Search results for: breast solid lesion
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3112

Search results for: breast solid lesion

1492 Floating Oral in Situ Gelling System of Anticancer Drug

Authors: Umme Hani, Mohammed Rahmatulla, Mohammed Ghazwani, Ali Alqahtani, Yahya Alhamhoom

Abstract:

Background and introduction: Neratinib is a potent anticancer drug used for the treatment of breast cancer. It is poorly soluble at higher pH, which tends to minimize the therapeutic effects in the lower gastrointestinal tract (GIT) leading to poor bioavailability. An attempt has been made to prepare and develop a gastro-retentive system of Neratinib to improve the drug bioavailability in the GIT by enhancing the gastric retention time. Materials and methods: In the present study a three-factor at two-level (23) factorial design based optimization was used to inspect the effects of three independent variables (factors) such as sodium alginate (A), sodium bicarbonate (B) and sodium citrate (C) on the dependent variables like in vitro gelation, in vitro floating, water uptake and percentage drug release. Results: All the formulations showed pH in the range 6.7 ±0.25 to 7.4 ±0.24, percentage drug content was observed to be 96.3±0.27 to 99.5 ±0.28%, in vitro gelation observed as gelation immediate remains for an extended period. Percentage of water uptake was in the range between 9.01±0.15 to 31.01±0.25%, floating lag time was estimated form 7±0.39 to 57±0.36 sec. F4 and F5 showed floating even after 12hrs. All formulations showed a release of around 90% drug release within 12hr. It was observed that the selected independent variables affect the dependent variables. Conclusion: The developed system may be a promising and alternative approach to augment gastric retention of drugs and enhances the therapeutic efficacy of the drug.

Keywords: neratinib, 2³ factorial design, sodium alginate, floating, in situ gelling system

Procedia PDF Downloads 166
1491 The Metabolite Profiling of Fulvestrant-3 Boronic Acid under Biological Oxidation

Authors: Changde Zhang, Qiang Zhang, Shilong Zheng, Jiawang Liu, Shanchun Guo, Qiu Zhong, Guangdi Wang

Abstract:

Fulvestrant was approved by FDA to treat breast cancer as a selective estrogen receptor downregulator (SERD) with intramuscular injection administration. ZB716, a fulvestarnt-3 boronic acid, is an SERD with comparable anticancer effect to fulvestrant, but could produce good pharmacokinetic properties under oral administration with mice or rat models. To understand why ZB716 produced much better oral bioavailability, it was proposed that the boronic acid blocked the phase II direct biotransformation with the hydroxyl group on the 3 position of the aromatic ring on fulvestrant. In this study, ZB716 or fulvestrant was incubated with human liver microsome and oxidation cofactor NADPH in vitro. Their metabolites after oxidation were profiled with the Q-Exactive, a high-resolution mass spectrometer. The result showed that ZB716 blocked the forming of hydroxyl groups on its benzene ring except for the oxidation of C-B bond forming fulvestrant in its metabolites, and the concentration of fulvestrant with one more hydroxyl group found in the metabolites from incubation with fulvestrant was about 34 fold high as that formed from incubation with ZB716. Compared to fulvestrant, ZB716 is expected to be much difficult to be further bio-transformed into more hydrophilic compounds, to be difficult excreted out of blood system, and to have longer residence time in blood, which can lead to higher oral bioavailability. This study provided evidence to explain the high bioavailability of ZB716 after oral administration from the perspective of its difficulty of oxidation, a phase I biotransformation, on positions on its aromatic ring.

Keywords: biotransformation, fulvestrant, metabolite profiling, ZB716

Procedia PDF Downloads 261
1490 Measuring Biobased Content of Building Materials Using Carbon-14 Testing

Authors: Haley Gershon

Abstract:

The transition from using fossil fuel-based building material to formulating eco-friendly and biobased building materials plays a key role in sustainable building. The growing demand on a global level for biobased materials in the building and construction industries heightens the importance of carbon-14 testing, an analytical method used to determine the percentage of biobased content that comprises a material’s ingredients. This presentation will focus on the use of carbon-14 analysis within the building materials sector. Carbon-14, also known as radiocarbon, is a weakly radioactive isotope present in all living organisms. Any fossil material older than 50,000 years will not contain any carbon-14 content. The radiocarbon method is thus used to determine the amount of carbon-14 content present in a given sample. Carbon-14 testing is performed according to ASTM D6866, a standard test method developed specifically for biobased content determination of material in solid, liquid, or gaseous form, which requires radiocarbon dating. Samples are combusted and converted into a solid graphite form and then pressed onto a metal disc and mounted onto a wheel of an accelerator mass spectrometer (AMS) machine for the analysis. The AMS instrument is used in order to count the amount of carbon-14 present. By submitting samples for carbon-14 analysis, manufacturers of building materials can confirm the biobased content of ingredients used. Biobased testing through carbon-14 analysis reports results as percent biobased content, indicating the percentage of ingredients coming from biomass sourced carbon versus fossil carbon. The analysis is performed according to standardized methods such as ASTM D6866, ISO 16620, and EN 16640. Products 100% sourced from plants, animals, or microbiological material are therefore 100% biobased, while products sourced only from fossil fuel material are 0% biobased. Any result in between 0% and 100% biobased indicates that there is a mixture of both biomass-derived and fossil fuel-derived sources. Furthermore, biobased testing for building materials allows manufacturers to submit eligible material for certification and eco-label programs such as the United States Department of Agriculture (USDA) BioPreferred Program. This program includes a voluntary labeling initiative for biobased products, in which companies may apply to receive and display the USDA Certified Biobased Product label, stating third-party verification and displaying a product’s percentage of biobased content. The USDA program includes a specific category for Building Materials. In order to qualify for the biobased certification under this product category, examples of product criteria that must be met include minimum 62% biobased content for wall coverings, minimum 25% biobased content for lumber, and a minimum 91% biobased content for floor coverings (non-carpet). As a result, consumers can easily identify plant-based products in the marketplace.

Keywords: carbon-14 testing, biobased, biobased content, radiocarbon dating, accelerator mass spectrometry, AMS, materials

Procedia PDF Downloads 160
1489 Rehabilitation Approach for Cancer Patients: Indication, Management and Outcome

Authors: Juliani Rianto, Emma Lumby, Tracey Smith

Abstract:

Cancer patients’ survival are growing with the new approach and therapy in oncology medicine. Cancer is now a new chronic disease, and rehabilitation program has become an ongoing program as part of cancer care. The focus of Cancer rehabilitation is maximising person’s physical and emotional function, stabilising general health and reducing unnecessary hospital admission. In Australia there are 150000 newly diagnosed cancer every year, and the most common Cancer are prostate, Breast, Colorectal, Melanoma and Lung Cancer. Through referral from the oncology team, we recruited cancer patient into our cancer rehabilitation program. Patients are assessed by our multi-disciplinary team including rehabilitation specialist, physiotherapist, occupational therapist, dietician, exercise physiologist, and psychologist. Specific issues are identified, including pain, side effect of chemo and radiation therapy and mental well-being. The goals were identified and reassessed every fortnight. Common goals including nutritional status, improve endurance and exercise performance, working on balance and mobility, improving emotional and vocational state, educational program for insomnia and tiredness, and reducing hospitalisation are identified and assessed. Patients are given 2 hours exercise program twice a week for 6 weeks with focus on aerobic and weight exercises and education sessions. Patients are generally benefited from the program. The quality of life is improved, support and interaction from the therapist has played an important factor in directing patient for their goals.

Keywords: cancer, exercises, benefit, mental health

Procedia PDF Downloads 61
1488 Liver Histopathological Findings after Treatment with Anastrazole and Letrozole in Ovariectomized Rats

Authors: Ioannis Boutas, Vasilios Pergialiotis, Nicolaos Salakos, George Agrogiannis, Panagiotis Konstantopoulos, Laskarina-Maria Korou, Theodoros Kalampokas, Odysseas Gregoriou, George Creatsas, Despina Perrea

Abstract:

Introduction: The effect of third generation aromatase inhibitors in the lipid profile among women with breast cancer, present diversities. It has been also shown that low levels of estrogens affect liver metabolism in mice in numerous ways, such as lipid accumulation and hepatic steatosis. Materials and Methods: Forty-five female Wistar rats underwent surgical ovariectomy. The animals were anesthetized with a combination of ketamine (75 mg/kg) and xylazine (10 mg/kg) which were administered intraperitoneally. After the ovariectomy, the operated animals were randomized in three groups. The first group did not receive any drug regimen (ovariectomized control group). The second group received Anastrazole and the third group received Letrozole. Four months after the initiation of the study, the animals were euthanized and livers were dissected immediately for further histopathological analysis. The histological features were grouped into 4 broad categories: steatosis, ballooning, portal inflammation and lobular activity. A score from 0 (absence) to 3 (severe) was assigned to each parameter. Results: The liver pathology analysis revealed significant differences among groups with favored mild steatosis and ballooning among animals that received Anastrazole or Letrozole. Conclusion: The effect of Anastrazole and Letrozole on liver function have not yet been clarified. In our study mild histological liver alterations seem also to occur and these alterations should be taken in mind in future clinical studies

Keywords: anastrazole, letrozole, liver, rats

Procedia PDF Downloads 352
1487 Enhancing Sensitization of Cervical Cancer Cells to γ-Radiation Ellagic Acid

Authors: Vidhula Ahire, Amit Kumar, K. P. Mishra, Gauri Kulkarni

Abstract:

Herbal polyphenols have gained significance because of their increasing promise in prevention and treatment of cancer. Therefore, development of a dietary compound as an effective radiosensitizer and a radioprotector is highly warranted for cervical cancer patients undergoing therapy. This study describes the cytotoxic effects of the flavonoid, ellagic acid (EA) when administered either alone or in combination with gamma radiation on cervical cancer HeLa cells in vitro. Apoptotic index and proliferation were measured by using trypan blue assay. Reproductive cell death was analyzed by clonogenic assay. Propidium iodide staining for flowcytometry was performed to analyze cell cycle modulation. Nuclear and mitochondrial changes were studied with specific dyes. DNA repair kinetics was analyzed by immunofluorescence assay. Evaluation and comparison of EA effects were performed with other clinically used breast cancer drugs. When tumor cells were exposed to 2 and 4 Gy of irradiation in presence of EA (10 μM), it yielded a synergistic cytotoxic effect on cervical cancer cells whereas in NIH3T3 cells it reversed the injury caused by irradiation and abetted in the regaining of normal healthy cells. At 24h ~25foci/cell was observed and 2.6 fold decrease in the mitochondrial membrane potential. Up to 40% cell were arrested in the G1 phase and 20-36% cells exhibited apoptosis. Our results demonstrate the role of increased apoptosis and cell cycle modulation in the mechanism of EA mediated radiosensitization of cervical cancer cells and thus advocating EA as an adjuvant for preclinical trials in cancer chemo- radiotherapy.

Keywords: cervical cancer, ellagic acid, sensitization, radiation therapy

Procedia PDF Downloads 325
1486 Coupling Strategy for Multi-Scale Simulations in Micro-Channels

Authors: Dahia Chibouti, Benoit Trouette, Eric Chenier

Abstract:

With the development of micro-electro-mechanical systems (MEMS), understanding fluid flow and heat transfer at the micrometer scale is crucial. In the case where the flow characteristic length scale is narrowed to around ten times the mean free path of gas molecules, the classical fluid mechanics and energy equations are still valid in the bulk flow, but particular attention must be paid to the gas/solid interface boundary conditions. Indeed, in the vicinity of the wall, on a thickness of about the mean free path of the molecules, called the Knudsen layer, the gas molecules are no longer in local thermodynamic equilibrium. Therefore, macroscopic models based on the continuity of velocity, temperature and heat flux jump conditions must be applied at the fluid/solid interface to take this non-equilibrium into account. Although these macroscopic models are widely used, the assumptions on which they depend are not necessarily verified in realistic cases. In order to get rid of these assumptions, simulations at the molecular scale are carried out to study how molecule interaction with walls can change the fluid flow and heat transfers at the vicinity of the walls. The developed approach is based on a kind of heterogeneous multi-scale method: micro-domains overlap the continuous domain, and coupling is carried out through exchanges of information between both the molecular and the continuum approaches. In practice, molecular dynamics describes the fluid flow and heat transfers in micro-domains while the Navier-Stokes and energy equations are used at larger scales. In this framework, two kinds of micro-simulation are performed: i) in bulk, to obtain the thermo-physical properties (viscosity, conductivity, ...) as well as the equation of state of the fluid, ii) close to the walls to identify the relationships between the slip velocity and the shear stress or between the temperature jump and the normal temperature gradient. The coupling strategy relies on an implicit formulation of the quantities extracted from micro-domains. Indeed, using the results of the molecular simulations, a Bayesian regression is performed in order to build continuous laws giving both the behavior of the physical properties, the equation of state and the slip relationships, as well as their uncertainties. These latter allow to set up a learning strategy to optimize the number of micro simulations. In the present contribution, the first results regarding this coupling associated with the learning strategy are illustrated through parametric studies of convergence criteria, choice of basis functions and noise of input data. Anisothermic flows of a Lennard Jones fluid in micro-channels are finally presented.

Keywords: multi-scale, microfluidics, micro-channel, hybrid approach, coupling

Procedia PDF Downloads 170
1485 Modeling of a Vehicle Wheel System having a Built-in Suspension Structure Consisted of Radially Deployed Colloidal Spokes between Hub and Rim

Authors: Barenten Suciu

Abstract:

In this work, by replacing the traditional solid spokes with colloidal spokes, a vehicle wheel with a built-in suspension structure is proposed. Following the background and description of the wheel system, firstly, a vibration model of the wheel equipped with colloidal spokes is proposed, and based on such model the equivalent damping coefficients and spring constants are identified. Then, a modified model of a quarter-vehicle moving on a rough pavement is proposed in order to estimate the transmissibility of vibration from the road roughness to vehicle body. In the end, the optimal design of the colloidal spokes and the optimum number of colloidal spokes are decided in order to minimize the transmissibility of vibration, i.e., to maximize the ride comfort of the vehicle.

Keywords: built-in suspension, colloidal spoke, intrinsic spring, vibration analysis, wheel

Procedia PDF Downloads 509
1484 Effect of L-Dopa on Performance and Carcass Characteristics in Broiler Chickens

Authors: B. R. O. Omidiwura, A. F. Agboola, E. A. Iyayi

Abstract:

Pure form of L-Dopa is used to enhance muscular development, fat breakdown and suppress Parkinson disease in humans. However, the L-Dopa in mucuna seed, when present with other antinutritional factors, causes nutritional disorders in monogastric animals. Information on the utilisation of pure L-Dopa in monogastric animals is scanty. Therefore, effect of L-Dopa on growth performance and carcass characteristics in broiler chickens was investigated. Two hundred and forty one-day-old chicks were allotted to six treatments, which consisted of a positive control (PC) with standard energy (3100Kcal/Kg) and negative control (NC) with high energy (3500Kcal/Kg). The rest 4 diets were NC+0.1, NC+0.2, NC+0.3 and NC+0.4% L-Dopa, respectively. All treatments had 4 replicates in a completely randomized design. Body weight gain, final weight, feed intake, dressed weight and carcass characteristics were determined. Body weight gain and final weight of birds fed PC were 1791.0 and 1830.0g, NC+0.1% L-Dopa were 1827.7 and 1866.7g and NC+0.2% L-Dopa were 1871.9 and 1910.9g respectively, and the feed intake of PC (3231.5g), were better than other treatments. The dressed weight at 1375.0g and 1357.1g of birds fed NC+0.1% and NC+0.2% L-Dopa, respectively, were similar but better than other treatments. Also, the thigh (202.5g and 194.9g) and the breast meat (413.8g and 410.8g) of birds fed NC+0.1% and NC+0.2% L-Dopa, respectively, were similar but better than birds fed other treatments. The drum stick of birds fed NC+0.1% L-Dopa (220.5g) was observed to be better than birds on other diets. Meat to bone ratio and relative organ weights were not affected across treatments. L-Dopa extract, at levels tested, had no detrimental effect on broilers, rather better bird performance and carcass characteristics were observed especially at 0.1% and 0.2% L-Dopa inclusion rates. Therefore, 0.2% inclusion is recommended in diets of broiler chickens for improved performance and carcass characteristics.

Keywords: broilers, carcass characteristics, l-dopa, performance

Procedia PDF Downloads 311
1483 Interference of Contaminants in the Characterization of Sugarcane Straw for Energy Purpose

Authors: Gabriela T. Nakashima, Ana Larissa S. Hansted, Gabriela B. Belini, Carlos R. Sette Jr, Hiroyuki Yamamoto, Fabio M. Yamaji

Abstract:

The aim of this study was to determine the interference from contaminants in the characterization of sugarcane straw. The sugarcane straw was collected after the harvest and taken to the drying oven, and then it was crushed in the mill type Willey. Analyzes of ash contents and Klason lignin were done in triplicate and high heating value (HHV) in duplicate, according to ASTM standard. The results obtained for the sugarcane straw were 5.29% for ash content, 29.87% for Klason lignin and 17.67 MJ.kg-1 for HHV. Also, the material was analyzed by scanning electron microscope (SEM). The presence of contaminants was observed, such as silica. The high amount of contaminants in the samples may impact the results of analyzes, also raising its values, for example in the Klason lignin content. These contaminants can also adversely affect the quality of the biomass. Even using the standards is important to know what the purpose of the analysis and care mainly of sampling.

Keywords: biomass, bioenergy, residues, solid fuel

Procedia PDF Downloads 282
1482 How Holton’s Thematic Analysis Can Help to Understand Why Fred Hoyle Never Accepted Big Bang Cosmology

Authors: Joao Barbosa

Abstract:

After an intense dispute between the big bang cosmology and its big rival, the steady-state cosmology, some important experimental observations, such as the determination of helium abundance in the universe and the discovery of the cosmic background radiation in the 1960s were decisive for the progressive and wide acceptance of big bang cosmology and the inevitable abandonment of steady-state cosmology. But, despite solid theoretical support and those solid experimental observations favorable to big bang cosmology, Fred Hoyle, one of the proponents of the steady-state and the main opponent of the idea of the big bang (which, paradoxically, himself he baptized), never gave up and continued to fight for the idea of a stationary (or quasi-stationary) universe until the end of his life, even after decades of widespread consensus around the big bang cosmology. We can try to understand this persistent attitude of Hoyle by applying Holton’s thematic analysis to cosmology. Holton recognizes in the scientific activity a dimension that, even unconscious or not assumed, is nevertheless very important in the work of scientists, in implicit articulation with the experimental and the theoretical dimensions of science. This is the thematic dimension, constituted by themata – concepts, methodologies, and hypotheses with a metaphysical, aesthetic, logical, or epistemological nature, associated both with the cultural context and the individual psychology of scientists. In practice, themata can be expressed through personal preferences and choices that guide the individual and collective work of scientists. Thematic analysis shows that big bang cosmology is mainly based on a set of themata consisting of evolution, finitude, life cycle, and change; the cosmology of the steady-state is based on opposite themata: steady-state, infinity, continuous existence, and constancy. The passionate controversy that these cosmological views carried out is part of an old cosmological opposition: the thematic opposition between an evolutionary view of the world (associated with Heraclitus) and a stationary view (associated with Parmenides). Personal preferences seem to have been important in this (thematic) controversy, and the thematic analysis that was developed shows that Hoyle is a very illustrative example of a life-long personal commitment to some themata, in this case to the opposite themata of the big bang cosmology. His struggle against the big bang idea was strongly based on philosophical and even religious reasons – which, in a certain sense and in a Holtonian perspective, is related to thematic preferences. In this personal and persistent struggle, Hoyle always refused the way how some experimental observations were considered decisive in favor of the big bang idea, arguing that the success of this idea is based on sociological and cultural prejudices. This Hoyle’s attitude is a personal thematic attitude, in which the acceptance or rejection of what is presented as proof or scientific fact is conditioned by themata: what is a proof or a scientific fact for one scientist is something yet to be established for another scientist who defends different or even opposites themata.

Keywords: cosmology, experimental observations, fred hoyle, interpretation, life-long personal commitment, Themata

Procedia PDF Downloads 169
1481 Evaluation of the Biological Activities of Chrysin as an Important Perspective in the Treatment of Infectious and Cancer Diseases

Authors: Sajjad Jafari, Reza Akbari

Abstract:

Background and Aim: Chrysin, a flavonoid compound found in medicinal plants, honey, and propolis, has potential biological activities that make it an important perspective in the treatment of infectious and cancer diseases. The aim of this review study is to evaluate the biological activities of chrysin in the treatment of infectious and cancer diseases. Material and Methods: The present study is a review study that searched reputable scientific databases such as PubMed, Google Scholar, Scopus, and Web of Science from 2000 to 2023 using keywords such as antimicrobial, antifungal, chrysin, anticancer, antioxidants, and infectious diseases. The researchers examined 25 articles to determine the biological activities of chrysin. Results: Chrysin has high inhibitory or lethal activities on gram-positive and gram-negative bacteria, including Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, and Enterococcus faeces. It also has anti-biofilm effects and antifungal effects on strains such as Aspergillus niger and Candida albicans. Chrysin also has anticancer effects on various cancers, including colorectal cancer, pancreatic cancer, breast cancer, and MCF-7 cancer, which have been confirmed in vitro and in vivo. Conclusion: Chrysin has the potential as an important therapeutic option in the treatment of infectious and cancer diseases. Its high antimicrobial and anticancer activities, combined with its low toxicity in nanoparticle form, make it a promising candidate for further clinical trials. The production of anti-microbial and anti-cancer drugs from natural substances, such as chrysin, is a valuable contribution to the field of medicine.

Keywords: chrysin, antimicrobial, anticancer, infectious diseases

Procedia PDF Downloads 117
1480 Nonlinear Free Surface Flow Simulations Using Smoothed Particle Hydrodynamics

Authors: Abdelraheem M. Aly, Minh Tuan Nguyen, Sang-Wook Lee

Abstract:

The incompressible smoothed particle hydrodynamics (ISPH) is used to simulate impact free surface flows. In the ISPH, pressure is evaluated by solving pressure Poisson equation using a semi-implicit algorithm based on the projection method. The current ISPH method is applied to simulate dam break flow over an inclined plane with different inclination angles. The effects of inclination angle in the velocity of wave front and pressure distribution is discussed. The impact of circular cylinder over water in tank has also been simulated using ISPH method. The computed pressures on the solid boundaries is studied and compared with the experimental results.

Keywords: incompressible smoothed particle hydrodynamics, free surface flow, inclined plane, water entry impact

Procedia PDF Downloads 403
1479 Spectroscopy and Electron Microscopy for the Characterization of CdSxSe1-x Quantum Dots in a Glass Matrix

Authors: C. Fornacelli, P. Colomban, E. Mugnaioli, I. Memmi Turbanti

Abstract:

When semiconductor particles are reduced in scale to nanometer dimension, their optical and electro-optical properties strongly differ from those of bulk crystals of the same composition. Since sampling is often not allowed concerning cultural heritage artefacts, the potentialities of two non-invasive techniques, such as Raman and Fiber Optic Reflectance Spectroscopy (FORS), have been investigated and the results of the analysis on some original glasses of different colours (from yellow to orange and deep red) and periods (from the second decade of the 20th century to present days) are reported in the present study. In order to evaluate the potentialities of the application of non-invasive techniques to the investigation of the structure and distribution of nanoparticles dispersed in a glass matrix, Scanning Electron Microscopy (SEM) and energy-disperse spectroscopy (EDS) mapping, together with Transmission Electron Microscopy (TEM) and Electron Diffraction Tomography (EDT) have also been used. Raman spectroscopy allows a fast and non-destructive measure of the quantum dots composition and size, thanks to the evaluation of the frequencies and the broadening/asymmetry of the LO phonons bands, respectively, though the important role of the compressive strain arising from the glass matrix and the possible diffusion of zinc from the matrix to the nanocrystals should be taken into account when considering the optical-phonons frequency values. The incorporation of Zn has been assumed by an upward shifting of the LO band related to the most abundant anion (S or Se), while the role of the surface phonons as well as the confinement-induced scattering by phonons with a non-zero wavevectors on the Raman peaks broadening has been verified. The optical band gap varies from 2.42 eV (pure CdS) to 1.70 eV (CdSe). For the compositional range between 0.5≤x≤0.2, the presence of two absorption edges has been related to the contribution of both pure CdS and the CdSxSe1-x solid solution; this particular feature is probably due to the presence of unaltered cubic zinc blende structures of CdS that is not taking part to the formation of the solid solution occurring only between hexagonal CdS and CdSe. Moreover, the band edge tailing originating from the disorder due to the formation of weak bonds and characterized by the Urbach edge energy has been studied and, together with the FWHM of the Raman signal, has been assumed as a good parameter to evaluate the degree of topological disorder. SEM-EDS mapping showed a peculiar distribution of the major constituents of the glass matrix (fluxes and stabilizers), especially concerning those samples where a layered structure has been assumed thanks to the spectroscopic study. Finally, TEM-EDS and EDT were used to get high-resolution information about nanocrystals (NCs) and heterogeneous glass layers. The presence of ZnO NCs (< 4 nm) dispersed in the matrix has been verified for most of the samples, while, for those samples where a disorder due to a more complex distribution of the size and/or composition of the NCs has been assumed, the TEM clearly verified most of the assumption made by the spectroscopic techniques.

Keywords: CdSxSe1-x, EDT, glass, spectroscopy, TEM-EDS

Procedia PDF Downloads 303
1478 Synthesis and Characterization of Zr and V Co-Doped BaTiO₃ Ceramic

Authors: Kanta Maan Sangwan, Neetu Ahlawat, Rajender Singh Kundu

Abstract:

BaZrTiO3 ceramics having high dielectric constant and low dielectric loss are interesting material for being used as commercial capacitor applications. BZT (BaZrTiO3) has attracted attentions for their many applications for the microwave technology as the doping of Zr4+ on Ti4+ has advantage to the stability of the system. In the present work, co-doping of Zr and V with BaTiO3 ceramics was synthesized by the conventional solid state reaction technique and sintered at 1200 K for 6 hours, and their structural and ferroelectric properties were studied. The XRD (x-ray diffraction) pattern of BZT (BaZrTiO3) ceramics shows that the crystalline sample is single phase tetragonal structure with P4mm space group. The result revealed that Zr ion enters the unit cell maintaining the perovskite structure of BZT ceramics and the impedance spectroscopy of the sample performed in selected frequency and temperature range.

Keywords: ferroelectric, impedance spectroscopy, space group, tetragonal

Procedia PDF Downloads 208
1477 Photo-Degradation of a Pharmaceutical Product in the Presence of a Catalyst Supported on a Silicoaluminophosphate Solid

Authors: I. Ben Kaddour, S. Larbaoui

Abstract:

Since their first synthesis in 1984, silicoaluminophosphates have proven their effectiveness as a good adsorbent and catalyst in several environmental and energy applications. In this work, the photocatalytic reaction of the photo-degradation of a pharmaceutical product in water was carried out in the presence of a series of materials based on titanium oxide, anatase phase, supported on the microporous framework of the SAPO4-5 at different levels, under ultraviolet light. These photo-catalysts were characterized by different physicochemical analysis methods in order to determine their structural, textural, and morphological properties, such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), microscopy scanning electronics (SEM), nitrogen adsorption measurements, UV-visible diffuse reflectance spectroscopy (UV-Vis-DRS). In this study, liquid chromatography coupled with spectroscopy of mass (LC-MS) was used to determine the nature of the intermediate products formed during the photocatalytic degradation of DCF.

Keywords: photocatalysis, titanium dioxide, SAPO-5, diclofenac

Procedia PDF Downloads 69
1476 The Preparation of Silicon and Aluminum Extracts from Tuncbilek and Orhaneli Fly Ashes by Alkali Fusion

Authors: M. Sari Yilmaz, N. Karamahmut Mermer

Abstract:

Coal fly ash is formed as a solid waste product from the combustion of coal in coal fired power stations. Huge amounts of fly ash are produced globally every year and are predicted to increase. Nowadays, less than half of the fly ash is used as a raw material for cement manufacturing, construction and the rest of it is disposed as a waste causing yet another environmental concern. For this reason, the recycling of this kind of slurries into useful materials is quite important in terms of economical and environmental aspects. The purpose of this study is to evaluate the Orhaneli and Tuncbilek coal fly ashes for utilization in some industrial applications. Therefore the mineralogical and chemical compositions of these fly ashes were analyzed by X-ray fluorescence (XRF) spectroscopy and X-ray diffraction (XRD). The silicon (Si) and aluminum (Al) in the fly ashes were activated by alkali fusion technique with sodium hydroxide. The obtained extracts were analyzed for Si and Al content by inductively coupled plasma optical emission spectrometry (ICP-OES).

Keywords: extraction, fly ash, fusion, XRD

Procedia PDF Downloads 324
1475 A Study of Non-Coplanar Imaging Technique in INER Prototype Tomosynthesis System

Authors: Chia-Yu Lin, Yu-Hsiang Shen, Cing-Ciao Ke, Chia-Hao Chang, Fan-Pin Tseng, Yu-Ching Ni, Sheng-Pin Tseng

Abstract:

Tomosynthesis is an imaging system that generates a 3D image by scanning in a limited angular range. It could provide more depth information than traditional 2D X-ray single projection. Radiation dose in tomosynthesis is less than computed tomography (CT). Because of limited angular range scanning, there are many properties depending on scanning direction. Therefore, non-coplanar imaging technique was developed to improve image quality in traditional tomosynthesis. The purpose of this study was to establish the non-coplanar imaging technique of tomosynthesis system and evaluate this technique by the reconstructed image. INER prototype tomosynthesis system contains an X-ray tube, a flat panel detector, and a motion machine. This system could move X-ray tube in multiple directions during the acquisition. In this study, we investigated three different imaging techniques that were 2D X-ray single projection, traditional tomosynthesis, and non-coplanar tomosynthesis. An anthropopathic chest phantom was used to evaluate the image quality. It contained three different size lesions (3 mm, 5 mm and, 8 mm diameter). The traditional tomosynthesis acquired 61 projections over a 30 degrees angular range in one scanning direction. The non-coplanar tomosynthesis acquired 62 projections over 30 degrees angular range in two scanning directions. A 3D image was reconstructed by iterative image reconstruction algorithm (ML-EM). Our qualitative method was to evaluate artifacts in tomosynthesis reconstructed image. The quantitative method was used to calculate a peak-to-valley ratio (PVR) that means the intensity ratio of the lesion to the background. We used PVRs to evaluate the contrast of lesions. The qualitative results showed that in the reconstructed image of non-coplanar scanning, anatomic structures of chest and lesions could be identified clearly and no significant artifacts of scanning direction dependent could be discovered. In 2D X-ray single projection, anatomic structures overlapped and lesions could not be discovered. In traditional tomosynthesis image, anatomic structures and lesions could be identified clearly, but there were many artifacts of scanning direction dependent. The quantitative results of PVRs show that there were no significant differences between non-coplanar tomosynthesis and traditional tomosynthesis. The PVRs of the non-coplanar technique were slightly higher than traditional technique in 5 mm and 8 mm lesions. In non-coplanar tomosynthesis, artifacts of scanning direction dependent could be reduced and PVRs of lesions were not decreased. The reconstructed image was more isotropic uniformity in non-coplanar tomosynthesis than in traditional tomosynthesis. In the future, scan strategy and scan time will be the challenges of non-coplanar imaging technique.

Keywords: image reconstruction, non-coplanar imaging technique, tomosynthesis, X-ray imaging

Procedia PDF Downloads 371
1474 High Prevalence of Canine Mammary Gland Tumor in Nulliparous Compared with Multiparous Female Dogs

Authors: Sudson Sirivaidyapong, Ratthanan Sathienbumrungkit, Nongnapas Ruangpet, Nattanun Uaprayoon, Chawisa Wejjakul

Abstract:

Many factors initiate mammary gland tumor in female dogs such as age, breed, sex, estrous cycle, birth control and pseudopregnancy. Those factors are mostly associated with canine sex hormone. In this study, questionnaires and direct interviews were used to collect information from owners of female dogs that had been diagnosed as mammary tumors at our veterinary teaching hospital, during January 2015 to October 2016 to compare the prevalence of mammary tumor between nulliparous and multiparous female dogs. 200 dogs (from all 212 mammary tumor patients, some were excluded because of inadequate information) were included in the study, 72.5% were nulliparous and 27.5% were multiparous. The results revealed that breed, age, birth control age and birth control methods were not different in both groups; most dogs in both groups were various purebreds, geriatric age, and low incidence of hormonal contraception while 100% of multiparous dogs and 83.7% of nulliparous dogs had been neutered at over two years old. The significant differences between two groups were the frequency of pseudopregnancy and estrus which were much higher in nulliparous female dogs. It can be concluded from our study that nulliparous dogs may be more likely at higher risk of mammary tumor compared to multiparous dogs from various factors especially, the frequency of estrus and the occurrence of pseudopregnancy which related to more times of sex hormonal contact. This study was a preliminary data for further studies to determine the other risk factors of mammary gland tumors in dogs, and to our knowledge, it is the first report on a significantly higher prevalence of mammary tumor in nulliparous female dogs than that in multiparous dogs. This finding corresponds with the study of breast cancer in women but may be from different causes and factors due to the differences in estrous physiology.

Keywords: canine, female dogs, nulliparous, multiparous, mammary tumor, prevalence

Procedia PDF Downloads 472
1473 Continuous and Discontinuos Modeling of Wellbore Instability in Anisotropic Rocks

Authors: C. Deangeli, P. Obentaku Obenebot, O. Omwanghe

Abstract:

The study focuses on the analysis of wellbore instability in rock masses affected by weakness planes. The occurrence of failure in such a type of rocks can occur in the rock matrix and/ or along the weakness planes, in relation to the mud weight gradient. In this case the simple Kirsch solution coupled with a failure criterion cannot supply a suitable scenario for borehole instabilities. Two different numerical approaches have been used in order to investigate the onset of local failure at the wall of a borehole. For each type of approach the influence of the inclination of weakness planes has been investigates, by considering joint sets at 0°, 35° and 90° to the horizontal. The first set of models have been carried out with FLAC 2D (Fast Lagrangian Analysis of Continua) by considering the rock material as a continuous medium, with a Mohr Coulomb criterion for the rock matrix and using the ubiquitous joint model for accounting for the presence of the weakness planes. In this model yield may occur in either the solid or along the weak plane, or both, depending on the stress state, the orientation of the weak plane and the material properties of the solid and weak plane. The second set of models have been performed with PFC2D (Particle Flow code). This code is based on the Discrete Element Method and considers the rock material as an assembly of grains bonded by cement-like materials, and pore spaces. The presence of weakness planes is simulated by the degradation of the bonds between grains along given directions. In general the results of the two approaches are in agreement. However the discrete approach seems to capture more complex phenomena related to local failure in the form of grain detachment at wall of the borehole. In fact the presence of weakness planes in the discontinuous medium leads to local instability along the weak planes also in conditions not predicted from the continuous solution. In general slip failure locations and directions do not follow the conventional wellbore breakout direction but depend upon the internal friction angle and the orientation of the bedding planes. When weakness plane is at 0° and 90° the behaviour are similar to that of a continuous rock material, but borehole instability is more severe when weakness planes are inclined at an angle between 0° and 90° to the horizontal. In conclusion, the results of the numerical simulations show that the prediction of local failure at the wall of the wellbore cannot disregard the presence of weakness planes and consequently the higher mud weight required for stability for any specific inclination of the joints. Despite the discrete approach can simulate smaller areas because of the large number of particles required for the generation of the rock material, however it seems to investigate more correctly the occurrence of failure at the miscroscale and eventually the propagation of the failed zone to a large portion of rock around the wellbore.

Keywords: continuous- discontinuous, numerical modelling, weakness planes wellbore, FLAC 2D

Procedia PDF Downloads 502
1472 Iron Doped Biomaterial Calcium Borate: Synthesis and Characterization

Authors: G. Çelik Gül, F. Kurtuluş

Abstract:

Colemanite is the most common borate mineral, and the main source of the boron required by plants, human, and earth. Transition metals exhibit optical and physical properties such as; non-linear optical character, structural diversity, thermal stability, long cycle life and luminescent radiation. The doping of colemanite with a transition metal, bring it very interesting and attractive properties which make them applicable in industry. Iron doped calcium borate was synthesized by conventional solid state method at 1200 °C for 12 h with a systematic pathway. X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy/energy dispersive analyze (SEM/EDS) were used to characterize structural and morphological properties. Also, thermal properties were recorded by thermogravimetric-differential thermal analysis (TG/DTA). 

Keywords: colemanite, conventional synthesis, powder x-ray diffraction, borates

Procedia PDF Downloads 334
1471 Experimental Study of Heat Transfer Enhancement Using Protruded Rectangular Fin

Authors: Tarique Jamil Khan, Swapnil Pande

Abstract:

The investigation deals with the study of heat transfer enhancement using protruded square fin. This study is enough to determine whether protrusion in forced convection is enough to enhance the rate of heat transfer. It includes the results after performing experiments by using a plane rectangular fin of aluminum material and the same dimension rectangular fin of the same material but having protruded circular shape extended normally. The fins made by a sand casting method. The results clearly mentioned that the protruded surface is effective enough to enhance the rate of heat transfer. This research investigates a modern fin topologies heat transfer characteristics that will clearly outdated the conventional fin to increase the rate of heat transfer. Protruded fins improve the rate of heat transfer compared to solid fin by varying shape of the protrusion in diameter and height.

Keywords: heat transfer enhancement, forced convection, protruted fin, rectangular fin

Procedia PDF Downloads 364
1470 Enhancement of Mechanical and Biological Properties in Wollastonite Bioceramics by MgSiO3 Addition

Authors: Jae Hong Kim, Sang Cheol Um, Jong Kook Lee

Abstract:

Strong and biocompatible wollastonite (CaSiO3) was fabricated by pressureless sintering at temperature range of 1250~ 1300 ℃ and phase transition of to β-wollastonite with an addition of MgSiO3. Starting pure α-wollastonite powder were prepared by solid state reaction, and MgSiO3 powder was added to α-wollastonite powder to induce the phase transition α to β-wollastonite over 1250℃. Sintered wollastonite samples at 1250℃ with 5 and 10 wt% MgSiO3 were α+β phase and β phase respectively, and showed higher densification rate than that of α or β-wollastonite, which are almost the same as the theoretical density. Hardness and Young’s modulus of sintered wollastonite were dependent on the apparent density and the amount of β-wollastonite. Young’s modulus (78GPa) of β-wollastonite added 10 wt% MgSiO3 was almost double time of sintered α-wollastonite. From the in-vitro test, biphasic (α+β) wollastonite with 5wt% MgSiO3 addition had good bioactivity in simulated body fluid solution.

Keywords: β-wollastonite, high density, MgSiO3, phase transition

Procedia PDF Downloads 584
1469 Phase Equilibria in the Ln-Sr-Co-O Systems

Authors: Anastasiia Maklakova

Abstract:

The perovskite type oxides formed in the Ln-Me-Me/-O systems (where Ln – rare-earth, Me – alkaline earth metal, Me/ - 3-d metal) have potential applications as gas sensors, catalysts or cathode materials for IT-SOFCs due to the high values of mixed electronic -ionic conductivity and high oxygen diffusivity. Complex oxides in the Sr-(Pr,Gd)-Co-O systems were prepared via the glycerol-nitrate technique The phase composition was determined using a Shimadzu XRD-7000 diffractometer at room temperature in air. Phase identification was performed using the ICDD database. The structure was refined by the full-profile Rietveld method using Fullprof 2008 software. Gradual substitution of strontium by Pr or Gd leads to the decrease of unit cell parameters and unit cell volume that can be explained by the size factor. An introduction of Pr or Gd into the strontium cobaltite increases the oxygen content in samples.

Keywords: phase equilibria, crystal structure, oxygen nonstoichiometry, solid oxide fuel cell

Procedia PDF Downloads 118
1468 Healthy, Breast Fed Bangladeshi Children Can Regulate Their Food Consumption in Each Meal and Feeding Duration When Offered with Varied Energy Density and Feeding Frequency of Complementary Foods

Authors: M. Munirul Islam, Makhduma Khatun M., Janet M. Peerson, Tahmeed Ahmed, M. Abid Hossain Mollah, Kathryn G. Dewey, Kenneth H. Brown

Abstract:

Information is required on the effects of dietary energy density (ED) and feeding frequency (FF) of complementary foods (CF) on food consumption during individual meals and time expended in child feeding. We evaluated the effects of varied ED and FF of CFs on food intake and time required for child feeding during individual meals. During 9 separate, randomly ordered dietary periods lasting 3-6 days each, we measured self-determined intakes of porridges by 18 healthy, breastfed children 8-11 mo old who were fed coded porridges with energy densities of 0.5, 1.0 or 1.5 kcal/g, during 3, 4, or 5 meals/d. CF intake was measured by weighing the feeding bowl before and after every meal. Children consumed greater amounts of CFs per meal when they received diets with lower ED (p = 0.044) and fewer meals per day (p < 0.001). Food intake was less during the first meal of the day than the other meals. Greater time was expended per meal when fewer meals were offered. Time expended per meal did not vary by ED, but the children ate the lower ED diets faster (p = 0.019). Food intake velocity was also greater when more meals were offered per day (p = 0.005). These results provide further evidence of young children’s ability to regulate their energy intakes, even during infancy; and they convey information on factors that affect the amount of time that caregivers must devote to child feeding.

Keywords: complementary foods, energy density, feeding frequency, young children

Procedia PDF Downloads 467
1467 Arc Plasma Application for Solid Waste Processing

Authors: Vladimir Messerle, Alfred Mosse, Alexandr Ustimenko, Oleg Lavrichshev

Abstract:

Hygiene and sanitary study of typical medical-biological waste made in Kazakhstan, Russia, Belarus and other countries show that their risk to the environment is much higher than that of most chemical wastes. For example, toxicity of solid waste (SW) containing cytotoxic drugs and antibiotics is comparable to toxicity of radioactive waste of high and medium level activity. This report presents the results of the thermodynamic analysis of thermal processing of SW and experiments at the developed plasma unit for SW processing. Thermodynamic calculations showed that the maximum yield of the synthesis gas at plasma gasification of SW in air and steam mediums is achieved at a temperature of 1600K. At the air plasma gasification of SW high-calorific synthesis gas with a concentration of 82.4% (СO – 31.7%, H2 – 50.7%) can be obtained, and at the steam plasma gasification – with a concentration of 94.5% (СO – 33.6%, H2 – 60.9%). Specific heat of combustion of the synthesis gas produced by air gasification amounts to 14267 kJ/kg, while by steam gasification - 19414 kJ/kg. At the optimal temperature (1600 K), the specific power consumption for air gasification of SW constitutes 1.92 kWh/kg, while for steam gasification - 2.44 kWh/kg. Experimental study was carried out in a plasma reactor. This is device of periodic action. The arc plasma torch of 70 kW electric power is used for SW processing. Consumption of SW was 30 kg/h. Flow of plasma-forming air was 12 kg/h. Under the influence of air plasma flame weight average temperature in the chamber reaches 1800 K. Gaseous products are taken out of the reactor into the flue gas cooling unit, and the condensed products accumulate in the slag formation zone. The cooled gaseous products enter the gas purification unit, after which via gas sampling system is supplied to the analyzer. Ventilation system provides a negative pressure in the reactor up to 10 mm of water column. Condensed products of SW processing are removed from the reactor after its stopping. By the results of experiments on SW plasma gasification the reactor operating conditions were determined, the exhaust gas analysis was performed and the residual carbon content in the slag was determined. Gas analysis showed the following composition of the gas at the exit of gas purification unit, (vol.%): СO – 26.5, H2 – 44.6, N2–28.9. The total concentration of the syngas was 71.1%, which agreed well with the thermodynamic calculations. The discrepancy between experiment and calculation by the yield of the target syngas did not exceed 16%. Specific power consumption for SW gasification in the plasma reactor according to the results of experiments amounted to 2.25 kWh/kg of working substance. No harmful impurities were found in both gas and condensed products of SW plasma gasification. Comparison of experimental results and calculations showed good agreement. Acknowledgement—This work was supported by Ministry of Education and Science of the Republic of Kazakhstan and Ministry of Education and Science of the Russian Federation (Agreement on grant No. 14.607.21.0118, project RFMEF160715X0118).

Keywords: coal, efficiency, ignition, numerical modeling, plasma-fuel system, plasma generator

Procedia PDF Downloads 251
1466 Hepatoprotective Action of Emblica officinalis Linn. against Radiation and Lead Induced Changes in Swiss Albino Mice

Authors: R. K. Purohit

Abstract:

Ionizing radiation induces cellular damage through direct ionization of DNA and other cellular targets and indirectly via reactive oxygen species which may include effects from epigenetic changes. So there is a need of hour is to search for an ideal radioprotector which could minimize the deleterious and damaging effects caused by ionizing radiation. Radioprotectors are agents which reduce the radiation effects on cell when applied prior to exposure of radiation. The aim of this study was to access the efficacy of Emblica officinalis in reducing radiation and lead induced changes in mice liver. For the present experiment, healthy male Swiss albino mice (6-8 weeks) were selected and maintained under standard conditions of temperature and light. Fruit extract of Emblica was fed orally at the dose of 0.01 ml/animal/day. The animal were divided into seven groups according to the treatment i.e. lead acetate solution as drinking water (group-II) or exposed to 3.5 or 7.0 Gy gamma radiation (group-III) or combined treatment of radiation and lead acetate (group-IV). The animals of experimental groups were administered Emblica extract seven days prior to radiation or lead acetate treatment (group V, VI and VII) respectively. The animals from all the groups were sacrificed by cervical dislocation at each post-treatment intervals of 1, 2, 4, 7, 14 and 28 days. After sacrificing the animals pieces of liver were taken out and some of them were kept at -20°C for different biochemical parameters. The histopathological changes included cytoplasmic degranulation, vacuolation, hyperaemia, pycnotic and crenated nuclei. The changes observed in the control groups were compared with the respective experimental groups. An increase in the value of total proteins, glycogen, acid phosphtase, alkaline phosphatase activity and RNA was observed up to day-14 in the non drug treated group and day 7 in the Emblica treated groups, thereafter value declined up to day-28 without reaching to normal. The value of cholesterol and DNA showed a decreasing trend up to day -14 in non drug treated groups and day-7 in drug treated groups, thereafter value elevated up to day-28. The biochemical parameters were observed in the form of increase or decrease in the values. The changes were found dose dependent. After combined treatment of radiation and lead acetate synergistic effect were observed. The liver of Emblica treated animals exhibited less severe damage as compared to non-drug treated animals at all the corresponding intervals. An early and fast recovery was also noticed in Emblica pretreated animals. Thus, it appears that Emblica is potent enough to check lead and radiation induced heptic lesion in Swiss albino mice.

Keywords: radiation, lead , emblica, mice, liver

Procedia PDF Downloads 322
1465 Optimization of Ultrasound-Assisted Extraction of Oil from Spent Coffee Grounds Using a Central Composite Rotatable Design

Authors: Malek Miladi, Miguel Vegara, Maria Perez-Infantes, Khaled Mohamed Ramadan, Antonio Ruiz-Canales, Damaris Nunez-Gomez

Abstract:

Coffee is the second consumed commodity worldwide, yet it also generates colossal waste. Proper management of coffee waste is proposed by converting them into products with higher added value to achieve sustainability of the economic and ecological footprint and protect the environment. Based on this, a study looking at the recovery of coffee waste is becoming more relevant in recent decades. Spent coffee grounds (SCG's) resulted from brewing coffee represents the major waste produced among all coffee industry. The fact that SCGs has no economic value be abundant in nature and industry, do not compete with agriculture and especially its high oil content (between 7-15% from its total dry matter weight depending on the coffee varieties, Arabica or Robusta), encourages its use as a sustainable feedstock for bio-oil production. The bio-oil extraction is a crucial step towards biodiesel production by the transesterification process. However, conventional methods used for oil extraction are not recommended due to their high consumption of energy, time, and generation of toxic volatile organic solvents. Thus, finding a sustainable, economical, and efficient extraction technique is crucial to scale up the process and to ensure more environment-friendly production. Under this perspective, the aim of this work was the statistical study to know an efficient strategy for oil extraction by n-hexane using indirect sonication. The coffee waste mixed Arabica and Robusta, which was used in this work. The temperature effect, sonication time, and solvent-to-solid ratio on the oil yield were statistically investigated as dependent variables by Central Composite Rotatable Design (CCRD) 23. The results were analyzed using STATISTICA 7 StatSoft software. The CCRD showed the significance of all the variables tested (P < 0.05) on the process output. The validation of the model by analysis of variance (ANOVA) showed good adjustment for the results obtained for a 95% confidence interval, and also, the predicted values graph vs. experimental values confirmed the satisfactory correlation between the model results. Besides, the identification of the optimum experimental conditions was based on the study of the surface response graphs (2-D and 3-D) and the critical statistical values. Based on the CCDR results, 29 ºC, 56.6 min, and solvent-to-solid ratio 16 were the better experimental conditions defined statistically for coffee waste oil extraction using n-hexane as solvent. In these conditions, the oil yield was >9% in all cases. The results confirmed the efficiency of using an ultrasound bath in extracting oil as a more economical, green, and efficient way when compared to the Soxhlet method.

Keywords: coffee waste, optimization, oil yield, statistical planning

Procedia PDF Downloads 120
1464 Physicochemical Properties of Palm Stearin (PS) and Palm Kernel Olein (PKOO) Blends as Potential Edible Coating Materials

Authors: I. Ruzaina, A. B. Rashid, M. S. Halimahton Zahrah, C. S. Cheow, M. S. Adi

Abstract:

This study was conducted to determine the potential of palm stearin (PS) as edible coating materials for fruits. The palm stearin was blended with 20-80% palm kernel olein (PKOo) and the properties of the blends were evaluated in terms of the slip melting point (SMP), solid fat content (SFC), fatty acid and triacylglycerol compositions (TAG), and polymorphism. Blending of PS with PKOo reduced the SMP, SFC, altered the FAC and TAG composition and changed the crystal polymorphism from β to mixture of β and β′. The changes in the physicochemical properties of PS were due to the replacement of the high melting TAG in PS with medium chain TAG in PKOo. From the analysis, 1:1 and 3:2 were the better PSPKOo blend formulations in slowing down the weight loss, respiration gases and gave better appearance when compared to other PSPKOo blends formulations.

Keywords: guava, palm stearin, palm kernel olein, physicochemical

Procedia PDF Downloads 585
1463 Numerical Simulation on Two Components Particles Flow in Fluidized Bed

Authors: Wang Heng, Zhong Zhaoping, Guo Feihong, Wang Jia, Wang Xiaoyi

Abstract:

Flow of gas and particles in fluidized beds is complex and chaotic, which is difficult to measure and analyze by experiments. Some bed materials with bad fluidized performance always fluidize with fluidized medium. The material and the fluidized medium are different in many properties such as density, size and shape. These factors make the dynamic process more complex and the experiment research more limited. Numerical simulation is an efficient way to describe the process of gas-solid flow in fluidized bed. One of the most popular numerical simulation methods is CFD-DEM, i.e., computational fluid dynamics-discrete element method. The shapes of particles are always simplified as sphere in most researches. Although sphere-shaped particles make the calculation of particle uncomplicated, the effects of different shapes are disregarded. However, in practical applications, the two-component systems in fluidized bed also contain sphere particles and non-sphere particles. Therefore, it is needed to study the two component flow of sphere particles and non-sphere particles. In this paper, the flows of mixing were simulated as the flow of molding biomass particles and quartz in fluidized bad. The integrated model was built on an Eulerian–Lagrangian approach which was improved to suit the non-sphere particles. The constructed methods of cylinder-shaped particles were different when it came to different numerical methods. Each cylinder-shaped particle was constructed as an agglomerate of fictitious small particles in CFD part, which means the small fictitious particles gathered but not combined with each other. The diameter of a fictitious particle d_fic and its solid volume fraction inside a cylinder-shaped particle α_fic, which is called the fictitious volume fraction, are introduced to modify the drag coefficient β by introducing the volume fraction of the cylinder-shaped particles α_cld and sphere-shaped particles α_sph. In a computational cell, the void ε, can be expressed as ε=1-〖α_cld α〗_fic-α_sph. The Ergun equation and the Wen and Yu equation were used to calculate β. While in DEM method, cylinder-shaped particles were built by multi-sphere method, in which small sphere element merged with each other. Soft sphere model was using to get the connect force between particles. The total connect force of cylinder-shaped particle was calculated as the sum of the small sphere particles’ forces. The model (size=1×0.15×0.032 mm3) contained 420000 sphere-shaped particles (diameter=0.8 mm, density=1350 kg/m3) and 60 cylinder-shaped particles (diameter=10 mm, length=10 mm, density=2650 kg/m3). Each cylinder-shaped particle was constructed by 2072 small sphere-shaped particles (d=0.8 mm) in CFD mesh and 768 sphere-shaped particles (d=3 mm) in DEM mesh. The length of CFD and DEM cells are 1 mm and 2 mm. Superficial gas velocity was changed in different models as 1.0 m/s, 1.5 m/s, 2.0m/s. The results of simulation were compared with the experimental results. The movements of particles were regularly as fountain. The effect of superficial gas velocity on cylinder-shaped particles was stronger than that of sphere-shaped particles. The result proved this present work provided a effective approach to simulation the flow of two component particles.

Keywords: computational fluid dynamics, discrete element method, fluidized bed, multiphase flow

Procedia PDF Downloads 328