebox, whereas traditional methods are blackbox. Speed is improved because of the fewer translational steps taken, and security is improved as attack surfaces are minimized. An empirical evaluation of the speed of the CODA approach in comparison to ORM approaches ] is provided and demonstrates that the CODA approach is significantly faster. CODA presents substantial benefits for API developer workflows by simplifying data access, resulting in better speed and security and allowing developers to focus on productive development rather than being mired in data access code. Future considerations include a generalization of the CODA method and extension outside of the .NET ecosystem to other programming languages.

Keywords: API data access, database, JSON, .NET core, SQL server

Procedia PDF Downloads 53
23271 Blockchain for IoT Security and Privacy in Healthcare Sector

Authors: Umair Shafique, Hafiz Usman Zia, Fiaz Majeed, Samina Naz, Javeria Ahmed, Maleeha Zainab

Abstract:

The Internet of Things (IoT) has become a hot topic for the last couple of years. This innovative technology has shown promising progress in various areas, and the world has witnessed exponential growth in multiple application domains. Researchers are working to investigate its aptitudes to get the best from it by harnessing its true potential. But at the same time, IoT networks open up a new aspect of vulnerability and physical threats to data integrity, privacy, and confidentiality. It's is due to centralized control, data silos approach for handling information, and a lack of standardization in the IoT networks. As we know, blockchain is a new technology that involves creating secure distributed ledgers to store and communicate data. Some of the benefits include resiliency, integrity, anonymity, decentralization, and autonomous control. The potential for blockchain technology to provide the key to managing and controlling IoT has created a new wave of excitement around the idea of putting that data back into the hands of the end-users. In this manuscript, we have proposed a model that combines blockchain and IoT networks to address potential security and privacy issues in the healthcare domain. Then we try to describe various application areas, challenges, and future directions in the healthcare sector where blockchain platforms merge with IoT networks.

Keywords: IoT, blockchain, cryptocurrency, healthcare, consensus, data

Procedia PDF Downloads 155
23270 Vision-Based Daily Routine Recognition for Healthcare with Transfer Learning

Authors: Bruce X. B. Yu, Yan Liu, Keith C. C. Chan

Abstract:

We propose to record Activities of Daily Living (ADLs) of elderly people using a vision-based system so as to provide better assistive and personalization technologies. Current ADL-related research is based on data collected with help from non-elderly subjects in laboratory environments and the activities performed are predetermined for the sole purpose of data collection. To obtain more realistic datasets for the application, we recorded ADLs for the elderly with data collected from real-world environment involving real elderly subjects. Motivated by the need to collect data for more effective research related to elderly care, we chose to collect data in the room of an elderly person. Specifically, we installed Kinect, a vision-based sensor on the ceiling, to capture the activities that the elderly subject performs in the morning every day. Based on the data, we identified 12 morning activities that the elderly person performs daily. To recognize these activities, we created a HARELCARE framework to investigate into the effectiveness of existing Human Activity Recognition (HAR) algorithms and propose the use of a transfer learning algorithm for HAR. We compared the performance, in terms of accuracy, and training progress. Although the collected dataset is relatively small, the proposed algorithm has a good potential to be applied to all daily routine activities for healthcare purposes such as evidence-based diagnosis and treatment.

Keywords: daily activity recognition, healthcare, IoT sensors, transfer learning

Procedia PDF Downloads 120
23269 Design and Implementation of Security Middleware for Data Warehouse Signature, Framework

Authors: Mayada Al Meghari

Abstract:

Recently, grid middlewares have provided large integrated use of network resources as the shared data and the CPU to become a virtual supercomputer. In this work, we present the design and implementation of the middleware for Data Warehouse Signature, DWS Framework. The aim of using the middleware in our DWS framework is to achieve the high performance by the parallel computing. This middleware is developed on Alchemi.Net framework to increase the security among the network nodes through the authentication and group-key distribution model. This model achieves the key security and prevents any intermediate attacks in the middleware. This paper presents the flow process structures of the middleware design. In addition, the paper ensures the implementation of security for DWS middleware enhancement with the authentication and group-key distribution model. Finally, from the analysis of other middleware approaches, the developed middleware of DWS framework is the optimal solution of a complete covering of security issues.

Keywords: middleware, parallel computing, data warehouse, security, group-key, high performance

Procedia PDF Downloads 98
23268 Music Genre Classification Based on Non-Negative Matrix Factorization Features

Authors: Soyon Kim, Edward Kim

Abstract:

In order to retrieve information from the massive stream of songs in the music industry, music search by title, lyrics, artist, mood, and genre has become more important. Despite the subjectivity and controversy over the definition of music genres across different nations and cultures, automatic genre classification systems that facilitate the process of music categorization have been developed. Manual genre selection by music producers is being provided as statistical data for designing automatic genre classification systems. In this paper, an automatic music genre classification system utilizing non-negative matrix factorization (NMF) is proposed. Short-term characteristics of the music signal can be captured based on the timbre features such as mel-frequency cepstral coefficient (MFCC), decorrelated filter bank (DFB), octave-based spectral contrast (OSC), and octave band sum (OBS). Long-term time-varying characteristics of the music signal can be summarized with (1) the statistical features such as mean, variance, minimum, and maximum of the timbre features and (2) the modulation spectrum features such as spectral flatness measure, spectral crest measure, spectral peak, spectral valley, and spectral contrast of the timbre features. Not only these conventional basic long-term feature vectors, but also NMF based feature vectors are proposed to be used together for genre classification. In the training stage, NMF basis vectors were extracted for each genre class. The NMF features were calculated in the log spectral magnitude domain (NMF-LSM) as well as in the basic feature vector domain (NMF-BFV). For NMF-LSM, an entire full band spectrum was used. However, for NMF-BFV, only low band spectrum was used since high frequency modulation spectrum of the basic feature vectors did not contain important information for genre classification. In the test stage, using the set of pre-trained NMF basis vectors, the genre classification system extracted the NMF weighting values of each genre as the NMF feature vectors. A support vector machine (SVM) was used as a classifier. The GTZAN multi-genre music database was used for training and testing. It is composed of 10 genres and 100 songs for each genre. To increase the reliability of the experiments, 10-fold cross validation was used. For a given input song, an extracted NMF-LSM feature vector was composed of 10 weighting values that corresponded to the classification probabilities for 10 genres. An NMF-BFV feature vector also had a dimensionality of 10. Combined with the basic long-term features such as statistical features and modulation spectrum features, the NMF features provided the increased accuracy with a slight increase in feature dimensionality. The conventional basic features by themselves yielded 84.0% accuracy, but the basic features with NMF-LSM and NMF-BFV provided 85.1% and 84.2% accuracy, respectively. The basic features required dimensionality of 460, but NMF-LSM and NMF-BFV required dimensionalities of 10 and 10, respectively. Combining the basic features, NMF-LSM and NMF-BFV together with the SVM with a radial basis function (RBF) kernel produced the significantly higher classification accuracy of 88.3% with a feature dimensionality of 480.

Keywords: mel-frequency cepstral coefficient (MFCC), music genre classification, non-negative matrix factorization (NMF), support vector machine (SVM)

Procedia PDF Downloads 279
23267 Sentiment Classification of Documents

Authors: Swarnadip Ghosh

Abstract:

Sentiment Analysis is the process of detecting the contextual polarity of text. In other words, it determines whether a piece of writing is positive, negative or neutral.Sentiment analysis of documents holds great importance in today's world, when numerous information is stored in databases and in the world wide web. An efficient algorithm to illicit such information, would be beneficial for social, economic as well as medical purposes. In this project, we have developed an algorithm to classify a document into positive or negative. Using our algorithm, we obtained a feature set from the data, and classified the documents based on this feature set. It is important to note that, in the classification, we have not used the independence assumption, which is considered by many procedures like the Naive Bayes. This makes the algorithm more general in scope. Moreover, because of the sparsity and high dimensionality of such data, we did not use empirical distribution for estimation, but developed a method by finding degree of close clustering of the data points. We have applied our algorithm on a movie review data set obtained from IMDb and obtained satisfactory results.

Keywords: sentiment, Run's Test, cross validation, higher dimensional pmf estimation

Procedia PDF Downloads 383
23266 Empowering a New Frontier in Heart Disease Detection: Unleashing Quantum Machine Learning

Authors: Sadia Nasrin Tisha, Mushfika Sharmin Rahman, Javier Orduz

Abstract:

Machine learning is applied in a variety of fields throughout the world. The healthcare sector has benefited enormously from it. One of the most effective approaches for predicting human heart diseases is to use machine learning applications to classify data and predict the outcome as a classification. However, with the rapid advancement of quantum technology, quantum computing has emerged as a potential game-changer for many applications. Quantum algorithms have the potential to execute substantially faster than their classical equivalents, which can lead to significant improvements in computational performance and efficiency. In this study, we applied quantum machine learning concepts to predict coronary heart diseases from text data. We experimented thrice with three different features; and three feature sets. The data set consisted of 100 data points. We pursue to do a comparative analysis of the two approaches, highlighting the potential benefits of quantum machine learning for predicting heart diseases.

Keywords: quantum machine learning, SVM, QSVM, matrix product state

Procedia PDF Downloads 75
23265 Optimal Risk and Financial Stability

Authors: Rahmoune Abdelhaq

Abstract:

Systemic risk is a key concern for central banks charged with safeguarding overall financial stability. In this work, we investigate how systemic risk is affected by the structure of the financial system. We construct banking systems that are composed of a number of banks that are connected by interbank linkages. We then vary the key parameters that define the structure of the financial system — including its level of capitalization, the degree to which banks are connected, the size of interbank exposures and the degree of concentration of the system — and analyses the influence of these parameters on the likelihood of contagious (knock-on) defaults. First, we find that the better-capitalized banks are, the more resilient is the banking system against contagious defaults and this effect is non-linear. Second, the effect of the degree of connectivity is non-monotonic, that is, initially a small increase in connectivity increases the contagion effect; but after a certain threshold value, connectivity improves the ability of a banking system to absorb shocks. Third, the size of interbank liabilities tends to increase the risk of knock-on default, even if banks hold capital against such exposures. Fourth, more concentrated banking systems are shown to be prone to larger systemic risk, all else equal. In an extension to the main analysis, we study how liquidity effects interact with banking structure to produce a greater chance of systemic breakdown. We finally consider how the risk of contagion might depend on the degree of asymmetry (tier) inherent in the structure of the banking system. A number of our results have important implications for public policy, which this paper also draws out. This paper also discusses why bank risk management is needed to get the optimal one.

Keywords: financial stability, contagion, liquidity risk, optimal risk

Procedia PDF Downloads 384
23264 Blockchain’s Feasibility in Military Data Networks

Authors: Brenden M. Shutt, Lubjana Beshaj, Paul L. Goethals, Ambrose Kam

Abstract:

Communication security is of particular interest to military data networks. A relatively novel approach to network security is blockchain, a cryptographically secured distribution ledger with a decentralized consensus mechanism for data transaction processing. Recent advances in blockchain technology have proposed new techniques for both data validation and trust management, as well as different frameworks for managing dataflow. The purpose of this work is to test the feasibility of different blockchain architectures as applied to military command and control networks. Various architectures are tested through discrete-event simulation and the feasibility is determined based upon a blockchain design’s ability to maintain long-term stable performance at industry standards of throughput, network latency, and security. This work proposes a consortium blockchain architecture with a computationally inexpensive consensus mechanism, one that leverages a Proof-of-Identity (PoI) concept and a reputation management mechanism.

Keywords: blockchain, consensus mechanism, discrete-event simulation, fog computing

Procedia PDF Downloads 122
23263 Verification & Validation of Map Reduce Program Model for Parallel K-Mediod Algorithm on Hadoop Cluster

Authors: Trapti Sharma, Devesh Kumar Srivastava

Abstract:

This paper is basically a analysis study of above MapReduce implementation and also to verify and validate the MapReduce solution model for Parallel K-Mediod algorithm on Hadoop Cluster. MapReduce is a programming model which authorize the managing of huge amounts of data in parallel, on a large number of devices. It is specially well suited to constant or moderate changing set of data since the implementation point of a position is usually high. MapReduce has slowly become the framework of choice for “big data”. The MapReduce model authorizes for systematic and instant organizing of large scale data with a cluster of evaluate nodes. One of the primary affect in Hadoop is how to minimize the completion length (i.e. makespan) of a set of MapReduce duty. In this paper, we have verified and validated various MapReduce applications like wordcount, grep, terasort and parallel K-Mediod clustering algorithm. We have found that as the amount of nodes increases the completion time decreases.

Keywords: hadoop, mapreduce, k-mediod, validation, verification

Procedia PDF Downloads 352
23262 An Improved K-Means Algorithm for Gene Expression Data Clustering

Authors: Billel Kenidra, Mohamed Benmohammed

Abstract:

Data mining technique used in the field of clustering is a subject of active research and assists in biological pattern recognition and extraction of new knowledge from raw data. Clustering means the act of partitioning an unlabeled dataset into groups of similar objects. Each group, called a cluster, consists of objects that are similar between themselves and dissimilar to objects of other groups. Several clustering methods are based on partitional clustering. This category attempts to directly decompose the dataset into a set of disjoint clusters leading to an integer number of clusters that optimizes a given criterion function. The criterion function may emphasize a local or a global structure of the data, and its optimization is an iterative relocation procedure. The K-Means algorithm is one of the most widely used partitional clustering techniques. Since K-Means is extremely sensitive to the initial choice of centers and a poor choice of centers may lead to a local optimum that is quite inferior to the global optimum, we propose a strategy to initiate K-Means centers. The improved K-Means algorithm is compared with the original K-Means, and the results prove how the efficiency has been significantly improved.

Keywords: microarray data mining, biological pattern recognition, partitional clustering, k-means algorithm, centroid initialization

Procedia PDF Downloads 177
23261 "Revolutionizing Geographic Data: CADmapper's Automated Precision in CAD Drawing Transformation"

Authors: Toleen Alaqqad, Kadi Alshabramiy, Suad Zaafarany, Basma Musallam

Abstract:

CADmapper is a significant tool of software for transforming geographic data into realistic CAD drawings. It speeds up and simplifies the conversion process by automating it. This allows architects, urban planners, engineers, and geographic information system (GIS) experts to solely concentrate on the imaginative and scientific parts of their projects. While the future incorporation of AI has the potential for further improvements, CADmapper's current capabilities make it an indispensable asset in the business. It covers a combination of 2D and 3D city and urban area models. The user can select a specific square section of the map to view, and the fee is based on the dimensions of the area being viewed. The procedure is straightforward: you choose the area you want, then pick whether or not to include topography. 3D architectural data (if available), followed by selecting whatever design program or CAD style you want to publish the document which contains more than 200 free broad town plans in DXF format. If you desire to specify a bespoke area, it's free up to 1 km2.

Keywords: cadmaper, gdata, 2d and 3d data conversion, automated cad drawing, urban planning software

Procedia PDF Downloads 47
23260 An IoT-Enabled Crop Recommendation System Utilizing Message Queuing Telemetry Transport (MQTT) for Efficient Data Transmission to AI/ML Models

Authors: Prashansa Singh, Rohit Bajaj, Manjot Kaur

Abstract:

In the modern agricultural landscape, precision farming has emerged as a pivotal strategy for enhancing crop yield and optimizing resource utilization. This paper introduces an innovative Crop Recommendation System (CRS) that leverages the Internet of Things (IoT) technology and the Message Queuing Telemetry Transport (MQTT) protocol to collect critical environmental and soil data via sensors deployed across agricultural fields. The system is designed to address the challenges of real-time data acquisition, efficient data transmission, and dynamic crop recommendation through the application of advanced Artificial Intelligence (AI) and Machine Learning (ML) models. The CRS architecture encompasses a network of sensors that continuously monitor environmental parameters such as temperature, humidity, soil moisture, and nutrient levels. This sensor data is then transmitted to a central MQTT server, ensuring reliable and low-latency communication even in bandwidth-constrained scenarios typical of rural agricultural settings. Upon reaching the server, the data is processed and analyzed by AI/ML models trained to correlate specific environmental conditions with optimal crop choices and cultivation practices. These models consider historical crop performance data, current agricultural research, and real-time field conditions to generate tailored crop recommendations. This implementation gets 99% accuracy.

Keywords: Iot, MQTT protocol, machine learning, sensor, publish, subscriber, agriculture, humidity

Procedia PDF Downloads 44
23259 Integration of Microarray Data into a Genome-Scale Metabolic Model to Study Flux Distribution after Gene Knockout

Authors: Mona Heydari, Ehsan Motamedian, Seyed Abbas Shojaosadati

Abstract:

Prediction of perturbations after genetic manipulation (especially gene knockout) is one of the important challenges in systems biology. In this paper, a new algorithm is introduced that integrates microarray data into the metabolic model. The algorithm was used to study the change in the cell phenotype after knockout of Gss gene in Escherichia coli BW25113. Algorithm implementation indicated that gene deletion resulted in more activation of the metabolic network. Growth yield was more and less regulating gene were identified for mutant in comparison with the wild-type strain.

Keywords: metabolic network, gene knockout, flux balance analysis, microarray data, integration

Procedia PDF Downloads 566
23258 Extracting Opinions from Big Data of Indonesian Customer Reviews Using Hadoop MapReduce

Authors: Veronica S. Moertini, Vinsensius Kevin, Gede Karya

Abstract:

Customer reviews have been collected by many kinds of e-commerce websites selling products, services, hotel rooms, tickets and so on. Each website collects its own customer reviews. The reviews can be crawled, collected from those websites and stored as big data. Text analysis techniques can be used to analyze that data to produce summarized information, such as customer opinions. Then, these opinions can be published by independent service provider websites and used to help customers in choosing the most suitable products or services. As the opinions are analyzed from big data of reviews originated from many websites, it is expected that the results are more trusted and accurate. Indonesian customers write reviews in Indonesian language, which comes with its own structures and uniqueness. We found that most of the reviews are expressed with “daily language”, which is informal, do not follow the correct grammar, have many abbreviations and slangs or non-formal words. Hadoop is an emerging platform aimed for storing and analyzing big data in distributed systems. A Hadoop cluster consists of master and slave nodes/computers operated in a network. Hadoop comes with distributed file system (HDFS) and MapReduce framework for supporting parallel computation. However, MapReduce has weakness (i.e. inefficient) for iterative computations, specifically, the cost of reading/writing data (I/O cost) is high. Given this fact, we conclude that MapReduce function is best adapted for “one-pass” computation. In this research, we develop an efficient technique for extracting or mining opinions from big data of Indonesian reviews, which is based on MapReduce with one-pass computation. In designing the algorithm, we avoid iterative computation and instead adopt a “look up table” technique. The stages of the proposed technique are: (1) Crawling the data reviews from websites; (2) cleaning and finding root words from the raw reviews; (3) computing the frequency of the meaningful opinion words; (4) analyzing customers sentiments towards defined objects. The experiments for evaluating the performance of the technique were conducted on a Hadoop cluster with 14 slave nodes. The results show that the proposed technique (stage 2 to 4) discovers useful opinions, is capable of processing big data efficiently and scalable.

Keywords: big data analysis, Hadoop MapReduce, analyzing text data, mining Indonesian reviews

Procedia PDF Downloads 189
23257 Global City Typologies: 300 Cities and Over 100 Datasets

Authors: M. Novak, E. Munoz, A. Jana, M. Nelemans

Abstract:

Cities and local governments the world over are interested to employ circular strategies as a means to bring about food security, create employment and increase resilience. The selection and implementation of circular strategies is facilitated by modeling the effects of strategies locally and understanding the impacts such strategies have had in other (comparable) cities and how that would translate locally. Urban areas are heterogeneous because of their geographic, economic, social characteristics, governance, and culture. In order to better understand the effect of circular strategies on urban systems, we create a dataset for over 300 cities around the world designed to facilitate circular strategy scenario modeling. This new dataset integrates data from over 20 prominent global national and urban data sources, such as the Global Human Settlements layer and International Labour Organisation, as well as incorporating employment data from over 150 cities collected bottom up from local departments and data providers. The dataset is made to be reproducible. Various clustering techniques are explored in the paper. The result is sets of clusters of cities, which can be used for further research, analysis, and support comparative, regional, and national policy making on circular cities.

Keywords: data integration, urban innovation, cluster analysis, circular economy, city profiles, scenario modelling

Procedia PDF Downloads 167
23256 The Effect of Socio-Affective Variables in the Relationship between Organizational Trust and Employee Turnover Intention

Authors: Paula A. Cruise, Carvell McLeary

Abstract:

Employee turnover leads to lowered productivity, decreased morale and work quality, and psychological effects associated with employee separation and replacement. Yet, it remains unknown why talented employees willingly withdraw from organizations. This uncertainty is worsened as studies; a) priorities organizational over individual predictors resulting in restriction in range in turnover measurement; b) focus on actual rather than intended turnover thereby limiting conceptual understanding of the turnover construct and its relationship with other variables and; c) produce inconsistent findings across cultures, contexts and industries despite a clear need for a unified perspective. The current study addressed these gaps by adopting the theory of planned behavior (TPB) framework to examine socio-cognitive factors in organizational trust and individual turnover intentions among bankers and energy employees in Jamaica. In a comparative study of n=369 [nbank= 264; male=57 (22.73%); nenergy =105; male =45 (42.86)], it was hypothesized that organizational trust was a predictor of employee turnover intention, and the effect of individual, group, cognitive and socio-affective variables varied across industry. Findings from structural equation modelling confirmed the hypothesis, with a model of both cognitive and socio-affective variables being a better fit [CMIN (χ2) = 800.067, df = 364, p ≤ .000; CFI = 0.950; RMSEA = 0.057 with 90% C.I. (0.052 - 0.062); PCLOSE = 0.016; PNFI = 0.818 in predicting turnover intention. The findings are discussed in relation to socio-cognitive components of trust models and predicting negative employee behaviors across cultures and industries.

Keywords: context-specific organizational trust, cross-cultural psychology, theory of planned behavior, employee turnover intention

Procedia PDF Downloads 229
23255 Technical and Economic Analysis of Smart Micro-Grid Renewable Energy Systems: An Applicable Case Study

Authors: M. A. Fouad, M. A. Badr, Z. S. Abd El-Rehim, Taher Halawa, Mahmoud Bayoumi, M. M. Ibrahim

Abstract:

Renewable energy-based micro-grids are presently attracting significant consideration. The smart grid system is presently considered a reliable solution for the expected deficiency in the power required from future power systems. The purpose of this study is to determine the optimal components sizes of a micro-grid, investigating technical and economic performance with the environmental impacts. The micro grid load is divided into two small factories with electricity, both on-grid and off-grid modes are considered. The micro-grid includes photovoltaic cells, back-up diesel generator wind turbines, and battery bank. The estimated load pattern is 76 kW peak. The system is modeled and simulated by MATLAB/Simulink tool to identify the technical issues based on renewable power generation units. To evaluate system economy, two criteria are used: the net present cost and the cost of generated electricity. The most feasible system components for the selected application are obtained, based on required parameters, using HOMER simulation package. The results showed that a Wind/Photovoltaic (W/PV) on-grid system is more economical than a Wind/Photovoltaic/Diesel/Battery (W/PV/D/B) off-grid system as the cost of generated electricity (COE) is 0.266 $/kWh and 0.316 $/kWh, respectively. Considering the cost of carbon dioxide emissions, the off-grid will be competitive to the on-grid system as COE is found to be (0.256 $/kWh, 0.266 $/kWh), for on and off grid systems.

Keywords: renewable energy sources, micro-grid system, modeling and simulation, on/off grid system, environmental impacts

Procedia PDF Downloads 250