Search results for: Kernel density
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3672

Search results for: Kernel density

2052 Structural and Electromagnetic Properties of CoFe2O4-ZrO2 Nanocomosites

Authors: Ravinder Reddy Butreddy, Sadhana Katlakunta

Abstract:

The nanocomposites of CoFe2O4-xZrO2 with different loadings of ZrO2 (x = 0.025, 0.05, 0.075, 0.1 and 1.5) were prepared using ball mill method. All the samples were prepared at 980°C/1h using microwave sintering method. The x-ray diffraction patterns show the existence of tetragonal/monoclinic phase of ZrO2 and cubic phase of CoFe2O4. The effects of ZrO2 on structural and microstructural properties of CoFe2O4 composite ceramics were investigated. It is observed that the density of the composite decreases and porosity increases with x. The magnetic properties such as saturation magnetization (Ms), and Coercive field were calculated at room temperature. The Ms is decreased with x while coercive field is increased with x. The dielectric parameters exhibit the relaxation behavior in high-frequency region and showing increasing trend with ZrO2 concentration, showing suitable

Keywords: dielectric properties, magnetic properties, microwave sintering, nanocomposites

Procedia PDF Downloads 239
2051 Determination of Dynamic Soil Properties Using Multichannel Analysis of Surface Wave (MASW) Techniques in Earth-Filled Dam

Authors: Noppadon Sintuboon, Benjamas Sawatdipong, Anchalee Kongsuk

Abstract:

This study was conducted to investigate the engineering parameters: compressional wave: Vp, shear wave: Vs, and density: ρ related to the dynamically geotechnical properties of soils compaction in the core of earth-filled dam located in northern part of Thailand by using multichannel analysis of surface wave (MASW) techniques. The Vp, Vs, and ρ from MASW were 1,624 - 1,649 m/s, 301-323 m/s, and 1,829 kg/m3, respectively. Those parameters were calculated to Poison’s ratio: ν (0.48), shear modulus: G (1.66 x 108 - 1.92 x 108 kg/m2), Vp/Vs ratio (5.10 – 5.39) and Standard Penetration Test (SPT) showing the dynamic characteristics of soil deformation and stress resulting from dynamic loads. The results of this study will be useful in primary evaluating the current condition and foundation of the dam and can be compared to the data from the laboratory in the future.

Keywords: earth-filled dam, MASW, dynamic elastic constant, shear wave

Procedia PDF Downloads 297
2050 In-Situ Formation of Particle Reinforced Aluminium Matrix Composites by Laser Powder Bed Fusion of Fe₂O₃/AlSi12 Powder Mixture Using Consecutive Laser Melting+Remelting Strategy

Authors: Qimin Shi, Yi Sun, Constantinus Politis, Shoufeng Yang

Abstract:

In-situ preparation of particle-reinforced aluminium matrix composites (PRAMCs) by laser powder bed fusion (LPBF) additive manufacturing is a promising strategy to strengthen traditional Al-based alloys. The laser-driven thermite reaction can be a practical mechanism to in-situ synthesize PRAMCs. However, introducing oxygen elements through adding Fe₂O₃ makes the powder mixture highly sensitive to form porosity and Al₂O₃ film during LPBF, bringing challenges to producing dense Al-based materials. Therefore, this work develops a processing strategy combined with consecutive high-energy laser melting scanning and low-energy laser remelting scanning to prepare PRAMCs from a Fe₂O₃/AlSi12 powder mixture. The powder mixture consists of 5 wt% Fe₂O₃ and the remainder AlSi12 powder. The addition of 5 wt% Fe₂O₃ aims to achieve balanced strength and ductility. A high relative density (98.2 ± 0.55 %) was successfully obtained by optimizing laser melting (Emelting) and laser remelting surface energy density (Eremelting) to Emelting = 35 J/mm² and Eremelting = 5 J/mm². Results further reveal the necessity of increasing Emelting, to improve metal liquid’s spreading/wetting by breaking up the Al₂O₃ films surrounding the molten pools; however, the high-energy laser melting produced much porosity, including H₂₋, O₂₋ and keyhole-induced pores. The subsequent low-energy laser remelting could close the resulting internal pores, backfill open gaps and smoothen solidified surfaces. As a result, the material was densified by repeating laser melting and laser remelting layer by layer. Although with two-times laser scanning, the microstructure still shows fine cellular Si networks with Al grains inside (grain size of about 370 nm) and in-situ nano-precipitates (Al₂O₃, Si, and Al-Fe(-Si) intermetallics). Finally, the fine microstructure, nano-structured dispersion strengthening, and high-level densification strengthened the in-situ PRAMCs, reaching yield strength of 426 ± 4 MPa and tensile strength of 473 ± 6 MPa. Furthermore, the results can expect to provide valuable information to process other powder mixtures with severe porosity/oxide-film formation potential, considering the evidenced contribution of laser melting/remelting strategy to densify material and obtain good mechanical properties during LPBF.

Keywords: densification, laser powder bed fusion, metal matrix composites, microstructures, mechanical properties

Procedia PDF Downloads 155
2049 Modeling of Anisotropic Hardening Based on Crystal Plasticity Theory and Virtual Experiments

Authors: Bekim Berisha, Sebastian Hirsiger, Pavel Hora

Abstract:

Advanced material models involving several sets of model parameters require a big experimental effort. As models are getting more and more complex like e.g. the so called “Homogeneous Anisotropic Hardening - HAH” model for description of the yielding behavior in the 2D/3D stress space, the number and complexity of the required experiments are also increasing continuously. In the context of sheet metal forming, these requirements are even more pronounced, because of the anisotropic behavior or sheet materials. In addition, some of the experiments are very difficult to perform e.g. the plane stress biaxial compression test. Accordingly, tensile tests in at least three directions, biaxial tests and tension-compression or shear-reverse shear experiments are performed to determine the parameters of the macroscopic models. Therefore, determination of the macroscopic model parameters based on virtual experiments is a very promising strategy to overcome these difficulties. For this purpose, in the framework of multiscale material modeling, a dislocation density based crystal plasticity model in combination with a FFT-based spectral solver is applied to perform virtual experiments. Modeling of the plastic behavior of metals based on crystal plasticity theory is a well-established methodology. However, in general, the computation time is very high and therefore, the computations are restricted to simplified microstructures as well as simple polycrystal models. In this study, a dislocation density based crystal plasticity model – including an implementation of the backstress – is used in a spectral solver framework to generate virtual experiments for three deep drawing materials, DC05-steel, AA6111-T4 and AA4045 aluminum alloys. For this purpose, uniaxial as well as multiaxial loading cases, including various pre-strain histories, has been computed and validated with real experiments. These investigations showed that crystal plasticity modeling in the framework of Representative Volume Elements (RVEs) can be used to replace most of the expensive real experiments. Further, model parameters of advanced macroscopic models like the HAH model can be determined from virtual experiments, even for multiaxial deformation histories. It was also found that crystal plasticity modeling can be used to model anisotropic hardening more accurately by considering the backstress, similar to well-established macroscopic kinematic hardening models. It can be concluded that an efficient coupling of crystal plasticity models and the spectral solver leads to a significant reduction of the amount of real experiments needed to calibrate macroscopic models. This advantage leads also to a significant reduction of computational effort needed for the optimization of metal forming process. Further, due to the time efficient spectral solver used in the computation of the RVE models, detailed modeling of the microstructure are possible.

Keywords: anisotropic hardening, crystal plasticity, micro structure, spectral solver

Procedia PDF Downloads 315
2048 The Effect of CaO Addition on Mechanical Properties of Ceramic Tiles

Authors: Lucie Vodova, Radomir Sokolar, Jitka Hroudova

Abstract:

Stoneware clay, fired clay (as a grog), calcite waste and class C fly ash in various mixing rations were the basic raw materials for the mixture for production of dry pressed ceramic tiles. Mechanical properties (water absorption, bulk density, apparent porosity, flexural strength) as well as mineralogical composition were studied on samples with different source of calcium oxide after firing at 900, 1000, 1100 and 1200°C. It was found that samples with addition of calcite waste contain dmisteinbergit and anorthite. This minerals help to improve the strength of the body and reduce porosity fired at lower temperatures. Class C fly ash has not significantly influence on properties of the fired body as calcite waste.

Keywords: ceramic tiles, class C fly ash, calcite waste, calcium oxide, anorthite

Procedia PDF Downloads 245
2047 Immune Activity of Roman Hens as Influenced by the Feed Formulated with Germinated Paddy Rice

Authors: Wirot Likittrakulwong, Pisit Poolprasert, Tossaporn Incharoen

Abstract:

Germinated paddy rice (GPR) has the potential to be used as a feed ingredient. However, their properties have not been fully investigated. This paper examined the nutrient digestibility and the relationship to immune activity in Roman hens fed with GPR. It was found that true and apparent metabolizable energy (ME) values of GPR were 3.20 and 3.28 kcal/g air dry, respectively. GPR exhibited high content of phytonutrients, especially GABA. GPR showed similar protein profiles in comparison to non-germinated paddy rice. For immune activity, the feed with GPR enhanced the immune activity of Roman hens under high stocking density stress as evidenced by the activity of superoxide dismutase (SOD) and lysozyme activity. In this study, GPR is proved to be a good source of functional ingredient for chicken feed.

Keywords: germinated paddy rice, nutrient digestibility, immune activity, functional property

Procedia PDF Downloads 162
2046 Finite Element Modeling of Mass Transfer Phenomenon and Optimization of Process Parameters for Drying of Paddy in a Hybrid Solar Dryer

Authors: Aprajeeta Jha, Punyadarshini P. Tripathy

Abstract:

Drying technologies for various food processing operations shares an inevitable linkage with energy, cost and environmental sustainability. Hence, solar drying of food grains has become imperative choice to combat duo challenges of meeting high energy demand for drying and to address climate change scenario. But performance and reliability of solar dryers depend hugely on sunshine period, climatic conditions, therefore, offer a limited control over drying conditions and have lower efficiencies. Solar drying technology, supported by Photovoltaic (PV) power plant and hybrid type solar air collector can potentially overpower the disadvantages of solar dryers. For development of such robust hybrid dryers; to ensure quality and shelf-life of paddy grains the optimization of process parameter becomes extremely critical. Investigation of the moisture distribution profile within the grains becomes necessary in order to avoid over drying or under drying of food grains in hybrid solar dryer. Computational simulations based on finite element modeling can serve as potential tool in providing a better insight of moisture migration during drying process. Hence, present work aims at optimizing the process parameters and to develop a 3-dimensional (3D) finite element model (FEM) for predicting moisture profile in paddy during solar drying. COMSOL Multiphysics was employed to develop a 3D finite element model for predicting moisture profile. Furthermore, optimization of process parameters (power level, air velocity and moisture content) was done using response surface methodology in design expert software. 3D finite element model (FEM) for predicting moisture migration in single kernel for every time step has been developed and validated with experimental data. The mean absolute error (MAE), mean relative error (MRE) and standard error (SE) were found to be 0.003, 0.0531 and 0.0007, respectively, indicating close agreement of model with experimental results. Furthermore, optimized process parameters for drying paddy were found to be 700 W, 2.75 m/s at 13% (wb) with optimum temperature, milling yield and drying time of 42˚C, 62%, 86 min respectively, having desirability of 0.905. Above optimized conditions can be successfully used to dry paddy in PV integrated solar dryer in order to attain maximum uniformity, quality and yield of product. PV-integrated hybrid solar dryers can be employed as potential and cutting edge drying technology alternative for sustainable energy and food security.

Keywords: finite element modeling, moisture migration, paddy grain, process optimization, PV integrated hybrid solar dryer

Procedia PDF Downloads 150
2045 Numerical Analyze of Corona Discharge on HVDC Transmission Lines

Authors: H. Nouri, A. Tabbel, N. Douib, H. Aitsaid, Y. Zebboudj

Abstract:

This study and the field test comparisons were carried out on the Algerian Derguna-Setif transmission systems. The transmission line of normal voltage 225 kV is 65 km long, transported and uses twin bundle conductors protected with two shield wires of transposed galvanized steel. An iterative finite-element method is used to solve Poisons equation. Two algorithms are proposed for satisfying the current continuity condition and updating the space-charge density. A new approach to the problem of corona discharge in transmission system has been described in this paper. The effect of varying the configurations and wires number is also investigated. The analysis of this steady is important in the design of HVDC transmission lines. The potential and electric field have been calculating in locations singular points of the system.

Keywords: corona discharge, finite element method, electric field, HVDC

Procedia PDF Downloads 414
2044 An Ab Initio Study of Delafossite Transparent Conductive Oxides Cu(In, Ga)O2 and Absorbers Films Cu(In, Ga)S2 in Solar-Cell

Authors: Mokdad Sakhri, Youcef Bouhadda

Abstract:

Thin film chalcopyrite technology is thus nowadays a solid candidate for photovoltaic cells. The currently used window layer for the solar cell Cu(In,Ga)S2 is our interest point in this work. For this purpose, we have performed a first-principles study of structural, electronic and optical properties for both delafossite transparent conductive oxides Cu (In, Ga)O2 and absorbers films Cu(In,Ga)S2. The calculations have been carried out within the local density functional (LDA) and generalized gradient approximations (GGA) combined with the hubbard potential using norm-conserving pseudopotentials and a plane-wave basis with ABINIT code. We have found the energy gap is :1.6, 2.53, 3.6, 3.8 eV for CuInS2, CuGaS2, CuInO2 and CuGaO2 respectively. The results are in good agreement with experimental results.

Keywords: ABINIT code, DFT, electronic and optical properties, solar-cell absorbers, delafossite transparent conductive oxides

Procedia PDF Downloads 568
2043 Prominent Lipid Parameters Correlated with Trunk-to-Leg and Appendicular Fat Ratios in Severe Pediatric Obesity

Authors: Mustafa M. Donma, Orkide Donma

Abstract:

The examination of both serum lipid fractions and body’s lipid composition are quite informative during the evaluation of obesity stages. Within this context, alterations in lipid parameters are commonly observed. The variations in the fat distribution of the body are also noteworthy. Total cholesterol (TC), triglycerides (TRG), low density lipoprotein-cholesterol (LDL-C), high density lipoprotein-cholesterol (HDL-C) are considered as the basic lipid fractions. Fat deposited in trunk and extremities may give considerable amount of information and different messages during discrete health states. Ratios are also derived from distinct fat distribution in these areas. Trunk-to-leg fat ratio (TLFR) and trunk-to-appendicular fat ratio (TAFR) are the most recently introduced ratios. In this study, lipid fractions and TLFR, as well as TAFR, were evaluated, and the distinctions among healthy, obese (OB), and morbid obese (MO) groups were investigated. Three groups [normal body mass index (N-BMI), OB, MO] were constituted from a population aged 6 to 18 years. Ages and sexes of the groups were matched. The study protocol was approved by the Non-interventional Ethics Committee of Tekirdag Namik Kemal University. Written informed consent forms were obtained from the parents of the participants. Anthropometric measurements (height, weight, waist circumference, hip circumference, head circumference, neck circumference) were obtained and recorded during the physical examination. Body mass index values were calculated. Total, trunk, leg, and arm fat mass values were obtained by TANITA Bioelectrical Impedance Analysis. These values were used to calculate TLFR and TAFR. Systolic (SBP) and diastolic blood pressures (DBP) were measured. Routine biochemical tests including TC, TRG, LDL-C, HDL-C, and insulin were performed. Data were evaluated using SPSS software. p value smaller than 0.05 was accepted as statistically significant. There was no difference among the age values and gender ratios of the groups. Any statistically significant difference was not observed in terms of DBP, TLFR as well as serum lipid fractions. Higher SBP values were measured both in OB and MO children than those with N-BMI. TAFR showed a significant difference between N-BMI and OB groups. Statistically significant increases were detected between insulin values of N-BMI group and OB as well as MO groups. There were bivariate correlations between LDL and TLFR (r=0.396; p=0.037) as well as TAFR values (r=0.413; p=0.029) in MO group. When adjusted for SBP and DBP, partial correlations were calculated as (r=0.421; p=0.032) and (r=0.438; p=0.025) for LDL-TLFR as well as LDL-TAFR, respectively. Much stronger partial correlations were obtained for the same couples (r=0.475; p=0.019 and r=0.473; p=0.020, respectively) upon controlling for TRG and HDL-C. Much stronger partial correlations observed in MO children emphasize the potential transition from morbid obesity to metabolic syndrome. These findings have concluded that LDL-C may be suggested as a discriminating parameter between OB and MO children.

Keywords: children, lipid parameters, obesity, trunk-to-leg fat ratio, trunk-to-appendicular fat ratio

Procedia PDF Downloads 111
2042 Grouping Pattern, Habitat Assessment and Overlap Analysis of Five Ungulates Species in Different Altitudinal Gradients of Western Himalaya, Uttarakhand, India

Authors: Kaleem Ahmed, Jamal A. Khan

Abstract:

Grouping patterns, habitat use, and overlap studies were conducted on five sympatric ungulate species sambar (Cervus unicolor), chital (Axis axis), muntjac (Muntiacus muntjac), goral (Nemorhaedus goral), and serow (Capricornis sumatraensis) in the Dabka watershed area within Indian West Himalayan range. Data on age, sex composition, group size, and various ecological and topographical factors governing the presence/absence of species within the study area were collected using a 250 km of a trail walk, 95 permanent circular plots of 10 m radius, and 3 vantage points with 58 scannings. The highest mean group size was recorded for chital (6.35 ± 0.50), followed by sambar (1.35 ± 0.10), goral (1.25 ±0.63), muntjac (1.12 ± 0.05), and serow (1.00 ± 0.00). Grouping pattern significantly varied among sympatric species (F = 85.10, df. = 6, P = 0.000). The highest mean pellet group density (/ha ± SE) was recorded for sambar (41.56 ± 3.51), followed by goral (23.31 ± 3.45), chital (19.21 ± 3.51), muntjac (7.43 ± 1.21), and serow (1.02 ± 0.10). Two-way variance analysis showed a significant difference in the density of the pellet group of all ungulate species across different study area habitats (F = 6.38, df = 4, P = 0.027). The availability-utilization (AU) analysis reveals that goral was mostly sighted in steep slopes, preferred > 2100 m altitudinal range with low shrub understory, avoided dense forest, and relatively more southern aspects were used. Chital had used a wide range of tree and shrub coverings with a preference towards moderate cover range (26-50%), preferred areas with low slope category ( < 25), avoided areas of high altitude > 900 m. Sambar avoided less tree cover (0-25), preferred slope category (26-500), altitudes between 1600-2100 m, and preferred dense forest with northern aspects. Muntjac used all elevation ranges in the study area with a preference towards the dense forest and northern aspects. Serow preferred high tree cover > 75%, avoided low shrub cover (0-25%), preferred high shrub cover 51-75%, utilized higher elevation > 2100 m, avoided low elevation range and northern aspects. All species occupied similar habitat types, forest or scrub, except for the goral, which preferred open spaces. Between muntjac and sambar, the highest overlap was found (65%), and there was no overlap between chital and serow, chital and goral. Aspect, slope, altitude, and vegetation characteristics were found to be important factors for the overlap of ungulate sympatric species. One major reason for their ecological separation at the fine-scale level is the differential use of altitude by ungulates in the present study. This is confirmed by the avoidance by chital of altitudes > 900 m and serow of < 2100 m.

Keywords: altitude, grouping pattern, Himalayas, overlap, ungulates

Procedia PDF Downloads 141
2041 Regional Disparities in Microfinance Distribution: Evidence from Indian States

Authors: Sunil Sangwan, Narayan Chandra Nayak

Abstract:

Over the last few decades, Indian banking system has achieved remarkable growth in its credit volume. However, one of the most disturbing facts about this growth is the uneven distribution of financial services across regions. Having witnessed limited success from all the earlier efforts towards financial inclusion targeting the rural poor and the underprivileged, provision of microfinance, of late, has emerged as a supplementary mechanism. There are two prominent modes of microfinance distribution in India namely Bank-SHG linkage (SBLP) and private Microfinance Institutions (MFIs). Ironically, such efforts also seem to have failed to achieve the desired targets as the microfinance services have witnessed skewed distribution across the states of the country. This study attempts to make a comparative analysis of the geographical skew of the SBLP and MFI in India and examine the factors influencing their regional distribution. The results indicate that microfinance services are largely concentrated in the southern region, accounting for about 50% of all microfinance clients and 49% of all microfinance loan portfolios. This is distantly followed by an eastern region where client outreach is close to 25% only. The north-eastern, northern, central, and western regions lag far behind in microfinance sectors, accounting for only 4%, 4%, 10%, and 7 % client outreach respectively. The penetration of SHGs is equally skewed, with the southern region accounting for 46% of client outreach and 70% of loan portfolios followed by an eastern region with 21% of client outreach and 13% of the loan portfolio. Contrarily, north-eastern, northern, central, western and eastern regions account for 5%, 5%, 10%, and 13% of client outreach and 3%, 3%, 7%, and 4% of loan portfolios respectively. The study examines the impact of literacy rate, rural poverty, population density, primary sector share, non-farm activities, loan default behavior and bank penetration on the microfinance penetration. The study is limited to 17 major states of the country over the period 2008-2014. The results of the GMM estimation indicate the significant positive impact of literacy rate, non-farm activities and population density on microfinance penetration across the states, while the rise in loan default seems to deter it. Rural poverty shows the significant negative impact on the spread of SBLP, while it has a positive impact on MFI penetration, hence indicating the policy of exclusion being adhered to by the formal financial system especially towards the poor. However, MFIs seem to be working as substitute mechanisms to banks to fill the gap. The findings of the study are a pointer towards enhancing financial literacy, non-farm activities, rural bank penetration and containing loan default for achieving greater microfinance prevalence.

Keywords: bank penetration, literacy rate, microfinance, primary sector share, rural non-farm activities, rural poverty

Procedia PDF Downloads 232
2040 Treatment of Olive Mill Wastewater by Electrocoagulation Processes and Water Resources Management

Authors: Walid K. M. Bani Salameh, Hesham Ahmad, Mohammad Al-Shannag

Abstract:

In Jordan having deficit atmospheric precipitation, an increase in water demand during summer months . Jordan can be regarded with a relatively high potential for waste water recycling and reuse. The main purpose of this paper was to investigate the removal of Total suspended solids (TSS) and chemical oxygen demand (COD) for olive mill waste water (OMW) by the electrocoagulation (EC) process. In the combination of electrocoagulation by using coupled iron–aluminum electrodes the optimum working pH was found to be in range 6. The efficiency of the electrocoagulation process allowed removal of TSS and COD about 82.5% and 47.5% respectively at 45 mA/cm2 after 70 minutes by using coupled iron–aluminum electrodes. These results showed that the optimum TSS and COD removal was obtained at the optimum experimental parameters such as current density, pH, and reaction time.

Keywords: olive mill wastewater, electrode, electrocoagulation (EC), TSS, COD

Procedia PDF Downloads 393
2039 The Effect of Increase in Aluminium Content on Fluidity of ZA Alloys Processed by Centrifugal Casting

Authors: P. N. Jyothi, A. Shailesh Rao, M. C. Jagath, K. Channakeshavalu

Abstract:

Uses of ZA alloys as bearing material have been increased due to their superior mechanical properties, wear characteristics and tribological properties. Among ZA alloys, ZA 27 alloy has higher strength, low density with excellent bearing and wear characteristics. From the past research work, it is observed that in continuous casting as Al content increases, the fluidity also increases. In present work, ZA 8, ZA 12 and ZA 27 alloys have been processed through centrifugal casting process at 600 rotational speed of the mould. Uniform full cylinder is casted with ZA 8 alloy. For ZA 12 and ZA 27 alloys where the Al content is higher, cast tubes were not complete and uniform. The reason is Al may be acting as a refiner and reduce the melt flow in the rotating mould. This is mainly due to macro-segregation of Al, which has occurred due to difference in densities of Al and Zn.

Keywords: centrifugal casting, metal flow, characterization, systems engineering

Procedia PDF Downloads 328
2038 Ab initio Simulation of Y2O3 -Doped Cerium Using Heyd–Scuseria–Ernzerhof HSE Hybrid Functional and DFT+U Approaches

Authors: M. Taibeche, L. Guerbous, M. Kechouane, R. Nedjar, T. Zergoug

Abstract:

It is known that Y2O3 Material is the most important among the sesquioxides within the general class of refractory ceramics. Indeed, this compound has many applications such as sintering optical windows, components for rare-earth doped lasers as well as inorganic scintillators in the detection scintillation. In particular Eu2+ and Ce3+ are favored dopants in many the scintillators due to its allowed optical 5d-4f transition. In this work, we present new results concerning structural and electronic properties of Ce-doped Y2O3, investigated by density functional theory (DFT), using the Heyd–Scuseria–Ernzerhof (HSE) hybrid functional and DFT+U two approaches. When, we compared the results from the two methods we obtain a good agreement available experimental data. Furthermore, the effect of cerium on the material has also been studied and discussed in the same framework.

Keywords: DFT, vienne ab initio simulation packages, scintillators, Heyd–Scuseria–Ernzerhof (HSE) hybrid functional

Procedia PDF Downloads 518
2037 Glass and Polypropylene Combinations for Thermoplastic Preforms

Authors: Hireni Mankodi

Abstract:

The textile preforms for thermoplastic composite play a key role in providing the mechanical properties and gives the idea about preparing combination of yarn from Glass, Basalt, Carbon as reinforcement and PP, PET, Nylon as thermoplastic matrix at yarn stage for preforms to improve the quality and performance of laminates. The main objectives of this work are to develop the hybrid yarn using different yarn manufacturing process and prepare different performs using hybrid yarns. It has been observed that the glass/pp combination give homogeneous distribution in yarn. The proportion varied to optimize the glass/pp composition. The different preform has been prepared with combination of hybrid yarn, PP, glass combination. Further studies will investigate the effect of glass content in fabric, effect of weave, warps and filling density, number of layer plays significant role in deciding mechanical properties of thermoplastic laminates.

Keywords: thermoplastic, preform, laminates, hybrid yarn, glass

Procedia PDF Downloads 580
2036 Combustion Characteristics of Bioethanol-Biodiesel-Diesel Fuel Blends Used in a Common Rail Diesel Engine

Authors: Hasan Aydogan

Abstract:

The changes in the performance, emission and combustion characteristics of bioethanol-safflower biodiesel and diesel fuel blends used in a common rail diesel engine were investigated in this experimental study. E20B20D60 (20% bioethanol, 20% biodiesel, 60% diesel fuel by volume), E30B20D50, E50B20D30 and diesel fuel (D) were used as fuel. The tests were performed at full throttle valve opening and variable engine speeds. The results of the tests showed decreases in engine power, engine torque, carbon monoxide (CO), hydrocarbon (HC) and smoke density values with the use of bioethanol-biodiesel and diesel fuel blends, whereas, increases were observed in nitrogen oxide (NOx) and brake specific fuel consumption (BSFC) values. When combustion characteristics were examined, it was seen that the values were close to one another.

Keywords: bioethanol, biodiesel, safflower, combustion characteristics

Procedia PDF Downloads 524
2035 The Effect of the Water and Fines Content on Shear Strength of Soils

Authors: Ouledja Abdessalam

Abstract:

This work Contains an experimental study of the behavior of Chlef sand under the effect of various parameters influencing on shear strength. Because of their distinct nature, sands, silts, and clays exhibit completely different behavior (shear strength, the Contracting and dilatancy, the angle of internal friction and cohesion...). By cons when these materials are mixed, their behavior will become different from each considered alone. The behavior of these mixtures (silty sands...) is currently the state of several studies to better use. We have studied in this work: The influence of the following factors on the shear strength: The density (loose and dense), the fines content (silt), The water content. The apparatus used for the tests is the casagrande shear box. This device, although one may have some disadvantages and modern instrumentation is appropriately used to study the shear strength of soils.

Keywords: shear strength, sand, silt, contractancy, dilatancy, friction angle, cohesion, fines content

Procedia PDF Downloads 505
2034 Mechanical Properties of a Soil Stabilized With a Portland Cement

Authors: Ahmed Emad Ahmed, Mostafa El Abd, Ahmed Wakeb, Moahmmed Eissa

Abstract:

Soil modification and reinforcing aims to increase soil shear strength and stiffness. In this report, different amounts of cement were added to the soil to explore its effect on shear strength and penetration using 3 tests. The first test is proctor compaction test which was conducted to determine the optimal moisture content and maximum dry density. The second test was direct shear test which was conducted to measure shear strength of soil. The third experiment was California bearing ratio test which was done to measure the penetration in soil. Each test was done different amount of times using different amounts of cement. The results from every test show that cement improve soil shear strength properties and stiffness.

Keywords: soil stabilized, soil, mechanical properties of soil, soil stabilized with a portland cement

Procedia PDF Downloads 134
2033 Enhanced Thermal, Mechanical and Morphological Properties of CNT/HDPE Nanocomposite Using MMT as Secondary Filler

Authors: M. E. Ali Mohsin, Agus Arsad, Othman Y. Alothman

Abstract:

This study explains the influence of secondary filler on the dispersion of carbon nanotube (CNT) reinforced high density polyethylene (HDPE) nanocomposites (CNT/HDPE). In order to understand the mixed-fillers system, Montmorillonite (MMT) was added to CNT/HDPE nanocomposites. It was followed by investigating their effect on the thermal, mechanical and morphological properties of the aforesaid nanocomposite. Incorporation of 3 wt% each of MMT into CNT/HDPE nanocomposite resulted to the increased values for the tensile and flexural strength, as compared to the pure HDPE matrix. The thermal analysis result showed improved thermal stability of the formulated nanocomposites. Transmission electron microscopy (TEM) images revealed that larger aggregates of CNTs were disappeared upon addition of these two components leading to the enhancement of thermo-mechanical properties for such composites.

Keywords: secondary filler, montmorillonite, carbon nanotube, nanocomposite

Procedia PDF Downloads 363
2032 Assessing the Geothermal Parameters by Integrating Geophysical and Geospatial Techniques at Siwa Oasis, Western Desert, Egypt

Authors: Eman Ghoneim, Amr S. Fahil

Abstract:

Many regions in Egypt are facing a reduction in crop productivity due to environmental degradation. One factor of crop deterioration includes the unsustainable drainage of surface water, leading to salinized soil conditions. Egypt has exerted time and effort to identify solutions to mitigate the surface water drawdown problem and its resulting effects by exploring renewable and sustainable sources of energy. Siwa Oasis represents one of the most favorable regions in Egypt for geothermal exploitation since it hosts an evident cluster of superficial thermal springs. Some of these hot springs are characterized by high surface temperatures and bottom hole temperatures (BHT) ranging between 20°C to 40 °C and 21 °C to 121.7°C, respectively. The depth to the Precambrian basement rock is commonly greater than 440 m, ranging from 440 m to 4724.4 m. It is this feature that makes the locality of Siwa Oasis sufficient for industrial processes and geothermal power production. In this study, BHT data from 27 deep oil wells were processed by applying the widely used Horner and Gulf of Mexico correction methods to obtain formation temperatures. BHT, commonly used in geothermal studies, remains the most abundant and readily available data source for subsurface temperature information. Outcomes of the present work indicated a geothermal gradient ranging from 18 to 42 °C/km, a heat flow ranging from 24.7 to 111.3 m.W.k⁻¹, and a thermal conductivity of 1.3–2.65 W.m⁻¹.k⁻¹. Remote sensing thermal infrared, topographic, geologic, and geothermal data were utilized to provide geothermal potential maps for the Siwa Oasis. Important physiographic variables (including surface elevation, lineament density, drainage density), geological and geophysical parameters (including land surface temperature, depth to basement, bottom hole temperature, magnetic, geothermal gradient, heat flow, thermal conductivity, and main rock units) were incorporated into GIS to produce a geothermal potential map (GTP) for the Siwa Oasis region. The model revealed that both the northeastern and southeastern sections of the study region are of high geothermal potential. The present work showed that combining bottom-hole temperature measurements and remote sensing data with the selected geospatial methodologies is a useful tool for geothermal prospecting in geologically and tectonically comparable settings in Egypt and East Africa. This work has implications for identifying sustainable resources needed to support food production and renewable energy resources.

Keywords: BHT, geothermal potential map, geothermal gradient, heat flow, thermal conductivity, satellite imagery, GIS

Procedia PDF Downloads 120
2031 Butterfly Diversity along Urban-Rural Gradient in Kolkata, India

Authors: Sushmita Chaudhuri, Parthiba Basu

Abstract:

Urbanization leads to habitat degradation and is responsible for the fast disappearance of native butterfly species. Random sampling of rural, suburban and urban sites in an around Kolkata metropolis revealed the presence of 28 species of butterfly belonging to 5 different families in winter (February-March). Butterfly diversity, species richness and abundance decreased with increase in urbanization. Psyche (Leptosia nina of family Pieridae) was the most predominant butterfly species found everywhere in Kolkata during the winter period. The most dominant family was Nymphalidae (11species), followed by Pieridae (6 species), Lycaenidae (5 species), Papilionidae (4 species) and Hesperiidae (2 species). The rural and suburban sites had butterfly species that were unique to those sites. Vegetation cover and flowering shrub density were significantly related to butterfly diversity.

Keywords: butterfly, Kolkata metropolis, Shannon-Weiner diversity index, species diversity

Procedia PDF Downloads 289
2030 Density Functional Theory Study of the Surface Interactions between Sodium Carbonate Aerosols and Fission Products

Authors: Ankita Jadon, Sidi Souvi, Nathalie Girault, Denis Petitprez

Abstract:

The interaction of fission products (FP) with sodium carbonate (Na₂CO₃) aerosols is of a high safety concern because of their potential role in the radiological source term mitigation by FP trapping. In a sodium-cooled fast nuclear reactor (SFR) experiencing a severe accident, sodium (Na) aerosols can be formed after the ejection of the liquid Na coolant inside the containment. The surface interactions between these aerosols and different FP species have been investigated using ab-initio, density functional theory (DFT) calculations using Vienna ab-initio simulation package (VASP). In addition, an improved thermodynamic model has been proposed to treat DFT-VASP calculated energies to extrapolate them to temperatures and pressures of interest in our study. A combined experimental and theoretical chemistry study has been carried out to have both atomistic and macroscopic understanding of the chemical processes; the theoretical chemistry part of this approach is presented in this paper. The Perdew, Burke, and Ernzerhof functional were applied in combination with Grimme’s van der Waals correction to compute exchange-correlational energy at 0 K. Seven different surface cleavages were studied of Ƴ-Na₂CO₃ phase (stable at 603.15 K), it was found that for defect-free surfaces, the (001) facet is the most stable. Furthermore, calculations were performed to study surface defects and reconstructions on the ideal surface. All the studied surface defects were found to be less stable than the ideal surface. More than one adsorbate-ligand configurations were found to be stable confirming that FP vapors could be trapped on various adsorption sites. The calculated adsorption energies (Eads, eV) for the three most stable adsorption sites for I₂ are -1.33, -1.088, and -1.085. Moreover, the adsorption of the first molecule of I₂ changes the surface in a way which would favor stronger adsorption of a second molecule of I2 (Eads, eV = -1.261). For HI adsorption, the most favored reactions have the following Eads (eV) -1.982, -1.790, -1.683 implying that HI would be more reactive than I₂. In addition to FP species, adsorption of H₂O was also studied as the hydrated surface can have different reactivity than the bare surface. One thermodynamically favored site for H₂O adsorption was found with an Eads, eV of -0.754. Finally, the calculations of hydrated surfaces of Na₂CO₃ show that a layer of water adsorbed on the surface significantly reduces its affinity for iodine (Eads, eV = -1.066). According to the thermodynamic model built, the required partial pressure at 373 K to have adsorption of the first layer of iodine is 4.57×10⁻⁴ bar. The second layer will be adsorbed at partial pressures higher than 8.56×10⁻⁶ bar; a layer of water on the surface will increase these pressure almost ten folds to 3.71×10⁻³ bar. The surface interacts with elemental Cs with an Eads (eV) of -1.60, while interacts even strongly with CsI with an Eads (eV) of -2.39. More results on the interactions between Na₂CO₃ (001) and cesium-based FP will also be presented in this paper.

Keywords: iodine uptake, sodium carbonate surface, sodium-cooled fast nuclear reactor, DFT calculations, fission products

Procedia PDF Downloads 151
2029 Photogrammetry and Topographic Information for Urban Growth and Change in Amman

Authors: Mahmoud M. S. Albattah

Abstract:

Urbanization results in the expansion of administrative boundaries, mainly at the periphery, ultimately leading to changes in landcover. Agricultural land, naturally vegetated land, and other land types are converted into residential areas with a high density of constructs, such as transportation systems and housing. In urban regions of rapid growth and change, urban planners need regular information on up to date ground change. Amman (the capital of Jordan) is growing at unprecedented rates, creating extensive urban landscapes. Planners interact with these changes without having a global view of their impact. The use of aerial photographs and satellite images data combined with topographic information and field survey could provide effective information to develop urban change and growth inventory which could be explored towards producing a very important signature for the built-up area changes.

Keywords: highway design, satellite technologies, remote sensing, GIS, image segmentation, classification

Procedia PDF Downloads 444
2028 Healthcare Associated Infections in an Intensive Care Unit in Tunisia: Incidence and Risk Factors

Authors: Nabiha Bouafia, Asma Ben Cheikh, Asma Ammar, Olfa Ezzi, Mohamed Mahjoub, Khaoula Meddeb, Imed Chouchene, Hamadi Boussarsar, Mansour Njah

Abstract:

Background: Hospital acquired infections (HAI) cause significant morbidity, mortality, length of stay and hospital costs, especially in the intensive care unit (ICU), because of the debilitated immune systems of their patients and exposure to invasive devices. The aims of this study were to determine the rate and the risk factors of HAI in an ICU of a university hospital in Tunisia. Materials/Methods: A prospective study was conducted in the 8-bed adult medical ICU of a University Hospital (Sousse Tunisia) during 14 months from September 15th, 2015 to November 15th, 2016. Patients admitted for more than 48h were included. Their surveillance was stopped after the discharge from ICU or death. HAIs were defined according to standard Centers for Disease Control and Prevention criteria. Risk factors were analyzed by conditional stepwise logistic regression. The p-value of < 0.05 was considered significant. Results: During the study, 192 patients had admitted for more than 48 hours. Their mean age was 59.3± 18.20 years and 57.1% were male. Acute respiratory failure was the main reason of admission (72%). The mean SAPS II score calculated at admission was 32.5 ± 14 (range: 6 - 78). The exposure to the mechanical ventilation (MV) and the central venous catheter were observed in 169 (88 %) and 144 (75 %) patients, respectively. Seventy-three patients (38.02%) developed 94 HAIs. The incidence density of HAIs was 41.53 per 1000 patient day. Mortality rate in patients with HAIs was 65.8 %( n= 48). Regarding the type of infection, Ventilator Associated Pneumoniae (VAP) and central venous catheter Associated Infections (CVC AI) were the most frequent with Incidence density: 14.88/1000 days of MV for VAP and 20.02/1000 CVC days for CVC AI. There were 5 Peripheral Venous Catheter Associated Infections, 2 urinary tract infections, and 21 other HAIs. Gram-negative bacteria were the most common germs identified in HAIs: Multidrug resistant Acinetobacter Baumanii (45%) and Klebsiella pneumoniae (10.96%) were the most frequently isolated. Univariate analysis showed that transfer from another hospital department (p= 0.001), intubation (p < 10-4), tracheostomy (p < 10-4), age (p=0.028), grade of acute respiratory failure (p=0.01), duration of sedation (p < 10-4), number of CVC (p < 10-4), length of mechanical ventilation (p < 10-4) and length of stay (p < 10-4), were associated to high risk of HAIS in ICU. Multivariate analysis reveals that independent risk factors for HAIs are: transfer from another hospital department: OR=13.44, IC 95% [3.9, 44.2], p < 10-4, duration of sedation: OR= 1.18, IC 95% [1.049, 1.325], p=0.006, high number of CVC: OR=2.78, IC 95% [1.73, 4.487], p < 10-4, and length of stay in ICU: OR= 1.14, IC 95% [1.066,1.22], p < 10-4. Conclusion: Prevention of nosocomial infections in ICUs is a priority of health care systems all around the world. Yet, their control requires an understanding of epidemiological data collected in these units.

Keywords: healthcare associated infections, incidence, intensive care unit, risk factors

Procedia PDF Downloads 369
2027 The Impact of Space Charges on the Electromechanical Constraints in HVDC Power Cable Containing Defects

Authors: H. Medoukali, B. Zegnini

Abstract:

Insulation techniques in high-voltage cables rely heavily on chemically synapsed polyethylene. The latter may contain manufacturing defects such as small cavities, for example. The presence of the cavity affects the distribution of the electric field at the level of the insulating layer; this change in the electric field is affected by the presence of different space charge densities within the insulating material. This study is carried out by performing simulations to determine the distribution of the electric field inside the insulator. The simulations are based on the creation of a two-dimensional model of a high-voltage cable of 154 kV using the COMSOL Multiphysics software. Each time we study the effect of changing the space charge density of on the electromechanical Constraints.

Keywords: COMSOL multiphysics, electric field, HVDC, microcavities, space charges, XLPE

Procedia PDF Downloads 133
2026 Implementation of ANN-Based MPPT for a PV System and Efficiency Improvement of DC-DC Converter by WBG Devices

Authors: Bouchra Nadji, Elaid Bouchetob

Abstract:

PV systems are common in residential and industrial settings because of their low, upfront costs and operating costs throughout their lifetimes. Buck or boost converters are used in photovoltaic systems, regardless of whether the system is autonomous or connected to the grid. These converters became less appealing because of their low efficiency, inadequate power density, and use of silicon for their power components. Traditional devices based on Si are getting close to reaching their theoretical performance limits, which makes it more challenging to improve the performance and efficiency of these devices. GaN and SiC are the two types of WBG semiconductors with the most recent technological advancements and are available. Tolerance to high temperatures and switching frequencies can reduce active and passive component size. Utilizing high-efficiency dc-dc boost converters is the primary emphasis of this work. These converters are for photovoltaic systems that use wave energy.

Keywords: component, Artificial intelligence, PV System, ANN MPPT, DC-DC converter

Procedia PDF Downloads 60
2025 Intelligent Rescheduling Trains for Air Pollution Management

Authors: Kainat Affrin, P. Reshma, G. Narendra Kumar

Abstract:

Optimization of timetable is the need of the day for the rescheduling and routing of trains in real time. Trains are scheduled in parallel with the road transport vehicles to the same destination. As the number of trains is restricted due to single track, customers usually opt for road transport to use frequently. The air pollution increases as the density of vehicles on road transport is increased. Use of an alternate mode of transport like train helps in reducing air-pollution. This paper mainly aims at attracting the passengers to Train transport by proper rescheduling of trains using hybrid of stop-skip algorithm and iterative convex programming algorithm. Rescheduling of train bi-directionally is achieved on a single track with dynamic dual time and varying stops. Introduction of more trains attract customers to use rail transport frequently, thereby decreasing the pollution. The results are simulated using Network Simulator (NS-2).

Keywords: air pollution, AODV, re-scheduling, WSNs

Procedia PDF Downloads 360
2024 Relationship between Interfacial Instabilities and Mechanical Strength of Multilayer Symmetric Polymer Melts

Authors: Mohammad Ranjbaran Madiseh

Abstract:

In this research, an experimental apparatus has been developed for observing interfacial stability and deformation of multilayer pressure-driven channel flows. The interface instability of the co-extrusion flow of polyethylene and polypropylene is studied experimentally in a slit geometry. By investigating the growing interfacial wave (IW) and tensile stress of extrudate samples, a relationship between interfacial instability (II) and mechanical properties of polypropylene (PP) and high-density polyethylene (HDPE) has been established. It is shown that the mechanism of interfacial strength is related to interfacial instabilities as well as interfacial strength. It is shown that there is an ability to forecast the quality of final products in the co-extrusion process. In this study, it is found that the instability is controlled by its dominant wave number, which is associated with maximum tensile stress at the interface.

Keywords: interfacial instability, interfacial strength, wave number, interfacial wave

Procedia PDF Downloads 92
2023 Effect of Dust on Performances of Single Crystal Photovoltaic Solar Module

Authors: A. Benatiallah, D. Benatiallah, A. Harrouz, F. Abaidi, S. Mansouri

Abstract:

Photovoltaic system is established as a reliable and economical source of electricity in rural and Sahara areas, especially in developing countries where the population is dispersed, has low consumption of energy and the grid power is not extended to these areas due to viability and financial problems. The production of energy by the photovoltaic system fluctuates and depend on meteorological conditions. Wind is a very important and often neglected parameter in the behavior of the solar module. The electric performances of a solar module to the silicon are very appreciable to the blows; in the present work, we have studied the behavior of multi-crystal solar module according to the density of dust, and the principals electric feature of the solar module. An evaluation permits to affirm that a solar module under the effect of sand will collect a lower flux to the normal conditions.

Keywords: solar modulen pv, dust effect, experimental, performances

Procedia PDF Downloads 497