Search results for: architectural design learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18742

Search results for: architectural design learning

17122 Combining Shallow and Deep Unsupervised Machine Learning Techniques to Detect Bad Actors in Complex Datasets

Authors: Jun Ming Moey, Zhiyaun Chen, David Nicholson

Abstract:

Bad actors are often hard to detect in data that imprints their behaviour patterns because they are comparatively rare events embedded in non-bad actor data. An unsupervised machine learning framework is applied here to detect bad actors in financial crime datasets that record millions of transactions undertaken by hundreds of actors (<0.01% bad). Specifically, the framework combines ‘shallow’ (PCA, Isolation Forest) and ‘deep’ (Autoencoder) methods to detect outlier patterns. Detection performance analysis for both the individual methods and their combination is reported.

Keywords: detection, machine learning, deep learning, unsupervised, outlier analysis, data science, fraud, financial crime

Procedia PDF Downloads 99
17121 Effectiveness of Active Learning in Social Science Courses at Japanese Universities

Authors: Kumiko Inagaki

Abstract:

In recent, years, Japanese universities have begun to face a dilemma: more than half of all high school graduates go on to attend an institution of higher learning, overwhelming Japanese universities accustomed to small student bodies. These universities have been forced to embrace qualitative changes to accommodate the increased number and diversity of students who enter their establishments, students who differ in their motivations for learning, their levels of eagerness to learn, and their perspectives on the future. One of these changes is an increase in awareness among Japanese educators of the importance of active learning, which deepens students’ understanding of course material through a range of activities, including writing, speaking, thinking, and presenting, in addition to conventional “passive learning” methods such as listening to a one-way lecture.  The purpose of this study is to examine the effectiveness of the teaching method adapted to improve active learning. A teaching method designed to promote active learning was implemented in a social science course at one of the most popular universities in Japan. A questionnaire using a five-point response format was given to students in 2,305 courses throughout the university to evaluate the effectiveness of the method based on the following measures: ① the ratio of students who were motivated to attend the classes, ② the rate at which students learned new information, and ③ the teaching method adopted in the classes. The results of this study show that the percentage of students who attended the active learning course eagerly, and the rate of new knowledge acquired through the course, both exceeded the average for the university, the department, and the subject area of social science. In addition, there are strong correlations between teaching method and student motivation and between teaching method and knowledge acquisition rate. These results indicate that the active learning teaching method was effectively implemented and that it may improve student eagerness to attend class and motivation to learn.

Keywords: active learning, Japanese university, teaching method, university education

Procedia PDF Downloads 198
17120 Study on the Focus of Attention of Special Education Students in Primary School

Authors: Tung-Kuang Wu, Hsing-Pei Hsieh, Ying-Ru Meng

Abstract:

Special Education in Taiwan has been facing difficulties including shortage of teachers and lack in resources. Some students need to receive special education are thus not identified or admitted. Fortunately, information technologies can be applied to relieve some of the difficulties. For example, on-line multimedia courseware can be used to assist the learning of special education students and take pretty much workload from special education teachers. However, there may exist cognitive variations between students in special or regular educations, which suggests the design of online courseware requires different considerations. This study aims to investigate the difference in focus of attention (FOA) between special and regular education students of primary school in viewing the computer screen. The study is essential as it helps courseware developers in determining where to put learning elements that matter the most on the right position of screen. It may also assist special education specialists to better understand the subtle differences among various subtypes of learning disabilities. This study involves 76 special education students (among them, 39 are students with mental retardation, MR, and 37 are students with learning disabilities, LDs) and 42 regular education students. The participants were asked to view a computer screen showing a picture partitioned into 3 × 3 areas with each area filled with text or icon. The subjects were then instructed to mark on the prior given paper sheets, which are also partitioned into 3 × 3 grids, the areas corresponding to the pictures on the computer screen that they first set their eyes on. The data are then collected and analyzed. Major findings are listed: 1. In both text and icon scenario, significant differences exist in the first preferred FOA between special and regular education students. The first FOA for the former is mainly on area 1 (upper left area, 53.8% / 51.3% for MR / LDs students in text scenario; and 53.8% / 56.8% for MR / LDs students in icons scenario), while the latter on area 5 (middle area, 50.0% and 57.1% in text and icons scenarios). 2. The second most preferred area in text scenario for students with MR and LDs are area 2 (upper-middle, 20.5%) and 5 (middle area, 24.3%). In icons scenario, the results are similar, but lesser in percentage. 3. Students with LDs that show similar preference (either in text or icons scenarios) in FOA to regular education students tend to be of some specific sub-type of learning disabilities. For instance, students with LDs that chose area 5 (middle area, either in text or icon scenario) as their FOA are mostly ones that have reading or writing disability. Also, three (out of 13) subjects in this category, after going through the rediagnosis process, were excluded from being learning disabilities. In summary, the findings suggest when designing multimedia courseware for students with MR and LDs, the essential learning elements should be placed on area 1, 2 and 5. In addition, FOV preference may also potentially be used as an indicator for diagnosing students with LDs.

Keywords: focus of attention, learning disabilities, mental retardation, on-line multimedia courseware, special education

Procedia PDF Downloads 165
17119 Humanising Hospital Retrofitting: The Case Study of Malaysia Public Hospitals

Authors: Nur Faridatull Syafinaz Ahmad Tajudin

Abstract:

A hospital is a setting where individuals who are ill or injured are treated and cared for by doctors and nurses. Sanatoriums are settings where people can receive treatment and rest, particularly when recovering from a protracted illness. According to the report, hospitals are primarily designed to meet the needs of medical personnel by maximising their functionality and workflow. Hospitals frequently do a poor job of determining the patients' physical and emotional requirements and expectations. The literature on hospital design has recently focused more on the seeming need to "humanise" medical facilities. Despite the popularity of this design objective, "humanising" a space has hardly ever been defined or critically examined. The term "humanistic design" covered a broad range of design elements and designer interpretations. In reality, the hospital's layout and design the hospital may have a massive effect on patients' feel experience things and heal.

Keywords: hospital retrofitting, hospital design, humanising hospital, spatial design

Procedia PDF Downloads 125
17118 Attribution Theory and Perceived Reliability of Cellphones for Teaching and Learning

Authors: Mayowa A. Sofowora, Seraphin D. Eyono Obono

Abstract:

The use of information and communication technologies such as computers, mobile phones and the internet is becoming prevalent in today’s world; and it is facilitating access to a vast amount of data, services, and applications for the improvement of people’s lives. However, this prevalence of ICTs is hampered by the problem of low income levels in developing countries to the point where people cannot timeously replace or repair their ICT devices when damaged or lost; and this problem serves as a motivation for this study whose aim is to examine the perceptions of teachers on the reliability of cellphones when used for teaching and learning purposes. The research objectives unfolding this aim are of two types: objectives on the selection and design of theories and models, and objectives on the empirical testing of these theories and models. The first type of objectives is achieved using content analysis in an extensive literature survey, and the second type of objectives is achieved through a survey of high school teachers from the ILembe and Umgungudlovu districts in the KwaZuluNatal province of South Africa. Data collected from this questionnaire based survey is analysed in SPSS using descriptive statistics and Pearson correlations after checking the reliability and validity of the questionnaire. The main hypothesis driving this study is that there is a relationship between the demographics and the attribution identity of teachers on one hand, and their perceptions on the reliability of cellphones on the other hand, as suggested by existing literature; except that attribution identities are considered in this study under three angles: intention, knowledge and ability, and action. The results of this study confirm that the perceptions of teachers on the reliability of cellphones for teaching and learning are affected by the school location of these teachers, and by their perceptions on learners’ cellphones usage intentions and actual use.

Keywords: attribution, cellphones, e-learning, reliability

Procedia PDF Downloads 406
17117 New Territories: Materiality and Craft from Natural Systems to Digital Experiments

Authors: Carla Aramouny

Abstract:

Digital fabrication, between advancements in software and machinery, is pushing practice today towards more complexity in design, allowing for unparalleled explorations. It is giving designers the immediate capacity to apply their imagined objects into physical results. Yet at no time have questions of material knowledge become more relevant and crucial, as technological advancements approach a radical re-invention of the design process. As more and more designers look towards tactile crafts for material know-how, an interest in natural behaviors has also emerged trying to embed intelligence from nature into the designed objects. Concerned with enhancing their immediate environment, designers today are pushing the boundaries of design by bringing in natural systems, materiality, and advanced fabrication as essential processes to produce active designs. New Territories, a yearly architecture and design course on digital design and materiality, allows students to explore processes of digital fabrication in intersection with natural systems and hands-on experiments. This paper will highlight the importance of learning from nature and from physical materiality in a digital design process, and how the simultaneous move between the digital and physical realms has become an essential design method. It will detail the work done over the course of three years, on themes of natural systems, crafts, concrete plasticity, and active composite materials. The aim throughout the course is to explore the design of products and active systems, be it modular facades, intelligent cladding, or adaptable seating, by embedding current digital technologies with an understanding of natural systems and a physical know-how of material behavior. From this aim, three main themes of inquiry have emerged through the varied explorations across the three years, each one approaching materiality and digital technologies through a different lens. The first theme involves crossing the study of naturals systems as precedents for intelligent formal assemblies with traditional crafts methods. The students worked on designing performative facade systems, starting from the study of relevant natural systems and a specific craft, and then using parametric modeling to develop their modular facades. The second theme looks at the cross of craft and digital technologies through form-finding techniques and elastic material properties, bringing in flexible formwork into the digital fabrication process. Students explored concrete plasticity and behaviors with natural references, as they worked on the design of an exterior seating installation using lightweight concrete composites and complex casting methods. The third theme brings in bio-composite material properties with additive fabrication and environmental concerns to create performative cladding systems. Students experimented in concrete composites materials, biomaterials and clay 3D printing to produce different cladding and tiling prototypes that actively enhance their immediate environment. This paper thus will detail the work process done by the students under these three themes of inquiry, describing their material experimentation, digital and analog design methodologies, and their final results. It aims to shed light on the persisting importance of material knowledge as it intersects with advanced digital fabrication and the significance of learning from natural systems and biological properties to embed an active performance in today’s design process.

Keywords: digital fabrication, design and craft, materiality, natural systems

Procedia PDF Downloads 129
17116 Mentor and Mentee Based Learning

Authors: Erhan Eroğlu

Abstract:

This paper presents a new method called Mentor and Mentee Based Learning. This new method is becoming more and more common especially at workplaces. This study is significant as it clearly underlines how it works well. Education has always aimed at equipping people with the necessary knowledge and information. For many decades it went on teachers’ talk and chalk methods. In the second half of the nineteenth century educators felt the need for some changes in delivery systems. Some new terms like self- discovery, learner engagement, student centered learning, hands on learning have become more and more popular for such a long time. However, some educators believe that there is much room for better learning methods in many fields as they think the learners still cannot fulfill their potential capacities. Thus, new systems and methods are still being developed and applied at education centers and work places. One of the latest methods is assigning some mentors for the newly recruited employees and training them within a mentor and mentee program which allows both parties to see their strengths and weaknesses and the areas which can be improved. This paper aims at finding out the perceptions of the mentors and mentees on the programs they are offered at their workplaces and suggests some betterment alternatives. The study has been conducted via a qualitative method whereby some interviews have been done with both mentors and mentees separately and together. Results show that it is a great way to train inexperienced one and also to refresh the older ones. Some points to be improved have also been underlined. The paper shows that education is not a one way path to follow.

Keywords: learning, mentor, mentee, training

Procedia PDF Downloads 229
17115 A Comparative Time-Series Analysis and Deep Learning Projection of Innate Radon Gas Risk in Canadian and Swedish Residential Buildings

Authors: Selim M. Khan, Dustin D. Pearson, Tryggve Rönnqvist, Markus E. Nielsen, Joshua M. Taron, Aaron A. Goodarzi

Abstract:

Accumulation of radioactive radon gas in indoor air poses a serious risk to human health by increasing the lifetime risk of lung cancer and is classified by IARC as a category one carcinogen. Radon exposure risks are a function of geologic, geographic, design, and human behavioural variables and can change over time. Using time series and deep machine learning modelling, we analyzed long-term radon test outcomes as a function of building metrics from 25,489 Canadian and 38,596 Swedish residential properties constructed between 1945 to 2020. While Canadian and Swedish properties built between 1970 and 1980 are comparable (96–103 Bq/m³), innate radon risks subsequently diverge, rising in Canada and falling in Sweden such that 21st Century Canadian houses show 467% greater average radon (131 Bq/m³) relative to Swedish equivalents (28 Bq/m³). These trends are consistent across housing types and regions within each country. The introduction of energy efficiency measures within Canadian and Swedish building codes coincided with opposing radon level trajectories in each nation. Deep machine learning modelling predicts that, without intervention, average Canadian residential radon levels will increase to 176 Bq/m³ by 2050, emphasizing the importance and urgency of future building code intervention to achieve systemic radon reduction in Canada.

Keywords: radon health risk, time-series, deep machine learning, lung cancer, Canada, Sweden

Procedia PDF Downloads 88
17114 A Case Study of Deep Learning for Disease Detection in Crops

Authors: Felipe A. Guth, Shane Ward, Kevin McDonnell

Abstract:

In the precision agriculture area, one of the main tasks is the automated detection of diseases in crops. Machine Learning algorithms have been studied in recent decades for such tasks in view of their potential for improving economic outcomes that automated disease detection may attain over crop fields. The latest generation of deep learning convolution neural networks has presented significant results in the area of image classification. In this way, this work has tested the implementation of an architecture of deep learning convolution neural network for the detection of diseases in different types of crops. A data augmentation strategy was used to meet the requirements of the algorithm implemented with a deep learning framework. Two test scenarios were deployed. The first scenario implemented a neural network under images extracted from a controlled environment while the second one took images both from the field and the controlled environment. The results evaluated the generalisation capacity of the neural networks in relation to the two types of images presented. Results yielded a general classification accuracy of 59% in scenario 1 and 96% in scenario 2.

Keywords: convolutional neural networks, deep learning, disease detection, precision agriculture

Procedia PDF Downloads 261
17113 Hacking the Spatial Limitations in Bridging Virtual and Traditional Teaching Methodologies in Sri Lanka

Authors: Manuela Nayantara Jeyaraj

Abstract:

Having moved into the 21st century, it is way past being arguable that innovative technology needs to be incorporated into conventional classroom teaching. Though the Western world has found presumable success in achieving this, it is still a concept under battle in developing countries such as Sri Lanka. Reaching the acme of implementing interactive virtual learning within classrooms is a struggling idealistic fascination within the island. In order to overcome this problem, this study is set to reveal facts that limit the implementation of virtual, interactive learning within the school classrooms and provide hacks that could prove the augmented use of the Virtual World to enhance teaching and learning experiences. As each classroom moves along with the usage of technology to fulfill its functionalities, a few intense hacks provided will build the administrative onuses on a virtual system. These hacks may divulge barriers based on social conventions, financial boundaries, digital literacy, intellectual capacity of the staff, and highlight the impediments in introducing students to an interactive virtual learning environment and thereby provide the necessary actions or changes to be made to succeed and march along in creating an intellectual society built on virtual learning and lifestyle. This digital learning environment will be composed of multimedia presentations, trivia and pop quizzes conducted on a GUI, assessments conducted via a virtual system, records maintained on a database, etc. The ultimate objective of this study could enhance every child's basic learning environment; hence, diminishing the digital divide that exists in certain communities.

Keywords: digital divide, digital learning, digitization, Sri Lanka, teaching methodologies

Procedia PDF Downloads 357
17112 Multi-Classification Deep Learning Model for Diagnosing Different Chest Diseases

Authors: Bandhan Dey, Muhsina Bintoon Yiasha, Gulam Sulaman Choudhury

Abstract:

Chest disease is one of the most problematic ailments in our regular life. There are many known chest diseases out there. Diagnosing them correctly plays a vital role in the process of treatment. There are many methods available explicitly developed for different chest diseases. But the most common approach for diagnosing these diseases is through X-ray. In this paper, we proposed a multi-classification deep learning model for diagnosing COVID-19, lung cancer, pneumonia, tuberculosis, and atelectasis from chest X-rays. In the present work, we used the transfer learning method for better accuracy and fast training phase. The performance of three architectures is considered: InceptionV3, VGG-16, and VGG-19. We evaluated these deep learning architectures using public digital chest x-ray datasets with six classes (i.e., COVID-19, lung cancer, pneumonia, tuberculosis, atelectasis, and normal). The experiments are conducted on six-classification, and we found that VGG16 outperforms other proposed models with an accuracy of 95%.

Keywords: deep learning, image classification, X-ray images, Tensorflow, Keras, chest diseases, convolutional neural networks, multi-classification

Procedia PDF Downloads 95
17111 Spontaneous and Posed Smile Detection: Deep Learning, Traditional Machine Learning, and Human Performance

Authors: Liang Wang, Beste F. Yuksel, David Guy Brizan

Abstract:

A computational model of affect that can distinguish between spontaneous and posed smiles with no errors on a large, popular data set using deep learning techniques is presented in this paper. A Long Short-Term Memory (LSTM) classifier, a type of Recurrent Neural Network, is utilized and compared to human classification. Results showed that while human classification (mean of 0.7133) was above chance, the LSTM model was more accurate than human classification and other comparable state-of-the-art systems. Additionally, a high accuracy rate was maintained with small amounts of training videos (70 instances). The derivation of important features to further understand the success of our computational model were analyzed, and it was inferred that thousands of pairs of points within the eyes and mouth are important throughout all time segments in a smile. This suggests that distinguishing between a posed and spontaneous smile is a complex task, one which may account for the difficulty and lower accuracy of human classification compared to machine learning models.

Keywords: affective computing, affect detection, computer vision, deep learning, human-computer interaction, machine learning, posed smile detection, spontaneous smile detection

Procedia PDF Downloads 128
17110 Relationship between Learning Methods and Learning Outcomes: Focusing on Discussions in Learning

Authors: Jaeseo Lim, Jooyong Park

Abstract:

Although there is ample evidence that student involvement enhances learning, college education is still mainly centered on lectures. However, in recent years, the effectiveness of discussions and the use of collective intelligence have attracted considerable attention. This study intends to examine the empirical effects of discussions on learning outcomes in various conditions. Eighty eight college students participated in the study and were randomly assigned to three groups. Group 1 was told to review material after a lecture, as in a traditional lecture-centered class. Students were given time to review the material for themselves after watching the lecture in a video clip. Group 2 participated in a discussion in groups of three or four after watching the lecture. Group 3 participated in a discussion after studying on their own. Unlike the previous two groups, students in Group 3 did not watch the lecture. The participants in the three groups were tested after studying. The test questions consisted of memorization problems, comprehension problems, and application problems. The results showed that the groups where students participated in discussions had significantly higher test scores. Moreover, the group where students studied on their own did better than that where students watched a lecture. Thus discussions are shown to be effective for enhancing learning. In particular, discussions seem to play a role in preparing students to solve application problems. This is a preliminary study and other age groups and various academic subjects need to be examined in order to generalize these findings. We also plan to investigate what kind of support is needed to facilitate discussions.

Keywords: discussions, education, learning, lecture, test

Procedia PDF Downloads 178
17109 Deep Reinforcement Learning Model for Autonomous Driving

Authors: Boumaraf Malak

Abstract:

The development of intelligent transportation systems (ITS) and artificial intelligence (AI) are spurring us to pave the way for the widespread adoption of autonomous vehicles (AVs). This is open again opportunities for smart roads, smart traffic safety, and mobility comfort. A highly intelligent decision-making system is essential for autonomous driving around dense, dynamic objects. It must be able to handle complex road geometry and topology, as well as complex multiagent interactions, and closely follow higher-level commands such as routing information. Autonomous vehicles have become a very hot research topic in recent years due to their significant ability to reduce traffic accidents and personal injuries. Using new artificial intelligence-based technologies handles important functions in scene understanding, motion planning, decision making, vehicle control, social behavior, and communication for AV. This paper focuses only on deep reinforcement learning-based methods; it does not include traditional (flat) planar techniques, which have been the subject of extensive research in the past because reinforcement learning (RL) has become a powerful learning framework now capable of learning complex policies in high dimensional environments. The DRL algorithm used so far found solutions to the four main problems of autonomous driving; in our paper, we highlight the challenges and point to possible future research directions.

Keywords: deep reinforcement learning, autonomous driving, deep deterministic policy gradient, deep Q-learning

Procedia PDF Downloads 87
17108 Machine Learning Approach for Mutation Testing

Authors: Michael Stewart

Abstract:

Mutation testing is a type of software testing proposed in the 1970s where program statements are deliberately changed to introduce simple errors so that test cases can be validated to determine if they can detect the errors. Test cases are executed against the mutant code to determine if one fails, detects the error and ensures the program is correct. One major issue with this type of testing was it became intensive computationally to generate and test all possible mutations for complex programs. This paper used reinforcement learning and parallel processing within the context of mutation testing for the selection of mutation operators and test cases that reduced the computational cost of testing and improved test suite effectiveness. Experiments were conducted using sample programs to determine how well the reinforcement learning-based algorithm performed with one live mutation, multiple live mutations and no live mutations. The experiments, measured by mutation score, were used to update the algorithm and improved accuracy for predictions. The performance was then evaluated on multiple processor computers. With reinforcement learning, the mutation operators utilized were reduced by 50 – 100%.

Keywords: automated-testing, machine learning, mutation testing, parallel processing, reinforcement learning, software engineering, software testing

Procedia PDF Downloads 202
17107 The Twin Terminal of Pedestrian Trajectory Based on City Intelligent Model (CIM) 4.0

Authors: Chen Xi, Lao Xuerui, Li Junjie, Jiang Yike, Wang Hanwei, Zeng Zihao

Abstract:

To further promote the development of smart cities, the microscopic "nerve endings" of the City Intelligent Model (CIM) are extended to be more sensitive. In this paper, we develop a pedestrian trajectory twin terminal based on the CIM and CNN technology. It also uses 5G networks, architectural and geoinformatics technologies, convolutional neural networks, combined with deep learning networks for human behaviour recognition models, to provide empirical data such as 'pedestrian flow data and human behavioural characteristics data', and ultimately form spatial performance evaluation criteria and spatial performance warning systems, to make the empirical data accurate and intelligent for prediction and decision making.

Keywords: urban planning, urban governance, CIM, artificial intelligence, convolutional neural network

Procedia PDF Downloads 158
17106 Use of Smartphone in Practical Classes to Facilitate Teaching and Learning of Microscopic Analysis and Interpretation of Tissues Sections

Authors: Lise P. Labéjof, Krisnayne S. Ribeiro, Nicolle P. dos Santos

Abstract:

An unrecorded experiment of use of the smartphone as a tool for practical classes of histology is presented in this article. Behavior, learning of the students of three science courses at the University were analyzed and compared as well as the mode of teaching of this discipline and the appreciation of the students, using either digital photographs taken by phone or drawings for record microscopic observations, analyze and interpret histological sections of human or animal tissues.

Keywords: cell phone, digital micrographies, learning of sciences, teaching practices

Procedia PDF Downloads 599
17105 Videoconference Technology: An Attractive Vehicle for Challenging and Changing Tutors Practice in Open and Distance Learning Environment

Authors: Ramorola Mmankoko Ziphorah

Abstract:

Videoconference technology represents a recent experiment of technology integration into teaching and learning in South Africa. Increasingly, videoconference technology is commonly used as a substitute for the traditional face-to-face approaches to teaching and learning in helping tutors to reshape and change their teaching practices. Interestingly, though, some studies point out that videoconference technology is commonly used for knowledge dissemination by tutors and not so much for the actual teaching of course content in Open and Distance Learning context. Though videoconference technology has become one of the dominating technologies available among Open and Distance Learning institutions, it is not clear that it has been used as effectively to bridge the learning distance in time, geography, and economy. While tutors are prepared theoretically, in most tutor preparation programs, on the use of videoconference technology, there are still no practical guidelines on how they should go about integrating this technology into their course teaching. Therefore, there is an urgent need to focus on tutor development, specifically on their capacities and skills to use videoconference technology. The assumption is that if tutors become competent in the use of the videoconference technology for course teaching, then their use in Open and Distance Learning environment will become more commonplace. This is the imperative of the 4th Industrial Revolution (4IR) on education generally. Against the current vacuum in the practice of using videoconference technology for course teaching, the current study proposes a qualitative phenomenological approach to investigate the efficacy of videoconferencing as an approach to student learning. Using interviews and observation data from ten participants in Open and Distance Learning institution, the author discusses how dialogue and structure interacted to provide the participating tutors with a rich set of opportunities to deliver course content. The findings to this study highlight various challenges experienced by tutors when using videoconference technology. The study suggests tutor development programs on their capacity and skills and on how to integrate this technology with various teaching strategies in order to enhance student learning. The author argues that it is not merely the existence of the structure, namely the videoconference technology, that provides the opportunity for effective teaching, but that is the interactions, namely, the dialogue amongst tutors and learners that make videoconference technology an attractive vehicle for challenging and changing tutors practice.

Keywords: open distance learning, transactional distance, tutor, videoconference

Procedia PDF Downloads 130
17104 The Relationships between How and Why Students Learn and Academic Achievement

Authors: S. Chee Choy, Daljeet Singh Sedhu

Abstract:

This study examines the relationships between how and why students learned and academic achievement for 2646 university students from various faculties. The LALQ, a self-report measure of student approaches to learning was administered and academic achievement data were obtained from student CGPA. The results showed significant differences in the approach to learning of male and female students. How and why students learned can influence their achievement and efficacy as well. High and low achievers have different learning behaviours. High female achievers were more likely to learn for a better future and be persistent in it. Meanwhile high male achievers were more likely to seek approval from their peers and be more confident about graduating on time from their university. The implications of individual differences and limitations of the study are discussed.

Keywords: student learning, learner awareness, student achievement, LALQ

Procedia PDF Downloads 347
17103 Creation of an Integrated Development Environment to Assist and Optimize the Learning the Languages C and C++

Authors: Francimar Alves, Marcos Castro, Marllus Lustosa

Abstract:

In the context of the teaching of computer programming, the choice of tool to use is very important in the initiation and continuity of learning a programming language. The literature tools do not always provide usability and pedagogical dynamism clearly and accurately for effective learning. This hypothesis implies fall in productivity and difficulty of learning a particular programming language by students. The integrated development environments (IDEs) Dev-C ++ and Code :: Blocks are widely used in introductory courses for undergraduate courses in Computer Science for learning C and C ++ languages. However, after several years of discontinuity maintaining the source code of Dev-C ++ tool, the continued use of the same in the teaching and learning process of the students of these institutions has led to difficulties, mainly due to the lack of update by the official developers, which resulted in a sequence of problems in using it on educational settings. Much of the users, dissatisfied with the IDE Dev-C ++, migrated to Code :: Blocks platform targeting the more dynamic range in the learning process of the C and C ++ languages. Nevertheless, there is still the need to create a tool that can provide the resources of most IDE's software development literature, however, more interactive, simple, accurate and efficient. This motivation led to the creation of Falcon C ++ tool, IDE that brings with features that turn it into an educational platform, which focuses primarily on increasing student learning index in the early disciplines of programming and algorithms that use the languages ​​C and C ++ . As a working methodology, a field research to prove the truth of the proposed tool was used. The test results and interviews with entry-level students and intermediate in a postsecondary institution gave basis for the composition of this work, demonstrating a positive impact on the use of the tool in teaching programming, showing that the use of Falcon C ++ software is beneficial in the teaching process of the C and C ++ programming languages.

Keywords: ide, education, learning, development, language

Procedia PDF Downloads 446
17102 Effects of Closed-Caption Programs on EFL Learners' Listening Comprehension and Vocabulary Learning

Authors: Bahman Gorjian

Abstract:

This study investigated the effects of closed-captioning on vocabulary learning and listening comprehension of English-language movies. Captioning is thus an effective language-learning tool for persons learning English as a second language. Because students may learn a foreign language "passively," utilizing subtitles on television could make learning English enjoyable for them. Closed captioning is an electrical technique that converts spoken words from a television program's audio into written text that mimics subtitles in another language. The findings of this study showed the importance of using closed-captioning software when learning a foreign language. As a result, these must be considered when teaching EFL/ESL. The influence of watching movies with closed captions on vocabulary and hearing is compared in this study. This goal can be reached by employing a closed-captioned movie as a teaching tool in the classroom. This research was critical because it demonstrates the advantages of closed-captioning programs in EFL classrooms for both teachers and students. The study's findings assisted teachers in better understanding how to employ closed captioning as a teaching tool in the classroom. The effects will be seen as even more significant for language learners who use the method.

Keywords: closed-captions, listening, comprehension, vcabulary

Procedia PDF Downloads 93
17101 The Relationship between Mobile Phone Usage and Secondary School Students’ Academic Performance: Work Experience at an International School

Authors: L. N. P. Wedikandage, Mohamed Razmi Zahir

Abstract:

Technology is a global imperative because of its contributions to human existence and because it has improved global socioeconomic relations. As a result, the mobile phone has become the most important mode of communication today. Smartphones, Internet-enabled devices with built-in computer software and applications, are one of the most significant inventions of the twenty-first century. Technology is advantageous to many people, especially those involved in education. It is an important learning tool for today's schoolchildren. It enables students to access online learning platforms and course resources and interact digitally. Senior secondary students, in particular, have some of the most expensive and sophisticated mobile phones, tablets, and iPads capable of connecting to the internet and various social media platforms, other websites, and so on. At present, the use of mobile phones' potential for effective teaching and learning is growing. This is due to the benefits of mobile learning, including the ability to share knowledge without any limits in space or Time and the capacity to facilitate the development of critical thinking, participatory learning, problem-solving, and the development of lifelong communication skills. However, it is yet unclear how mobile devices may affect education and how they may affect opportunities for learning. As a result, the purpose of this research was to ascertain the relationship between mobile phone usage and the academic Performance of secondary-level students at an international school in Sri Lanka. The study's sample consisted of 523 secondary-level students from an international school, ranging from Form 1 to Upper 6. For the study, a survey research design and questionnaires were used. Google Forms was used to create the students' survey. There were three hypotheses tested to find out the relationship between mobile phone usage and academic preference. The findings show that there is a positive relationship between mobile phone usage and academic performance among secondary school students (the number of students obtaining simple passes is significantly higher when mobile phones are being used for more than 7 hours), no relationship between mobile phone usage and academic performance among secondary school students of different parents' occupations, and a relationship between the frequency of mobile phone usage and academic performance among secondary school students.

Keywords: mobile phone, academic performance, secondary level, international schools

Procedia PDF Downloads 88
17100 Optimization of a Cone Loudspeaker Parameter of Design Parameters by Analysis of a Narrow Acoustic Sound Pathway

Authors: Yue Hu, Xilu Zhao, Takao Yamaguchi, Manabu Sasajima, Yoshio Koike, Akira Hara

Abstract:

This study tried optimization of design parameter of a cone loudspeaker unit as an example of the high flexibility of the products design. We developed an acoustic analysis software program that considers the impact of damping caused by air viscosity. In sound reproduction, it is difficult to each design the parameter of the loudspeaker. To overcome the limitation of the design problem in practice, this paper proposes a new an acoustic analysis algorithm to optimize design the parameter of the loudspeaker. The material character of cone paper and the loudspeaker edge was the design parameter, and the vibration displacement of the cone paper was the objective function. The results of the analysis were compared with the predicted value. They had high accuracy to the predicted value. These results suggest that, though the parameter design is difficult by experience and intuition, it can be performed comparatively easily using the optimization design by the developed acoustic analysis software.

Keywords: air viscosity, loudspeaker, cone paper, edge, optimization

Procedia PDF Downloads 404
17099 Introducing and Effectiveness Evaluation of Innovative Logistics System Simulation Teaching: Theoretical Integration and Verification

Authors: Tsai-Pei Liu, Zhi-Rou Zheng, Tzu-Tzu Wen

Abstract:

Innovative logistics system simulation teaching is to extract the characteristics of the system through simulation methodology. The system has randomness and interaction problems in the execution time. Therefore, the simulation model can usually deal with more complex logistics process problems, giving students different learning modes. Students have more autonomy in learning time and learning progress. System simulation has become a new educational tool, but it still needs to accept many tests to use it in the teaching field. Although many business management departments in Taiwan have started to promote, this kind of simulation system teaching is still not popular, and the prerequisite for popularization is to be supported by students. This research uses an extension of Integration Unified Theory of Acceptance and Use of Technology (UTAUT2) to explore the acceptance of students in universities of science and technology to use system simulation as a learning tool. At the same time, it is hoped that this innovation can explore the effectiveness of the logistics system simulation after the introduction of teaching. The results indicated the significant influence of performance expectancy, social influence and learning value on students’ intention towards confirmed the influence of facilitating conditions and behavioral intention. The extended UTAUT2 framework helps in understanding students’ perceived value in the innovative logistics system teaching context.

Keywords: UTAUT2, logistics system simulation, learning value, Taiwan

Procedia PDF Downloads 119
17098 Research on the Strategy of Whole-Life-Cycle Campus Design from the Perspective of Sustainable Concept: A Case Study on Hangzhou Senior High School in Zhejiang

Authors: Fan Yang

Abstract:

With the development of social economy and the popularization of quality education, the Chinese government invests more and more funding in education. Campus constructions are experiencing a great development phase. Under the trend of sustainable development, modern green campus design needs to meet new requirements of contemporary, informational and diversified education means and adapt to future education development. Educators, designers and other participants of campus design are facing new challenges. By studying and analyzing the universal unsatisfied current situations and sustainable development requirements of Chinese campuses, this paper summarizes the strategies and intentions of the whole-life-cycle campus design. In addition, a Chinese high school in Zhejiang province is added to illustrate the design cycle in an actual case. It is aimed to make all participants of campus design, especially the designers, to realize the importance of whole-life-cycle campus design and cooperate better. Sustainable campus design is expected to come true in deed instead of becoming a slogan in this way.

Keywords: campus design, green school, sustainable development, whole-life-cycle design

Procedia PDF Downloads 375
17097 Distributed System Computing Resource Scheduling Algorithm Based on Deep Reinforcement Learning

Authors: Yitao Lei, Xingxiang Zhai, Burra Venkata Durga Kumar

Abstract:

As the quantity and complexity of computing in large-scale software systems increase, distributed system computing becomes increasingly important. The distributed system realizes high-performance computing by collaboration between different computing resources. If there are no efficient resource scheduling resources, the abuse of distributed computing may cause resource waste and high costs. However, resource scheduling is usually an NP-hard problem, so we cannot find a general solution. However, some optimization algorithms exist like genetic algorithm, ant colony optimization, etc. The large scale of distributed systems makes this traditional optimization algorithm challenging to work with. Heuristic and machine learning algorithms are usually applied in this situation to ease the computing load. As a result, we do a review of traditional resource scheduling optimization algorithms and try to introduce a deep reinforcement learning method that utilizes the perceptual ability of neural networks and the decision-making ability of reinforcement learning. Using the machine learning method, we try to find important factors that influence the performance of distributed system computing and help the distributed system do an efficient computing resource scheduling. This paper surveys the application of deep reinforcement learning on distributed system computing resource scheduling proposes a deep reinforcement learning method that uses a recurrent neural network to optimize the resource scheduling, and proposes the challenges and improvement directions for DRL-based resource scheduling algorithms.

Keywords: resource scheduling, deep reinforcement learning, distributed system, artificial intelligence

Procedia PDF Downloads 115
17096 Improving Learning Abilities and Inclusion through Movement: The Movi-Mente© Method

Authors: Ivan Traina, Luigi Sangalli, Fabio Tognon, Angelo Lascioli

Abstract:

Currently, challenges regarding preschooler children are mainly focused on a sedentary lifestyle. Also, motor activity in infancy is seen as a tool for the separate acquisition of cognitive and socio-emotional skills rather than considering neuromotor development as a tool for improving learning abilities. The paper utilized an observational research method to shed light on the results of practicing neuromotor exercises in preschool children with disability as well as provide implications for practice.

Keywords: children with disability, learning abilities, inclusion, neuromotor development

Procedia PDF Downloads 157
17095 Effect of Two Transactional Instructional Strategies on Primary School Pupils’ Achievement in English Language Vocabulary and Reading Comprehension in Ibadan Metropolis, Nigeria

Authors: Eniola Akande

Abstract:

Introduction: English vocabulary and reading comprehension are core to academic achievement in many school subjects. Deficiency in both accounts for dismal performance in internal and external examinations among primary school pupils in Ibadan Metropolis, Nigeria. Previous studies largely focused on factors influencing pupils’ achievement in English vocabulary and reading comprehension. In spite of what literature has shown, the problem still persists, implying the need for other kinds of intervention. This study was therefore carried out to determine the effect of two transactional strategies Picture Walk (PW) and Know-Want to Learn-Learnt (KWL) on primary four pupils’ achievement in English vocabulary and reading comprehension in Ibadan Metropolis. The moderating effects of gender and learning style were also examined. Methodology: The study was anchored on Rosenblatt’s Transactional Reading and Piaget’s Cognitive Development theories; pretest-posttest control group quasi-experimental design with 3x2x3 factorial matrix was adopted. Six public primary schools were purposively selected based on the availability of qualified English language teachers in Primary Education Studies. Six intact classes (one per school) with a total of 101 primary four pupils (48 males and 53 females) participated. The intact classes were randomly assigned to PW (27), KWL (44) and conventional (30) groups. Instruments used were English Vocabulary (r=0.83), Reading Comprehension (r=0.84) achievement tests, Pupils’ Learning Style Preference Scale (r=0.93) and instructional guides. Treatment lasted six weeks. Data were analysed using the Descriptive statistics, Analysis of Covariance and Bonferroni post-hoc test at 0.05 level of significance. The mean age was 8.86±0.84 years. Result: Treatment had a significant main effect on pupils’ reading comprehension (F(2,82)=3.17), but not on English vocabulary. Participants in KWL obtained the highest post achievement means score in reading comprehension (8.93), followed by PW (8.06) and control (7.21) groups. Pupils’ learning style had a significant main effect on pupils’ achievement in reading comprehension (F(2,82)=4.41), but not on English vocabulary. Pupils with preference for tactile learning style had the highest post achievement mean score in reading comprehension (9.40), followed by the auditory (7.43) and the visual learning style (7.37) groups. Gender had no significant main effect on English vocabulary and reading comprehension. There was no significant two-way interaction effect of treatment and gender on pupils’ achievement in English vocabulary and reading comprehension. The two-way interaction effect of treatment and learning style on pupils’ achievement in reading comprehension was significant (F(4,82)=3.37), in favour of pupils with tactile learning style in PW group. There was no significant two-way interaction effect of gender and learning style on pupils’ achievement in English vocabulary and reading comprehension. The three-way interaction effects were not significant on English vocabulary and reading comprehension. Conclusion: Picture Walk and Know-Want to learn-Learnt instructional strategies were effective in enhancing pupils’ achievement in reading comprehension but not on English vocabulary. Learning style contributed considerably to achievement in reading comprehension but not to English vocabulary. Primary school, English language teachers, should put into consideration pupils’ learning style when adopting both strategies in teaching reading comprehension for improved achievement in the subject.

Keywords: comprehension-based intervention, know-want to learn-learnt, learning style, picture walk, primary school pupils

Procedia PDF Downloads 148
17094 Neural Network Based Decision Trees Using Machine Learning for Alzheimer's Diagnosis

Authors: P. S. Jagadeesh Kumar, Tracy Lin Huan, S. Meenakshi Sundaram

Abstract:

Alzheimer’s disease is one of the prevalent kind of ailment, expected for impudent reconciliation or an effectual therapy is to be accredited hitherto. Probable detonation of patients in the upcoming years, and consequently an enormous deal of apprehension in early discovery of the disorder, this will conceivably chaperon to enhanced healing outcomes. Complex impetuosity of the brain is an observant symbolic of the disease and a unique recognition of genetic sign of the disease. Machine learning alongside deep learning and decision tree reinforces the aptitude to absorb characteristics from multi-dimensional data’s and thus simplifies automatic classification of Alzheimer’s disease. Susceptible testing was prophesied and realized in training the prospect of Alzheimer’s disease classification built on machine learning advances. It was shrewd that the decision trees trained with deep neural network fashioned the excellent results parallel to related pattern classification.

Keywords: Alzheimer's diagnosis, decision trees, deep neural network, machine learning, pattern classification

Procedia PDF Downloads 299
17093 Fairness in Grading of Work-Integrated Learning Assessment: Key Stakeholders’ Challenges and Solutions

Authors: Geraldine O’Neill

Abstract:

Work-integrated learning is a valuable learning experience for students in higher education. However, the fairness of the assessment process has been identified as a challenge. This study explored solutions to this challenge through interviews with expert authors in the field and workshops across nine different disciplines in Ireland. In keeping with the use of a participatory and action research methodology, the key stakeholders in the process, the students, educators, and practitioners, identified some solutions. The solutions included the need to: clarify the assessments’ expectations; enhance the flexibility of the competencies, reduce the number of competencies; use grading scales with lower specificity; support practitioner training, and empower students in the assessment process. The results are discussed as they relate to interactional, procedural, and distributive fairness.

Keywords: competencies, fairness, grading scales, work-integrated learning

Procedia PDF Downloads 128