Search results for: conventional extraction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5434

Search results for: conventional extraction

3814 35 MHz Coherent Plane Wave Compounding High Frequency Ultrasound Imaging

Authors: Chih-Chung Huang, Po-Hsun Peng

Abstract:

Ultrasound transient elastography has become a valuable tool for many clinical diagnoses, such as liver diseases and breast cancer. The pathological tissue can be distinguished by elastography due to its stiffness is different from surrounding normal tissues. An ultrafast frame rate of ultrasound imaging is needed for transient elastography modality. The elastography obtained in the ultrafast system suffers from a low quality for resolution, and affects the robustness of the transient elastography. In order to overcome these problems, a coherent plane wave compounding technique has been proposed for conventional ultrasound system which the operating frequency is around 3-15 MHz. The purpose of this study is to develop a novel beamforming technique for high frequency ultrasound coherent plane-wave compounding imaging and the simulated results will provide the standards for hardware developments. Plane-wave compounding imaging produces a series of low-resolution images, which fires whole elements of an array transducer in one shot with different inclination angles and receives the echoes by conventional beamforming, and compounds them coherently. Simulations of plane-wave compounding image and focused transmit image were performed using Field II. All images were produced by point spread functions (PSFs) and cyst phantoms with a 64-element linear array working at 35MHz center frequency, 55% bandwidth, and pitch of 0.05 mm. The F number is 1.55 in all the simulations. The simulated results of PSFs and cyst phantom which were obtained using single, 17, 43 angles plane wave transmission (angle of each plane wave is separated by 0.75 degree), and focused transmission. The resolution and contrast of image were improved with the number of angles of firing plane wave. The lateral resolutions for different methods were measured by -10 dB lateral beam width. Comparison of the plane-wave compounding image and focused transmit image, both images exhibited the same lateral resolution of 70 um as 37 angles were performed. The lateral resolution can reach 55 um as the plane-wave was compounded 47 angles. All the results show the potential of using high-frequency plane-wave compound imaging for realizing the elastic properties of the microstructure tissue, such as eye, skin and vessel walls in the future.

Keywords: plane wave imaging, high frequency ultrasound, elastography, beamforming

Procedia PDF Downloads 539
3813 Home Made Rice Beer Waste (Choak): A Low Cost Feed for Sustainable Poultry Production

Authors: Vinay Singh, Chandra Deo, Asit Chakrabarti, Lopamudra Sahoo, Mahak Singh, Rakesh Kumar, Dinesh Kumar, H. Bharati, Biswajit Das, V. K. Mishra

Abstract:

The most widely used feed resources in poultry feed, like maize and soybean, are expensive as well as in short supply. Hence, there is a need to utilize non-conventional feed ingredients to cut down feed costs. As an alternative, brewery by-products like brewers’ dried grains are potential non-conventional feed resources. North-East India is inhabited by many tribes, and most of these tribes prepare their indigenous local brew, mostly using rice grains as the primary substrate. Choak, a homemade rice beer waste, is an excellent and cheap source of protein and other nutrients. Fresh homemade rice beer waste (rice brewer’s grain) was collected locally. The proximate analysis indicated 28.53% crude protein, 92.76% dry matter, 5.02% ether extract, 7.83% crude fibre, 2.85% total ash, 0.67% acid insoluble ash, 0.91% calcium, and 0.55% total phosphorus. A feeding trial with 5 treatments (incorporating rice beer waste at the inclusion levels of 0,10,20,30 & 40% by replacing maize and soybean from basal diet) was conducted with 25 laying hens per treatment for 16 weeks under completely randomized design in order to study the production performance, blood-biochemical parameters, immunity, egg quality and cost economics of laying hens. The results showed substantial variations (P<0.01) in egg production, egg mass, FCR per dozen eggs, FCR per kg egg mass, and net FCR. However, there was not a substantial difference in either body weight or feed intake or in egg weight. Total serum cholesterol reduced significantly (P<0.01) at 40% inclusion of rice beer waste. Additionally, the egg haugh unit grew considerably (P<0.01) when the graded levels of rice beer waste increased. The inclusion of 20% rice brewers dried grain reduced feed cost per kg egg mass and per dozen egg production by Rs. 15.97 and 9.99, respectively. Choak (homemade rice beer waste) can thus be safely incorporated into the diet of laying hens at a 20% inclusion level for better production performance and cost-effectiveness.

Keywords: choak, rice beer waste, laying hen, production performance, cost economics

Procedia PDF Downloads 59
3812 Novel Algorithm for Restoration of Retina Images

Authors: P. Subbuthai, S. Muruganand

Abstract:

Diabetic Retinopathy is one of the complicated diseases and it is caused by the changes in the blood vessels of the retina. Extraction of retina image through Fundus camera sometimes produced poor contrast and noises. Because of this noise, detection of blood vessels in the retina is very complicated. So preprocessing is needed, in this paper, a novel algorithm is implemented to remove the noisy pixel in the retina image. The proposed algorithm is Extended Median Filter and it is applied to the green channel of the retina because green channel vessels are brighter than the background. Proposed extended median filter is compared with the existing standard median filter by performance metrics such as PSNR, MSE and RMSE. Experimental results show that the proposed Extended Median Filter algorithm gives a better result than the existing standard median filter in terms of noise suppression and detail preservation.

Keywords: fundus retina image, diabetic retinopathy, median filter, microaneurysms, exudates

Procedia PDF Downloads 342
3811 Codifying the Creative Self: Conflicts of Theory and Content in Creative Writing

Authors: Danielle L. Iamarino

Abstract:

This paper explores the embattled territory of academic creative writing—and most focally, the use of critical theory in the teaching and structuring of creative practice. It places creative writing in contemporary social, cultural, and otherwise anthropological contexts, and evaluates conventional creative writing pedagogies based on how well they serve the updated needs of increasingly diverse student congregations. With continued emphasis on student-centered learning, this paper compares theoretical to practical applications of discipline-specific knowledge, examining and critiquing theory in terms of its relevance, accessibility, and whether or not it is both actionable and beneficial in the creative writing classroom.

Keywords: creative writing, literary theory, content, pedagogy, workshop, teaching

Procedia PDF Downloads 337
3810 Improving Fingerprinting-Based Localization (FPL) System Using Generative Artificial Intelligence (GAI)

Authors: Getaneh Berie Tarekegn, Li-Chia Tai

Abstract:

With the rapid advancement of artificial intelligence, low-power built-in sensors on Internet of Things devices, and communication technologies, location-aware services have become increasingly popular and have permeated every aspect of people’s lives. Global navigation satellite systems (GNSSs) are the default method of providing continuous positioning services for ground and aerial vehicles, as well as consumer devices (smartphones, watches, notepads, etc.). However, the environment affects satellite positioning systems, particularly indoors, in dense urban and suburban cities enclosed by skyscrapers, or when deep shadows obscure satellite signals. This is because (1) indoor environments are more complicated due to the presence of many objects surrounding them; (2) reflection within the building is highly dependent on the surrounding environment, including the positions of objects and human activity; and (3) satellite signals cannot be reached in an indoor environment, and GNSS doesn't have enough power to penetrate building walls. GPS is also highly power-hungry, which poses a severe challenge for battery-powered IoT devices. Due to these challenges, IoT applications are limited. Consequently, precise, seamless, and ubiquitous Positioning, Navigation and Timing (PNT) systems are crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarming, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a novel semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 0.39 m, and more than 90% of the errors are less than 0.82 m. According to numerical results, SRCLoc improves positioning performance and reduces radio map construction costs significantly compared to traditional methods.

Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine

Procedia PDF Downloads 47
3809 Effect of Acetic Acid Fermentation on Bioactive Components and Anti-Xanthine Oxidase Activities in Vinegar Brewed from Monascus-Fermented Soybeans

Authors: Kyung-Soon Choi, Ji-Young Hwang, Young-Hee Pyo

Abstract:

Vinegars have been used as an alternative remedy for treating gout, but the scientific basis remains to be elucidated. In this study, acetic acid fermentation was applied for the first time to Monascus-fermented soybeans to examine its effect on the bioactive components together with the xanthine oxidase inhibitory (XOI) activity of the soy vinegar. The content of total phenols (0.47~0.97 mg gallic acid equivalents/mL) and flavonoids (0.18~0.39 mg quercetin equivallents/mL) were spectrophotometrically determined, and the content of organic acid (10.22~59.76 mg/mL) and isoflavones (6.79~7.46 mg/mL) were determined using HPLC-UV. The analytical method for ubiquinones (0.079~0.276 μg/mL) employed saponification before solvent extraction and quantification using LC-MS. Soy vinegar also showed significant XOI (95.3%) after 20 days of acetic acid fermentation at 30 °C. The results suggest that soy vinegar has potential as a novel medicinal food.

Keywords: acetic acid fermentation, bioactive component, soy vinegar, xanthine oxidase inhibitory activity

Procedia PDF Downloads 383
3808 Characterization of N+C, Ti+N and Ti+C Ion Implantation into Ti6Al4V Alloy

Authors: Xingguo Feng, Hui Zhou, Kaifeng Zhang, Zhao Jiang, Hanjun Hu, Jun Zheng, Hong Hao

Abstract:

TiN and TiC films have been prepared on Ti6Al4V alloy substrates by plasma-based ion implantation. The effect of N+C and Ti+N hybrid ion implantation at 50 kV, and Ti+C hybrid ion implantation at 20 kV, 35 kV and 50 kV extraction voltages on mechanical properties at a dose of 2×10¹⁷ ions / cm² was studied. The chemical states and microstructures of the implanted samples were investigated using X-ray photoelectron (XPS), and X-ray diffraction (XRD), together with the mechanical and tribological properties of the samples were characterized using nano-indentation and ball-on-disk tribometer. It was found that the modified layer by Ti+C implanted at 50 kV was composed of mainly TiC and Ti-O bond and the layer of Ti+N implanted at 50 kV was observed to be TiN and Ti-O bond. Hardness tests have shown that the hardness values for N+C, Ti+N, and Ti+C hybrid ion implantation samples were much higher than the un-implanted ones. The results of wear tests showed that both Ti+C and Ti+N ion implanted samples had much better wear resistance compared un-implanted sample. The wear rate of Ti+C implanted at 50 kV sample was 6.7×10⁻⁵mm³ / N.m, which was decreased over one order than unimplanted samples.

Keywords: plasma ion implantation, x-ray photoelectron (XPS), hardness, wear

Procedia PDF Downloads 410
3807 Efficient Variable Modulation Scheme Based on Codebook in the MIMO-OFDM System

Authors: Yong-Jun Kim, Jae-Hyun Ro, Chang-Bin Ha, Hyoung-Kyu Song

Abstract:

Because current wireless communication requires high reliability in a limited bandwidth environment, this paper proposes the variable modulation scheme based on the codebook. The variable modulation scheme adjusts transmission power using the codebook in accordance with hannel state. Also, if the codebook is composed of many bits, the reliability is more improved by the proposed scheme. The simulation results show that the performance of proposed scheme has better reliability than the the performance of conventional scheme.

Keywords: MIMO-OFDM, variable modulation, codebook, channel state

Procedia PDF Downloads 587
3806 Evaluation and Selection of SaaS Product Based on User Preferences

Authors: Boussoualim Nacira, Aklouf Youcef

Abstract:

Software as a Service (SaaS) is a software delivery paradigm in which the product is not installed on-premise, but it is available on Internet and Web. The customers do not pay to possess the software itself but rather to use it. This concept of pay per use is very attractive. Hence, we see increasing number of organizations adopting SaaS. However, each customer is unique, which leads to a very large variation in the requirements off the software. As several suppliers propose SaaS products, the choice of this latter becomes a major issue. When multiple criteria are involved in decision making, we talk about a problem of «Multi-Criteria Decision-Making» (MCDM). Therefore, this paper presents a method to help customers to choose a better SaaS product satisfying most of their conditions and alternatives. Also, we know that a good method of adaptive selection should be based on the correct definition of the different parameters of choice. This is why we started by extraction and analysis the various parameters involved in the process of the selection of a SaaS application.

Keywords: cloud computing, business operation, Multi-Criteria Decision-Making (MCDM), Software as a Service (SaaS)

Procedia PDF Downloads 483
3805 Epileptic Seizure Prediction Focusing on Relative Change in Consecutive Segments of EEG Signal

Authors: Mohammad Zavid Parvez, Manoranjan Paul

Abstract:

Epilepsy is a common neurological disorders characterized by sudden recurrent seizures. Electroencephalogram (EEG) is widely used to diagnose possible epileptic seizure. Many research works have been devoted to predict epileptic seizure by analyzing EEG signal. Seizure prediction by analyzing EEG signals are challenging task due to variations of brain signals of different patients. In this paper, we propose a new approach for feature extraction based on phase correlation in EEG signals. In phase correlation, we calculate relative change between two consecutive segments of an EEG signal and then combine the changes with neighboring signals to extract features. These features are then used to classify preictal/ictal and interictal EEG signals for seizure prediction. Experiment results show that the proposed method carries good prediction rate with greater consistence for the benchmark data set in different brain locations compared to the existing state-of-the-art methods.

Keywords: EEG, epilepsy, phase correlation, seizure

Procedia PDF Downloads 308
3804 Recovery of Zn from Different Çinkur Leach Residues by Acidic Leaching

Authors: Mehmet Ali Topçu, Aydın Ruşen

Abstract:

Çinkur is the only plant in Turkey that produces zinc from primary ore containing zinc carbonate from its establishment until 1997. After this year, zinc concentrate coming from Iran was used in this plant. Therefore, there are two different leach residues namely Turkish leach residue (TLR) and Iranian leach residue (ILR), in Çinkur stock piles. This paper describes zinc recovery by sulphuric acid (H2SO4) treatment for each leach residue and includes comparison of blended of TLR and ILR. Before leach experiments; chemical, mineralogical and thermal analysis of three different leach residues was carried out by using atomic absorption spectrometry (AAS), X-Ray diffraction (XRD) and differential thermal analysis (DTA), respectively. Leaching experiments were conducted at optimum conditions; 100 oC, 150 g/L H2SO4 and 2 hours. In the experiments, stirring rate was kept constant at 600 r/min which ensures complete mixing in leaching solution. Results show that zinc recovery for Iranian LR was higher than Turkish LR due to having different chemical composition from each other.

Keywords: hydrometallurgy, leaching, metal extraction, metal recovery

Procedia PDF Downloads 354
3803 Single-Camera Basketball Tracker through Pose and Semantic Feature Fusion

Authors: Adrià Arbués-Sangüesa, Coloma Ballester, Gloria Haro

Abstract:

Tracking sports players is a widely challenging scenario, specially in single-feed videos recorded in tight courts, where cluttering and occlusions cannot be avoided. This paper presents an analysis of several geometric and semantic visual features to detect and track basketball players. An ablation study is carried out and then used to remark that a robust tracker can be built with Deep Learning features, without the need of extracting contextual ones, such as proximity or color similarity, nor applying camera stabilization techniques. The presented tracker consists of: (1) a detection step, which uses a pretrained deep learning model to estimate the players pose, followed by (2) a tracking step, which leverages pose and semantic information from the output of a convolutional layer in a VGG network. Its performance is analyzed in terms of MOTA over a basketball dataset with more than 10k instances.

Keywords: basketball, deep learning, feature extraction, single-camera, tracking

Procedia PDF Downloads 138
3802 Energy Policy and Interactions with Politics and Economics

Authors: A. Beril Tugrul

Abstract:

Demand on production and thereby the global need of energy is growing continuously. Each country has different trends on energy demand and supply according to their geopolitical and geographical locations, underground reserves, weather conditions and level of industrialization. Conventional energy resources such as oil, gas and coal –in other words fossil resources- remain dominant on primary energy supply in spite of causing of environmental problems. Energy supply and demand securities are essential within the energy importing and exporting countries. This concept affected all sectors, but especially impressed on political aspects of the countries and also global economic views.

Keywords: energy policy, energy economics, energy strategy, global trends, petro-dollar recycling

Procedia PDF Downloads 476
3801 Optimization of the Jatropha curcas Supply Chain as a Criteria for the Implementation of Future Collection Points in Rural Areas of Manabi-Ecuador

Authors: Boris G. German, Edward Jiménez, Sebastián Espinoza, Andrés G. Chico, Ricardo A. Narváez

Abstract:

The unique flora and fauna of The Galapagos Islands has leveraged a tourism-driven growth in the islands. Nonetheless, such development is energy-intensive and requires thousands of gallons of diesel each year for thermoelectric electricity generation. The needed transport of fossil fuels from the continent has generated oil spillages and affectations to the fragile ecosystem of the islands. The Zero Fossil Fuels initiative for The Galapagos proposed by the Ecuadorian government as an alternative to reduce the use of fossil fuels in the islands, considers the replacement of diesel in thermoelectric generators, by Jatropha curcas vegetable oil. However, the Jatropha oil supply cannot entirely cover yet the demand for electricity generation in Galapagos. Within this context, the present work aims to provide an optimization model that can be used as a selection criterion for approving new Jatropha Curcas collection points in rural areas of Manabi-Ecuador. For this purpose, existing Jatropha collection points in Manabi were grouped under three regions: north (7 collection points), center (4 collection points) and south (9 collection points). Field work was carried out in every region in order to characterize the collection points, to establish local Jatropha supply and to determine transportation costs. Data collection was complemented using GIS software and an objective function was defined in order to determine the profit associated to Jatropha oil production. The market price of both Jatropha oil and residual cake, were considered for the total revenue; whereas Jatropha price, transportation and oil extraction costs were considered for the total cost. The tonnes of Jatropha fruit and seed, transported from collection points to the extraction plant, were considered as variables. The maximum and minimum amount of the collected Jatropha from each region constrained the optimization problem. The supply chain was optimized using linear programming in order to maximize the profits. Finally, a sensitivity analysis was performed in order to find a profit-based criterion for the acceptance of future collection points in Manabi. The maximum profit reached a value of $ 4,616.93 per year, which represented a total Jatropha collection of 62.3 tonnes Jatropha per year. The northern region of Manabi had the biggest collection share (69%), followed by the southern region (17%). The criteria for accepting new Jatropha collection points in the rural areas of Manabi can be defined by the current maximum profit of the zone and by the variation in the profit when collection points are removed one at a time. The definition of new feasible collection points plays a key role in the supply chain associated to Jatropha oil production. Therefore, a mathematical model that assists decision makers in establishing new collection points while assuring profitability, contributes to guarantee a continued Jatropha oil supply for Galapagos and a sustained economic growth in the rural areas of Ecuador.

Keywords: collection points, Jatropha curcas, linear programming, supply chain

Procedia PDF Downloads 433
3800 Utilization and Characterizations of Olive Oil Industry By-Products

Authors: Sawsan Dacrory, Hussein Abou-Yousef, Samir Kamel, Ragab E. Abou-Zeid, Mohamed S. Abdel-Aziz, Mohamed Elbadry

Abstract:

A considerable amount of lignocellulosic by-product could be obtained from olive pulp during olive oil extraction industry. The major constituents of the olive pulp are husks and seeds. The separation of each portion of olive pulp (seeds and husks) was carried out by water flotation where seeds were sediment in the bottom. Both seeds and husks were dignified by 15% NaOH followed by complete lignin removal by using sodium chlorite in acidic medium. The isolated holocellulose, α-cellulose, hydrogel and CMC which prepared from cellulose of both seeds and husk fractions were characterized by FTIR and SEM. The present study focused on the investigation of the chemical components of the lignocellulosic fraction of olive pulp. Biofunctionlization of hydrogel was achieved through loading of silver nanoparticles AgNPs in to the prepared hydrogel. The antimicrobial activity of the loaded silver hydrogel against G-ve, and G+ve, and candida was demonstrated.

Keywords: cellulose, carboxymethyle cellulose, olive pulp, hydrogel

Procedia PDF Downloads 474
3799 A Multilevel Approach for Stroke Prediction Combining Risk Factors and Retinal Images

Authors: Jeena R. S., Sukesh Kumar A.

Abstract:

Stroke is one of the major reasons of adult disability and morbidity in many of the developing countries like India. Early diagnosis of stroke is essential for timely prevention and cure. Various conventional statistical methods and computational intelligent models have been developed for predicting the risk and outcome of stroke. This research work focuses on a multilevel approach for predicting the occurrence of stroke based on various risk factors and invasive techniques like retinal imaging. This risk prediction model can aid in clinical decision making and help patients to have an improved and reliable risk prediction.

Keywords: prediction, retinal imaging, risk factors, stroke

Procedia PDF Downloads 303
3798 Dielectric Properties of La2MoO6 Ceramics at Microwave Frequency

Authors: Yih-Chien Chen, Yu-Cheng You

Abstract:

The microwave dielectric properties of La2MoO6 ceramics were investigated with a view to their application in mobile communication. La2MoO6 ceramics were prepared by the conventional solid-state method with various sintering conditions. The X-ray diffraction peaks of La2MoO6 ceramic did not vary significantly with sintering conditions. The average grain size of La2MoO6 ceramics increased as the temperature and time of sintering increased. A maximum density of 5.67 g/cm3, a dielectric constants (εr) of 14.1, a quality factor (Q×f) of 68,000 GHz, and a temperature coefficient of resonant frequency (τf) of -56 ppm/℃ were obtained when La2MoO6 ceramics that were sintered at 1300 ℃ for 4h.

Keywords: ceramics, sintering, microwave dielectric properties, La2MoO6

Procedia PDF Downloads 291
3797 Experimental and Analytical Design of Rigid Pavement Using Geopolymer Concrete

Authors: J. Joel Bright, P. Peer Mohamed, M. Aswin SAangameshwaran

Abstract:

The increasing usage of concrete produces 80% of carbon dioxide in the atmosphere. Hence, this results in various environmental effects like global warming. The amount of the carbon dioxide released during the manufacture of OPC due to the calcination of limestone and combustion of fossil fuel is in the order of one ton for every ton of OPC produced. Hence, to minimize this Geo Polymer Concrete was introduced. Geo polymer concrete is produced with 0% cement, and hence, it is eco-friendly and it also uses waste product from various industries like thermal power plant, steel manufacturing plant, and paper waste materials. This research is mainly about using Geo polymer concrete for pavement which gives very high strength than conventional concrete and at the same time gives way for sustainable development.

Keywords: activator solution, GGBS, fly ash, metakaolin

Procedia PDF Downloads 468
3796 Adaption of the Design Thinking Method for Production Planning in the Meat Industry Using Machine Learning Algorithms

Authors: Alica Höpken, Hergen Pargmann

Abstract:

The resource-efficient planning of the complex production planning processes in the meat industry and the reduction of food waste is a permanent challenge. The complexity of the production planning process occurs in every part of the supply chain, from agriculture to the end consumer. It arises from long and uncertain planning phases. Uncertainties such as stochastic yields, fluctuations in demand, and resource variability are part of this process. In the meat industry, waste mainly relates to incorrect storage, technical causes in production, or overproduction. The high amount of food waste along the complex supply chain in the meat industry could not be reduced by simple solutions until now. Therefore, resource-efficient production planning by conventional methods is currently only partially feasible. The realization of intelligent, automated production planning is basically possible through the application of machine learning algorithms, such as those of reinforcement learning. By applying the adapted design thinking method, machine learning methods (especially reinforcement learning algorithms) are used for the complex production planning process in the meat industry. This method represents a concretization to the application area. A resource-efficient production planning process is made available by adapting the design thinking method. In addition, the complex processes can be planned efficiently by using this method, since this standardized approach offers new possibilities in order to challenge the complexity and the high time consumption. It represents a tool to support the efficient production planning in the meat industry. This paper shows an elegant adaption of the design thinking method to apply the reinforcement learning method for a resource-efficient production planning process in the meat industry. Following, the steps that are necessary to introduce machine learning algorithms into the production planning of the food industry are determined. This is achieved based on a case study which is part of the research project ”REIF - Resource Efficient, Economic and Intelligent Food Chain” supported by the German Federal Ministry for Economic Affairs and Climate Action of Germany and the German Aerospace Center. Through this structured approach, significantly better planning results are achieved, which would be too complex or very time consuming using conventional methods.

Keywords: change management, design thinking method, machine learning, meat industry, reinforcement learning, resource-efficient production planning

Procedia PDF Downloads 128
3795 Comparison of Incidence and Risk Factors of Early Onset and Late Onset Preeclampsia: A Population Based Cohort Study

Authors: Sadia Munir, Diana White, Aya Albahri, Pratiwi Hastania, Eltahir Mohamed, Mahmood Khan, Fathima Mohamed, Ayat Kadhi, Haila Saleem

Abstract:

Preeclampsia is a major complication of pregnancy. Prediction and management of preeclampsia is a challenge for obstetricians. To our knowledge, no major progress has been achieved in the prevention and early detection of preeclampsia. There is very little known about the clear treatment path of this disorder. Preeclampsia puts both mother and baby at risk of several short term- and long term-health problems later in life. There is huge health service cost burden in the health care system associated with preeclampsia and its complications. Preeclampsia is divided into two different types. Early onset preeclampsia develops before 34 weeks of gestation, and late onset develops at or after 34 weeks of gestation. Different genetic and environmental factors, prognosis, heritability, biochemical and clinical features are associated with early and late onset preeclampsia. Prevalence of preeclampsia greatly varies all over the world and is dependent on ethnicity of the population and geographic region. To authors best knowledge, no published data on preeclampsia exist in Qatar. In this study, we are reporting the incidence of preeclampsia in Qatar. The purpose of this study is to compare the incidence and risk factors of both early onset and late onset preeclampsia in Qatar. This retrospective longitudinal cohort study was conducted using data from the hospital record of Women’s Hospital, Hamad Medical Corporation (HMC), from May 2014-May 2016. Data collection tool, which was approved by HMC, was a researcher made extraction sheet that included information such as blood pressure during admission, socio demographic characteristics, delivery mode, and new born details. A total of 1929 patients’ files were identified by the hospital information management when they apply codes of preeclampsia. Out of 1929 files, 878 had significant gestational hypertension without proteinuria, 365 had preeclampsia, 364 had severe preeclampsia, and 188 had preexisting hypertension with superimposed proteinuria. In this study, 78% of the data was obtained by hospital electronic system (Cerner) and the remaining 22% was from patient’s paper records. We have gone through detail data extraction from 560 files. Initial data analysis has revealed that 15.02% of pregnancies were complicated with preeclampsia from May 2014-May 2016. We have analyzed difference in the two different disease entities in the ethnicity, maternal age, severity of hypertension, mode of delivery and infant birth weight. We have identified promising differences in the risk factors of early onset and late onset preeclampsia. The data from clinical findings of preeclampsia will contribute to increased knowledge about two different disease entities, their etiology, and similarities/differences. The findings of this study can also be used in predicting health challenges, improving health care system, setting up guidelines, and providing the best care for women suffering from preeclampsia.

Keywords: preeclampsia, incidence, risk factors, maternal

Procedia PDF Downloads 141
3794 Estimating Tree Height and Forest Classification from Multi Temporal Risat-1 HH and HV Polarized Satellite Aperture Radar Interferometric Phase Data

Authors: Saurav Kumar Suman, P. Karthigayani

Abstract:

In this paper the height of the tree is estimated and forest types is classified from the multi temporal RISAT-1 Horizontal-Horizontal (HH) and Horizontal-Vertical (HV) Polarised Satellite Aperture Radar (SAR) data. The novelty of the proposed project is combined use of the Back-scattering Coefficients (Sigma Naught) and the Coherence. It uses Water Cloud Model (WCM). The approaches use two main steps. (a) Extraction of the different forest parameter data from the Product.xml, BAND-META file and from Grid-xxx.txt file come with the HH & HV polarized data from the ISRO (Indian Space Research Centre). These file contains the required parameter during height estimation. (b) Calculation of the Vegetation and Ground Backscattering, Coherence and other Forest Parameters. (c) Classification of Forest Types using the ENVI 5.0 Tool and ROI (Region of Interest) calculation.

Keywords: RISAT-1, classification, forest, SAR data

Procedia PDF Downloads 407
3793 Recognition of Grocery Products in Images Captured by Cellular Phones

Authors: Farshideh Einsele, Hassan Foroosh

Abstract:

In this paper, we present a robust algorithm to recognize extracted text from grocery product images captured by mobile phone cameras. Recognition of such text is challenging since text in grocery product images varies in its size, orientation, style, illumination, and can suffer from perspective distortion. Pre-processing is performed to make the characters scale and rotation invariant. Since text degradations can not be appropriately defined using wellknown geometric transformations such as translation, rotation, affine transformation and shearing, we use the whole character black pixels as our feature vector. Classification is performed with minimum distance classifier using the maximum likelihood criterion, which delivers very promising Character Recognition Rate (CRR) of 89%. We achieve considerably higher Word Recognition Rate (WRR) of 99% when using lower level linguistic knowledge about product words during the recognition process.

Keywords: camera-based OCR, feature extraction, document, image processing, grocery products

Procedia PDF Downloads 406
3792 New Approach for Load Modeling

Authors: Slim Chokri

Abstract:

Load forecasting is one of the central functions in power systems operations. Electricity cannot be stored, which means that for electric utility, the estimate of the future demand is necessary in managing the production and purchasing in an economically reasonable way. A majority of the recently reported approaches are based on neural network. The attraction of the methods lies in the assumption that neural networks are able to learn properties of the load. However, the development of the methods is not finished, and the lack of comparative results on different model variations is a problem. This paper presents a new approach in order to predict the Tunisia daily peak load. The proposed method employs a computational intelligence scheme based on the Fuzzy neural network (FNN) and support vector regression (SVR). Experimental results obtained indicate that our proposed FNN-SVR technique gives significantly good prediction accuracy compared to some classical techniques.

Keywords: neural network, load forecasting, fuzzy inference, machine learning, fuzzy modeling and rule extraction, support vector regression

Procedia PDF Downloads 435
3791 Development of Stabilized Compressed Earth Blocks for Enhanced Thermal Insulation

Authors: Joelle Al Fakhoury, Naoual Belouaggadia, Nassim Sebaibi

Abstract:

This study investigates the development of stabilized compressed earth blocks (CEBs) with improved mechanical and thermal properties for sustainable construction. Formulations incorporating sand, low-carbon binders, and miscanthus fibers were evaluated. The earth was characterized through various geotechnical tests. Results indicate that the addition of these components optimizes CEB performance, offering a promising alternative to conventional building materials. The study demonstrates the potential of stabilized CEBs in addressing both environmental concerns and modern construction standards.

Keywords: thermal insulation, compressed earth blocks, instrumentation, simulation

Procedia PDF Downloads 22
3790 Stream Extraction from 1m-DTM Using ArcGIS

Authors: Jerald Ruta, Ricardo Villar, Jojemar Bantugan, Nycel Barbadillo, Jigg Pelayo

Abstract:

Streams are important in providing water supply for industrial, agricultural and human consumption, In short when there are streams there are lives. Identifying streams are essential since many developed cities are situated in the vicinity of these bodies of water and in flood management, it serves as basin for surface runoff within the area. This study aims to process and generate features from high-resolution digital terrain model (DTM) with 1-meter resolution using Hydrology Tools of ArcGIS. The raster was then filled, processed flow direction and accumulation, then raster calculate and provide stream order, converted to vector, and clearing undesirable features using the ancillary or google earth. In field validation streams were classified whether perennial, intermittent or ephemeral. Results show more than 90% of the extracted feature were accurate in assessment through field validation.

Keywords: digital terrain models, hydrology tools, strahler method, stream classification

Procedia PDF Downloads 272
3789 Clinical Feature Analysis and Prediction on Recurrence in Cervical Cancer

Authors: Ravinder Bahl, Jamini Sharma

Abstract:

The paper demonstrates analysis of the cervical cancer based on a probabilistic model. It involves technique for classification and prediction by recognizing typical and diagnostically most important test features relating to cervical cancer. The main contributions of the research include predicting the probability of recurrences in no recurrence (first time detection) cases. The combination of the conventional statistical and machine learning tools is applied for the analysis. Experimental study with real data demonstrates the feasibility and potential of the proposed approach for the said cause.

Keywords: cervical cancer, recurrence, no recurrence, probabilistic, classification, prediction, machine learning

Procedia PDF Downloads 360
3788 Cadmium Removal from Aqueous Solution Using Chitosan Beads Prepared from Shrimp Shell Extracted Chitosan

Authors: Bendjaballah Malek; Makhlouf Mohammed Rabeh; Boukerche Imane; Benhamza Mohammed El Hocine

Abstract:

In this study, chitosan was derived from Parapenaeus longirostris shrimp shells sourced from a local market in Annaba, eastern Algeria. The extraction process entailed four chemical stages: demineralization, deproteinization, decolorization, and deacetylation. The degree of deacetylation was calculated to be 80.86 %. The extracted chitosan was physically altered to synthesize chitosan beads and characterized via FTIR and XRD analysis. These beads were employed to eliminate cadmium ions from synthetic water. The batch adsorption process was optimized by analyzing the impact of contact time, pH, adsorbent dose, and temperature. The adsorption capacity of and Cd+2 on chitosan beads was found to be 6.83 mg/g and 7.94 mg/g, respectively. The kinetic adsorption of Cd+2 conformed to the pseudo-first-order model, while the isotherm study indicated that the Langmuir Isotherm model well described the adsorption of cadmium . A thermodynamic analysis demonstrated that the adsorption of Cd+2 on chitosan beads is spontaneous and exothermic.

Keywords: Cd, chitosan, chitosanbeds, bioadsorbent

Procedia PDF Downloads 101
3787 Manufacturing of Vacuum Glazing with Metal Edge Seal

Authors: Won Kyeong Kang, Tae-Ho Song

Abstract:

Vacuum glazing (VG) is a super insulator, which is able to greatly improve the energy efficiency of building. However, a significant amount of heat loss occurs through the welded edge of conventional VG. The joining method should be improved for further application and commercialization. For this purpose VG with metal edge seal is conceived. In this paper, the feasibility of joining stainless steel and soda lime glass using glass solder is assessed numerically and experimentally. In the case of very thin stainless steel, partial joining with glass is identified, which need further improvement for practical application.

Keywords: VG, metal edge seal, vacuum glazing, manufacturing,

Procedia PDF Downloads 605
3786 Pulmonary Disease Identification Using Machine Learning and Deep Learning Techniques

Authors: Chandu Rathnayake, Isuri Anuradha

Abstract:

Early detection and accurate diagnosis of lung diseases play a crucial role in improving patient prognosis. However, conventional diagnostic methods heavily rely on subjective symptom assessments and medical imaging, often causing delays in diagnosis and treatment. To overcome this challenge, we propose a novel lung disease prediction system that integrates patient symptoms and X-ray images to provide a comprehensive and reliable diagnosis.In this project, develop a mobile application specifically designed for detecting lung diseases. Our application leverages both patient symptoms and X-ray images to facilitate diagnosis. By combining these two sources of information, our application delivers a more accurate and comprehensive assessment of the patient's condition, minimizing the risk of misdiagnosis. Our primary aim is to create a user-friendly and accessible tool, particularly important given the current circumstances where many patients face limitations in visiting healthcare facilities. To achieve this, we employ several state-of-the-art algorithms. Firstly, the Decision Tree algorithm is utilized for efficient symptom-based classification. It analyzes patient symptoms and creates a tree-like model to predict the presence of specific lung diseases. Secondly, we employ the Random Forest algorithm, which enhances predictive power by aggregating multiple decision trees. This ensemble technique improves the accuracy and robustness of the diagnosis. Furthermore, we incorporate a deep learning model using Convolutional Neural Network (CNN) with the RestNet50 pre-trained model. CNNs are well-suited for image analysis and feature extraction. By training CNN on a large dataset of X-ray images, it learns to identify patterns and features indicative of lung diseases. The RestNet50 architecture, known for its excellent performance in image recognition tasks, enhances the efficiency and accuracy of our deep learning model. By combining the outputs of the decision tree-based algorithms and the deep learning model, our mobile application generates a comprehensive lung disease prediction. The application provides users with an intuitive interface to input their symptoms and upload X-ray images for analysis. The prediction generated by the system offers valuable insights into the likelihood of various lung diseases, enabling individuals to take appropriate actions and seek timely medical attention. Our proposed mobile application has significant potential to address the rising prevalence of lung diseases, particularly among young individuals with smoking addictions. By providing a quick and user-friendly approach to assessing lung health, our application empowers individuals to monitor their well-being conveniently. This solution also offers immense value in the context of limited access to healthcare facilities, enabling timely detection and intervention. In conclusion, our research presents a comprehensive lung disease prediction system that combines patient symptoms and X-ray images using advanced algorithms. By developing a mobile application, we provide an accessible tool for individuals to assess their lung health conveniently. This solution has the potential to make a significant impact on the early detection and management of lung diseases, benefiting both patients and healthcare providers.

Keywords: CNN, random forest, decision tree, machine learning, deep learning

Procedia PDF Downloads 73
3785 Pathway to Sustainable Shipping: Electric Ships

Authors: Wei Wang, Yannick Liu, Lu Zhen, H. Wang

Abstract:

Maritime transport plays an important role in global economic development but also inevitably faces increasing pressures from all sides, such as ship operating cost reduction and environmental protection. An ideal innovation to address these pressures is electric ships. The electric ship is in the early stage. Considering the special characteristics of electric ships, i.e., travel range limit, to guarantee the efficient operation of electric ships, the service network needs to be re-designed carefully. This research designs a cost-efficient and environmentally friendly service network for electric ships, including the location of charging stations, charging plan, route planning, ship scheduling, and ship deployment. The problem is formulated as a mixed-integer linear programming model with the objective of minimizing total cost comprised of charging cost, the construction cost of charging stations, and fixed cost of ships. A case study using data of the shipping network along the Yangtze River is conducted to evaluate the performance of the model. Two operating scenarios are used: an electric ship scenario where all the transportation tasks are fulfilled by electric ships and a conventional ship scenario where all the transportation tasks are fulfilled by fuel oil ships. Results unveil that the total cost of using electric ships is only 42.8% of using conventional ships. Using electric ships can reduce 80% SOx, 93.47% NOx, 89.47% PM, and 42.62% CO2, but will consume 2.78% more time to fulfill all the transportation tasks. Extensive sensitivity analyses are also conducted for key operating factors, including battery capacity, charging speed, volume capacity, and a service time limit of transportation task. Implications from the results are as follows: 1) it is necessary to equip the ship with a large capacity battery when the number of charging stations is low; 2) battery capacity will influence the number of ships deployed on each route; 3) increasing battery capacity will make the electric ship more cost-effective; 4) charging speed does not affect charging amount and location of charging station, but will influence the schedule of ships on each route; 5) there exists an optimal volume capacity, at which all costs and total delivery time are lowest; 6) service time limit will influence ship schedule and ship cost.

Keywords: cost reduction, electric ship, environmental protection, sustainable shipping

Procedia PDF Downloads 77