Search results for: Contamination plume migration
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1831

Search results for: Contamination plume migration

211 Evaluation of Rhizobia for Nodulation, Shoot and Root Biomass from Host Range Studies Using Soybean, Common Bean, Bambara Groundnut and Mung Bean

Authors: Sharon K. Mahlangu, Mustapha Mohammed, Felix D. Dakora

Abstract:

Rural households in Africa depend largely on legumes as a source of high-protein food due to N₂-fixation by rhizobia when they infect plant roots. However, the legume/rhizobia symbiosis can exhibit some level of specificity such that some legumes may be selectively nodulated by only a particular group of rhizobia. In contrast, some legumes are highly promiscuous and are nodulated by a wide range of rhizobia. Little is known about the nodulation promiscuity of bacterial symbionts from wild legumes such as Aspalathus linearis, especially if they can nodulate cultivated grain legumes such as cowpea and Kersting’s groundnut. Determining the host range of the symbionts of wild legumes can potentially reveal novel rhizobial strains that can be used to increase nitrogen fixation in cultivated legumes. In this study, bacteria were isolated and tested for their ability to induce root nodules on their homologous hosts. Seeds were surface-sterilized with alcohol and sodium hypochlorite and planted in sterile sand contained in plastic pots. The pot surface was covered with sterile non-absorbent cotton wool to avoid contamination. The plants were watered with nitrogen-free nutrient solution and sterile water in alternation. Three replicate pots were used per isolate. The plants were grown for 90 days in a naturally-lit glasshouse and assessed for nodulation (nodule number and nodule biomass) and shoot biomass. Seven isolates from each of Kersting’s groundnut and cowpea and two from Rooibos tea plants were tested for their ability to nodulate soybean, mung bean, common bean and Bambara groundnut. The results showed that of the isolates from cowpea, where VUSA55 and VUSA42 could nodulate all test host plants, followed by VUSA48 which nodulated cowpea, Bambara groundnut and soybean. The two isolates from Rooibos tea plants nodulated Bambara groundnut, soybean and common bean. However, isolate L1R3.3.1 also nodulated mung bean. There was a greater accumulation of shoot biomass when cowpea isolate VUSA55 nodulated common bean. Isolate VUSA55 produced the highest shoot biomass, followed by VUSA42 and VUSA48. The two Kersting’s groundnut isolates, MGSA131 and MGSA110, accumulated average shoot biomass. In contrast, the two Rooibos tea isolates induced a higher accumulation of biomass in Bambara groundnut, followed by common bean. The results suggest that inoculating these agriculturally important grain legumes with cowpea isolates can contribute to improved soil fertility, especially soil nitrogen levels.

Keywords: legumes, nitrogen fixation, nodulation, rhizobia

Procedia PDF Downloads 195
210 Nondestructive Electrochemical Testing Method for Prestressed Concrete Structures

Authors: Tomoko Fukuyama, Osamu Senbu

Abstract:

Prestressed concrete is used a lot in infrastructures such as roads or bridges. However, poor grout filling and PC steel corrosion are currently major issues of prestressed concrete structures. One of the problems with nondestructive corrosion detection of PC steel is a plastic pipe which covers PC steel. The insulative property of pipe makes a nondestructive diagnosis difficult; therefore a practical technology to detect these defects is necessary for the maintenance of infrastructures. The goal of the research is a development of an electrochemical technique which enables to detect internal defects from the surface of prestressed concrete nondestructively. Ideally, the measurements should be conducted from the surface of structural members to diagnose non-destructively. In the present experiment, a prestressed concrete member is simplified as a layered specimen to simulate a current path between an input and an output electrode on a member surface. The specimens which are layered by mortar and the prestressed concrete constitution materials (steel, polyethylene, stainless steel, or galvanized steel plates) were provided to the alternating current impedance measurement. The magnitude of an applied electric field was 0.01-volt or 1-volt, and the frequency range was from 106 Hz to 10-2 Hz. The frequency spectrums of impedance, which relate to charge reactions activated by an electric field, were measured to clarify the effects of the material configurations or the properties. In the civil engineering field, the Nyquist diagram is popular to analyze impedance and it is a good way to grasp electric relaxation using a shape of the plot. However, it is slightly not suitable to figure out an influence of a measurement frequency which is reciprocal of reaction time. Hence, Bode diagram is also applied to describe charge reactions in the present paper. From the experiment results, the alternating current impedance method looks to be applicable to the insulative material measurement and eventually prestressed concrete diagnosis. At the same time, the frequency spectrums of impedance show the difference of the material configuration. This is because the charge mobility reflects the variety of substances and also the measuring frequency of the electric field determines migration length of charges which are under the influence of the electric field. However, it could not distinguish the differences of the material thickness and is inferred the difficulties of prestressed concrete diagnosis to identify the amount of an air void or a layer of corrosion product by the technique.

Keywords: capacitance, conductance, prestressed concrete, susceptance

Procedia PDF Downloads 395
209 A Low-Cost and Easy-To-Operate Remediation Technology of Heavy Metals Contaminated Agricultural Soil

Authors: Xiao-Hua Zhu, Xin Yuan, Yi-Ran Zhao

Abstract:

High-cadmium pollution in rice is a serious problem in many parts of China. Many kinds of remediation technologies have been tested and applied in many farmlands. Because of the productive function of the farmland, most technologies are inappropriate due to their destruction to the tillage soil layer. And the large labours and expensive fees of many technologies are also the restrictive factors for their applications. The conception of 'Root Micro-Geochemical Barrier' was proposed to reduce cadmium (Cd) bioavailability and the concentration of the cadmium in rice. Remediation and mitigation techniques were demonstrated on contaminated farmland in the downstream of some mine. According to the rule of rice growth, Cd would be absorbed by the crops in every growth stage, and the plant-absorb efficiency in the first stage of the tillering stage is almost the highest. We should create a method to protect the crops from heavy metal pollution, which could begin to work from the early growth stage. Many materials with repair property get our attention. The materials will create a barrier preventing Cd from being absorbed by the crops during all the growing process because the material has the ability to adsorb soil-Cd and making it losing its migration activity. And we should choose a good chance to put the materials into the crop-growing system cheaply as soon as early. Per plant, rice has a little root system scope, which makes the roots reach about 15cm deep and 15cm wide. So small root radiation area makes it possible for all the Cd approaching the roots to be adsorbed with a small amount of adsorbent. Mixing the remediation materials with the seed-raising soli and adding them to the tillage soil in the process of transplanting seedlings, we can control the soil-Cd activity in the range of roots to reduce the Cd-amount absorbed by the crops. Of course, the mineral materials must have enough adsorptive capacity and no additional pollution. More than 3000 square meters farmlands have been remediated. And on the application of root micro-geochemical barrier, the Cd-concentration in rice and the remediation-cost have been decreased by 90% and 80%, respectively, with little extra labour brought to the farmers. The Cd-concentrations in rice from remediated farmland have been controlled below 0.1 ppm. The remediation of one acre of contaminated cropland costs less than $100. The concept has its advantage in the remediation of paddy field contaminated by Cd, especially for the field with outside pollution sources.

Keywords: cadmium pollution, growth stage, cost, root micro-geochemistry barrier

Procedia PDF Downloads 62
208 Molecular Characterization of Listeria monocytogenes from Fresh Fish and Fish Products

Authors: Beata Lachtara, Renata Szewczyk, Katarzyna Bielinska, Kinga Wieczorek, Jacek Osek

Abstract:

Listeria monocytogenes is an important human and animal pathogen that causes foodborne outbreaks. The bacteria may be present in different types of food: cheese, raw vegetables, sliced meat products and vacuum-packed sausages, poultry, meat, fish. The most common method, which has been used for the investigation of genetic diversity of L. monocytogenes, is PFGE. This technique is reliable and reproducible and established as gold standard for typing of L. monocytogenes. The aim of the study was characterization by molecular serotyping and PFGE analysis of L. monocytogenes strains isolated from fresh fish and fish products in Poland. A total of 301 samples, including fresh fish (n = 129) and fish products (n = 172) were, collected between January 2014 and March 2016. The bacteria were detected using the ISO 11290-1 standard method. Molecular serotyping was performed with PCR. The isolates were tested with the PFGE method according to the protocol developed by the European Union Reference Laboratory for L. monocytogenes with some modifications. Based on the PFGE profiles, two dendrograms were generated for strains digested separately with two restriction enzymes: AscI and ApaI. Analysis of the fingerprint profiles was performed using Bionumerics software version 6.6 (Applied Maths, Belgium). The 95% of similarity was applied to differentiate the PFGE pulsotypes. The study revealed that 57 of 301 (18.9%) samples were positive for L. monocytogenes. The bacteria were identified in 29 (50.9%) ready-to-eat fish products and in 28 (49.1%) fresh fish. It was found that 40 (70.2%) strains were of serotype 1/2a, 14 (24.6%) 1/2b, two (4.3%) 4b and one (1.8%) 1/2c. Serotypes 1/2a, 1/2b, and 4b were presented with the same frequency in both categories of food, whereas serotype 1/2c was detected only in fresh fish. The PFGE analysis with AscI demonstrated 43 different pulsotypes; among them 33 (76.7%) were represented by only one strain. The remaining 10 profiles contained more than one isolate. Among them 8 pulsotypes comprised of two L. monocytogenes isolates, one profile of three isolates and one restriction type of 5 strains. In case of ApaI typing, the PFGE analysis showed 27 different pulsotypes including 17 (63.0%) types represented by only one strain. Ten (37.0%) clusters contained more than one strain among which four profiles covered two strains; three had three isolates, one with five strains, one with eight strains and one with ten isolates. It was observed that the isolates assigned to the same PFGE type were usually of the same serotype (1/2a or 1/2b). The majority of the clusters had strains of both sources (fresh fish and fish products) isolated at different time. Most of the strains grouped in one cluster of the AscI restriction was assigned to the same groups in ApaI investigation. In conclusion, PFGE used in the study showed a high genetic diversity among L. monocytogenes. The strains were grouped into varied clonal clusters, which may suggest different sources of contamination. The results demonstrated that 1/2a serotype was the most common among isolates from fresh fish and fish products in Poland.

Keywords: Listeria monocytogenes, molecular characteristic, PFGE, serotyping

Procedia PDF Downloads 270
207 Modeling Spatio-Temporal Variation in Rainfall Using a Hierarchical Bayesian Regression Model

Authors: Sabyasachi Mukhopadhyay, Joseph Ogutu, Gundula Bartzke, Hans-Peter Piepho

Abstract:

Rainfall is a critical component of climate governing vegetation growth and production, forage availability and quality for herbivores. However, reliable rainfall measurements are not always available, making it necessary to predict rainfall values for particular locations through time. Predicting rainfall in space and time can be a complex and challenging task, especially where the rain gauge network is sparse and measurements are not recorded consistently for all rain gauges, leading to many missing values. Here, we develop a flexible Bayesian model for predicting rainfall in space and time and apply it to Narok County, situated in southwestern Kenya, using data collected at 23 rain gauges from 1965 to 2015. Narok County encompasses the Maasai Mara ecosystem, the northern-most section of the Mara-Serengeti ecosystem, famous for its diverse and abundant large mammal populations and spectacular migration of enormous herds of wildebeest, zebra and Thomson's gazelle. The model incorporates geographical and meteorological predictor variables, including elevation, distance to Lake Victoria and minimum temperature. We assess the efficiency of the model by comparing it empirically with the established Gaussian process, Kriging, simple linear and Bayesian linear models. We use the model to predict total monthly rainfall and its standard error for all 5 * 5 km grid cells in Narok County. Using the Monte Carlo integration method, we estimate seasonal and annual rainfall and their standard errors for 29 sub-regions in Narok. Finally, we use the predicted rainfall to predict large herbivore biomass in the Maasai Mara ecosystem on a 5 * 5 km grid for both the wet and dry seasons. We show that herbivore biomass increases with rainfall in both seasons. The model can handle data from a sparse network of observations with many missing values and performs at least as well as or better than four established and widely used models, on the Narok data set. The model produces rainfall predictions consistent with expectation and in good agreement with the blended station and satellite rainfall values. The predictions are precise enough for most practical purposes. The model is very general and applicable to other variables besides rainfall.

Keywords: non-stationary covariance function, gaussian process, ungulate biomass, MCMC, maasai mara ecosystem

Procedia PDF Downloads 270
206 Doped TiO2 Thin Films Microstructural and Electrical Properties

Authors: Mantas Sriubas, Kristina Bockute, Darius Virbukas, Giedrius Laukaitis

Abstract:

In this work, the doped TiO2 (dopants – Ca, Mg) was investigated. The comparison between the physical vapour deposition methods as electron beam vapour deposition and magnetron sputtering was performed and the structural and electrical properties of the formed thin films were investigated. Thin films were deposited on different type of substrates: SiO2, Alloy 600 (Fe-Ni-Cr) and Al2O3 substrates. The structural properties were investigated using Ambios XP-200 profilometer, scanning electron microscope (SEM) Hitachi S-3400N, X-ray energy-dispersive spectroscope (EDS) Quad 5040 (Bruker AXS Microanalysis GmbH), X-ray diffractometer (XRD) D8 Discover (Bruker AXS GmbH) with glancing angles focusing geometry in a 20 – 70° range using the Cu Kα1 λ = 0.1540562 nm radiation). The impedance spectroscopy measurements were performed using Probostat® (NorECs AS) measurement cell in the frequency range from 10-1-106 Hz under reducing and oxidizing conditions in temperature range of 200 °C to 1200 °C. The investigation of the e-beam deposited Ca and Mg doped-TiO2 thin films shows that the thin films are dense without any visible pores and cavities and the thin films grow in zone T according Barna-Adamik SZM. Substrate temperature was kept 600 °C during the deposition and Ts/Tm ≈ 0.32 (substrate temperature (Ts) and coating material melting temperature (Tm)). The surface diffusion is high however, the grain boundary migration is strongly limited at this temperature. This means that structure is inhomogeneous and the columnar structure is mostly visible in the upper part of the films. According to XRD, the increasing of the Ca dopants’ concentration increases the crystallinity of the formed thin films and the crystallites size increase linearly and Ca dopants act as prohibitors. Thin films are comprised of anatase TiO2 phase with an exception of 2 % Ca doped TiO2, where a small peak of Ca arise. In the case of Mg doped-TiO2 the intensities of the XRD peaks decreases with increasing Mg molar concentration. It means that there are less diffraction planes of the particular orientation in thin films with higher impurities concentration. Thus, the crystallinity decreases with increasing Mg concentration and Mg dopants act as inhibitors. The impedance measurements show that the dopants changed the conductivity of the formed thin films. The conductivity varies from 10-3 S/cm to 10-4 S/cm at 800 °C under wet reducing conditions. The microstructure of the magnetron sputtered thin TiO2 films is different comparing to the thin films deposited using e-beam deposition therefore influencing other structural and electrical properties.

Keywords: electrical properties, electron beam deposition, magnetron sputtering, microstructure, titanium dioxide

Procedia PDF Downloads 278
205 A Comparative Approach for Modeling the Toxicity of Metal Mixtures in Two Ecologically Related Three-Spined (Gasterosteus aculeatus L.) And Nine-Spined (Pungitius pungitius L.) Sticklebacks

Authors: Tomas Makaras

Abstract:

Sticklebacks (Gasterosteiformes) are increasingly used in ecological and evolutionary research and become well-established role as model species for biologists. However, ecotoxicology studies concerning behavioural effects in sticklebacks regarding stress responses, mainly induced by chemical mixtures, have hardly been addressed. Moreover, although many authors in their studies emphasised the similarity between three-spined and nine-spined stickleback in morphological, neuroanatomical and behavioural adaptations to environmental changes, several comparative studies have revealed considerable differences between these species in and their susceptibility and resistance to variousstressors in laboratory experiments. The hypothesis of this study was that three-spined and nine-spined stickleback species will demonstrate apparent differences in response patterns and sensitivity to metal-based chemicals stimuli. For this purpose, we investigated the swimming behaviour (including mortality rate based on 96-h LC50 values) of two ecologically similar three-spined (Gasterosteusaculeatus) and nine-spined sticklebacks (Pungitiuspungitius) to short-term (up to 24 h) metal mixture (MIX) exposure. We evaluated the relevance and efficacy of behavioural responses of test species in the early toxicity assessment of chemical mixtures. Fish exposed to six (Zn, Pb, Cd, Cu, Ni and Cr) metals in the mixture were either singled out by the Water Framework Directive as priority or as relevant substances in surface water, which was prepared according to the environmental quality standards (EQSs) of these metals set for inland waters in the European Union (EU) (Directive 2013/39/EU). Based on acute toxicity results, G. aculeatus found to be slightly (1.4-fold) more tolerant of MIX impact than those of P. pungitius specimens. The performed behavioural analysis showed the main effect on the interaction between time, species and treatment variables. Although both species exposed to MIX revealed a decreasing tendency in swimming activity, these species’ responsiveness to MIX was somewhat different. Substantial changes in the activity of G. aculeatus were established after 3-h exposure to MIX solutions, which was 1.43-fold lower, while in the case of P. pungitius, 1.96-fold higher than established 96-h LC50 values for each species. This study demonstrated species-specific differences in response sensitivity to metal-based water pollution, indicating behavioural insensitivity of P. pungitiuscompared to G. aculeatus. While many studies highlight the usefulness and suitability of nine-spined sticklebacks for evolutionary and ecological research, attested by their increasing popularity in these fields, great caution must be exercised when using them as model species in ecotoxicological research to probe metal contamination. Meanwhile, G. aculeatus showed to be a promising bioindicator species in the environmental ecotoxicology field.

Keywords: acute toxicity, comparative behaviour, metal mixture, swimming activity

Procedia PDF Downloads 142
204 Effect of Ageing of Laser-Treated Surfaces on Corrosion Resistance of Fusion-bonded Al Joints

Authors: Rio Hirakawa, Christian Gundlach, Sven Hartwig

Abstract:

Aluminium has been used in a wide range of industrial applications due to its numerous advantages, including excellent specific strength, thermal conductivity, corrosion resistance, workability and recyclability. The automotive industry is increasingly adopting multi-materials, including aluminium in structures and components to improve the mechanical usability and performance of individual components. A common method for assembling dissimilar materials is mechanical joining, but mechanical joining requires multiple manufacturing steps, affects the mechanical properties of the base material and increases the weight due to additional metal parts. Fusion bonding is being used in more and more industries as a way of avoiding the above drawbacks. Infusion bonding, and surface pre-treatment of the base material is essential to ensure the long-life durability of the joint. Laser surface treatment of aluminium has been shown to improve the durability of the joint by forming a passive oxide film and roughening the substrate surface. Infusion bonding, the polymer bonds directly to the metal instead of the adhesive, but the sensitivity to interfacial contamination is higher due to the chemical activity and molecular size of the polymer. Laser-treated surfaces are expected to absorb impurities from the storage atmosphere over time, but the effect of such changes in the treated surface over time on the durability of fusion-bonded joints has not yet been fully investigated. In this paper, the effect of the ageing of laser-treated surfaces of aluminum alloys on the corrosion resistance of fusion-bonded joints is therefore investigated. AlMg3 of 1.5 mm thickness was cut using a water-jet cutting machine, cleaned and degreased with isopropanol and surface pre-treated with a pulsed fiber laser at a wavelength of 1060 nm, maximum power of 70 W and repetition rate of 55 kHz. The aluminum surfaces were then stored in air for various periods of time and their corrosion resistance was assessed by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). For the aluminum joints, induction heating was employed as the fusion bonding method and single-lap shear specimens were prepared. The corrosion resistance of the joints was assessed by measuring the lap shear strength before and after neutral salt spray. Cross-sectional observations by scanning electron microscopy (SEM) were also carried out to investigate changes in the microstructure of the bonded interface. Finally, the corrosion resistance of the surface and the joint were compared and the differences in the mechanisms of corrosion resistance enhancement between the two were discussed.

Keywords: laser surface treatment, pre-treatment, bonding, corrosion, durability, interface, automotive, aluminium alloys, joint, fusion bonding

Procedia PDF Downloads 56
203 Global Climate Change and Insect Pollinators

Authors: Asim Abbasi, Muhammad Sufyan, Iqra, Muhammad Ibrahim Shahid, Muhammad Ashfaq

Abstract:

The foundation of human life on earth relies on many ecosystem services provided by insects of which pollination owes a vital role. The pollination service offered by insects has annual worth of approximately €153 billion. The majority of the flowering plants depends on entomophiles pollination for their reproduction and formation of seeds and fruits. The quantity and quality of insect pollination have multiple implications for stable ecosystem, diverse species level, food security and climate change resilience. The rapidly mounting human population, depletion of natural resources and the global climate change forced us to enter an era of pollination crisis. Climate change not only alters the phenology, population abundance and geographic ranges of different pollinators but also hinders their pollination activities. The successful pollination process relies heavily on the synchronization of biological events of pollinators with the phenological stages of the flowering plants. However, there are possibilities that impending climatic changes may result in asynchrony between plant-pollinators interactions and also mitigate the extent of pollination. The trophic mismatch mostly occurs when pollinators and plants inhabiting the same environment use different environmental cues to regulate their biological events, as these cues are not equally affected by climate change. Synchrony has also been disrupted when one of the interacting species has migratory nature and depend on cues for migration. Moreover, irregular rainfalls and up-surging temperature also disrupts the foraging behaviour of pollinators resulting in reduced flowers visits by insect. Climate change has a direct impact on the behavior and physiology of honey bees, the best known pollinators owing to their extreme floral fidelity. Rising temperature not only alleviates the quantity and quality of floral environment but also alters the bee’s colony harvesting and development ability. Furthermore, a possible earlier decline of flowers is expected in a growing season due to this rising temperature. This may also lead to disrupt the efficiency bumblebee queen that require a constant and adequate nectar and pollen supply throughout the entire growing season for healthy colony production. Considering the role of insect pollination in our ecosystem, their associated risks regarding climate change should be addressed properly for devising a well-focused research needed for their conservation.

Keywords: climate change, phenological, pollination, synchronization

Procedia PDF Downloads 199
202 Harvesting Value-added Products Through Anodic Electrocatalytic Upgrading Intermediate Compounds Utilizing Biomass to Accelerating Hydrogen Evolution

Authors: Mehran Nozari-Asbemarz, Italo Pisano, Simin Arshi, Edmond Magner, James J. Leahy

Abstract:

Integrating electrolytic synthesis with renewable energy makes it feasible to address urgent environmental and energy challenges. Conventional water electrolyzers concurrently produce H₂ and O₂, demanding additional procedures in gas separation to prevent contamination of H₂ with O₂. Moreover, the oxygen evolution reaction (OER), which is sluggish and has a low overall energy conversion efficiency, does not deliver a significant value product on the electrode surface. Compared to conventional water electrolysis, integrating electrolytic hydrogen generation from water with thermodynamically more advantageous aqueous organic oxidation processes can increase energy conversion efficiency and create value-added compounds instead of oxygen at the anode. One strategy is to use renewable and sustainable carbon sources from biomass, which has a large annual production capacity and presents a significant opportunity to supplement carbon sourced from fossil fuels. Numerous catalytic techniques have been researched in order to utilize biomass economically. Because of its safe operating conditions, excellent energy efficiency, and reasonable control over production rate and selectivity using electrochemical parameters, electrocatalytic upgrading stands out as an appealing choice among the numerous biomass refinery technologies. Therefore, we propose a broad framework for coupling H2 generation from water splitting with oxidative biomass upgrading processes. Four representative biomass targets were considered for oxidative upgrading that used a hierarchically porous CoFe-MOF/LDH @ Graphite Paper bifunctional electrocatalyst, including glucose, ethanol, benzyl, furfural, and 5-hydroxymethylfurfural (HMF). The potential required to support 50 mA cm-2 is considerably lower than (~ 380 mV) the potential for OER. All four compounds can be oxidized to yield liquid byproducts with economic benefit. The electrocatalytic oxidation of glucose to the value-added products, gluconic acid, glucuronic acid, and glucaric acid, was examined in detail. The cell potential for combined H₂ production and glucose oxidation was substantially lower than for water splitting (1.44 V(RHE) vs. 1.82 V(RHE) for 50 mA cm-2). In contrast, the oxidation byproduct at the anode was significantly more valuable than O₂, taking advantage of the more favorable glucose oxidation in comparison to the OER. Overall, such a combination of HER and oxidative biomass valorization using electrocatalysts prevents the production of potentially explosive H₂/O₂mixtures and produces high-value products at both electrodes with lower voltage input, thereby increasing the efficiency and activity of electrocatalytic conversion.

Keywords: biomass, electrocatalytic, glucose oxidation, hydrogen evolution

Procedia PDF Downloads 77
201 Potency of Minapolitan Area Development to Enhance Gross Domestic Product and Prosperty in Indonesia

Authors: Shobrina Silmi Qori Tarlita, Fariz Kukuh Harwinda

Abstract:

Indonesia has 81.000 kilometers coastal line and 70% water surface which is known as the country who has a huge potential in fisheries sector and also which is able to support more than 50 % of Gross Domestic Product. But according to Department of Marine and Fisheries data, fisheries sector supported only 20% of Total GDP in 1998. Not only that, the highest decline in fisheries sector income occured in 2009. Those conditions occur, because of some factors contributed to the lack of integrated working platform for the fisheries and marine management in some areas which have a high productivity to increase the economical profit every year for the country, especially Indonesia, besides the labor requirement for every company, whether a big company or smaller one, depends on the natural condition that makes a lot of people become unemployed if the weather condition or any other conditions dealing with the natural condition is bad for creating fisheries and marine management, especially in aquaculture and fish – captured operation. Not only those, a lot of fishermen, especially in Indonesia, mostly make their job profession as an additional job or side job to fulfill their own needs, although they are averagely poor. Another major problem are the lack of the sustainable developmental program to stabilize the productivity of fisheries and marine natural source, like protecting the environment for fish nursery ground and migration channel, that makes the low productivity of fisheries and marine natural resource, even though the growth of the society in Indonesia has increased for years and needs more food resource to comply the high demand nutrition for living. The development of Minapolitan Area is one of the alternative solution to build a better place for aqua-culturist as well as the fishermen which focusing on systemic and business effort for fisheries and marine management. Minapolitan is kind of integration area which gathers and integrates the ones who is focusing their effort and business in fisheries sector, so that Minapolitan is capable of triggering the fishery activity on the area which using Minapolitan management intensively. From those things, finally, Minapolitan is expected to reinforce the sustainable development through increasing the productivity of fish – capturing operation as well as aquaculture, and it is also expected that Minapolitan will be able to increase GDP, the earning for a lot of people and also will be able to bring prosperity around the world. From those backgrounds, this paper will explain more about the Minapolitan Area and the design of reinforcing the Minapolitan Area by zonation in the Fishery and Marine exploitation area with high productivity as well as low productivity. Hopefully, this solution will be able to answer the economical and social issue for declining food resource, especially fishery and marine resource.

Keywords: Minapolitan, fisheries, economy, Indonesia

Procedia PDF Downloads 448
200 Stability of a Biofilm Reactor Able to Degrade a Mixture of the Organochlorine Herbicides Atrazine, Simazine, Diuron and 2,4-Dichlorophenoxyacetic Acid to Changes in the Composition of the Supply Medium

Authors: I. Nava-Arenas, N. Ruiz-Ordaz, C. J. Galindez-Mayer, M. L. Luna-Guido, S. L. Ruiz-López, A. Cabrera-Orozco, D. Nava-Arenas

Abstract:

Among the most important herbicides, the organochlorine compounds are of considerable interest due to their recalcitrance to the chemical, biological, and photolytic degradation, their persistence in the environment, their mobility, and their bioacummulation. The most widely used herbicides in North America are primarily 2,4-dichlorophenoxyacetic acid (2,4-D), the triazines (atrazine and simazine), and to a lesser extent diuron. The contamination of soils and water bodies frequently occurs by mixtures of these xenobiotics. For this reason, in this work, the operational stability to changes in the composition of the medium supplied to an aerobic biofilm reactor was studied. The reactor was packed with fragments of volcanic rock that retained a complex microbial film, able to degrade a mixture of organochlorine herbicides atrazine, simazine, diuron and 2,4-D, and whose members have microbial genes encoding the main catabolic enzymes atzABCD, tfdACD and puhB. To acclimate the attached microbial community, the biofilm reactor was fed continuously with a mineral minimal medium containing the herbicides (in mg•L-1): diuron, 20.4; atrazine, 14.2, simazine, 11.4, and 2,4-D, 59.7, as carbon and nitrogen sources. Throughout the bioprocess, removal efficiencies of 92-100% for herbicides, 78-90% for COD, 92-96% for TOC and 61-83% for dehalogenation were reached. In the microbial community, the genes encoding catabolic enzymes of different herbicides tfdACD, puhB and, occasionally, the genes atzA and atzC were detected. After the acclimatization, the triazine herbicides were eliminated from the mixture formulation. Volumetric loading rates of the mixture 2,4-D and diuron were continuously supplied to the reactor (1.9-21.5 mg herbicides •L-1 •h-1). Along the bioprocess, the removal efficiencies obtained were 86-100% for the mixture of herbicides, 63-94% for for COD, 90-100% for COT, and dehalogenation values of 63-100%. It was also observed that the genes encoding the enzymes in the catabolism of both herbicides, tfdACD and puhB, were consistently detected; and, occasionally, the atzA and atzC. Subsequently, the triazine herbicide atrazine and simazine were restored to the medium supply. Different volumetric charges of this mixture were continuously fed to the reactor (2.9 to 12.6 mg herbicides •L-1 •h-1). During this new treatment process, removal efficiencies of 65-95% for the mixture of herbicides, 63-92% for COD, 66-89% for TOC and 73-94% of dehalogenation were observed. In this last case, the genes tfdACD, puhB and atzABC encoding for the enzymes involved in the catabolism of the distinct herbicides were consistently detected. The atzD gene, encoding the cyanuric hydrolase enzyme, could not be detected, though it was determined that there was partial degradation of cyanuric acid. In general, the community in the biofilm reactor showed some catabolic stability, adapting to changes in loading rates and composition of the mixture of herbicides, and preserving their ability to degrade the four herbicides tested; although, there was a significant delay in the response time to recover to degradation of the herbicides.

Keywords: biodegradation, biofilm reactor, microbial community, organochlorine herbicides

Procedia PDF Downloads 415
199 Distribution, Source Apportionment and Assessment of Pollution Level of Trace Metals in Water and Sediment of a Riverine Wetland of the Brahmaputra Valley

Authors: Kali Prasad Sarma, Sanghita Dutta

Abstract:

Deepor Beel (DB), the lone Ramsar site and an important wetland of the Brahmaputra valley in the state of Assam. The local people from fourteen peripheral villages traditionally utilize the wetland for harvesting vegetables, flowers, aquatic seeds, medicinal plants, fish, molluscs, fodder for domestic cattle etc. Therefore, it is of great importance to understand the concentration and distribution of trace metals in water-sediment system of the beel in order to protect its ecological environment. DB lies between26°05′26′′N to 26°09′26′′N latitudes and 90°36′39′′E to 91°41′25′′E longitudes. Water samples from the surface layer of water up to 40cm deep and sediment samples from the top 5cm layer of surface sediments were collected. The trace metals in waters and sediments were analysed using ICP-OES. The organic Carbon was analysed using the TOC analyser. The different mineral present in the sediments were confirmed by X-ray diffraction method (XRD). SEM images were recorded for the samples using SEM, attached with energy dispersive X-ray unit, with an accelerating voltage of 20 kv. All the statistical analyses were performed using SPSS20.0 for windows. In the present research, distribution, source apportionment, temporal and spatial variability, extent of pollution and the ecological risk of eight toxic trace metals in sediments and water of DB were investigated. The average concentrations of chromium(Cr) (both the seasons), copper(Cu) and lead(Pb) (pre-monsoon) and zinc(Zn) and cadmium(Cd) (post-monsoon) in sediments were higher than the consensus based threshold concentration(TEC). The persistent exposure of toxic trace metals in sediments pose a potential threat, especially to sediment dwelling organisms. The degree of pollution in DB sediments for Pb, Cobalt (Co) Zn, Cd, Cr, Cu and arsenic (As) was assessed using Enrichment Factor (EF), Geo-accumulation index (Igeo) and Pollution Load Index (PLI). The results indicated that contamination of surface sediments in DB is dominated by Pb and Cd and to a lesser extent by Co, Fe, Cu, Cr, As and Zn. A significant positive correlation among the pairs of element Co/Fe, Zn/As in water, and Cr/Zn, Fe/As in sediments indicates similar source of origin of these metals. The effects of interaction among trace metals between water and sediments shows significant variations (F =94.02, P < 0.001), suggesting maximum mobility of trace metals in DB sediments and water. The source apportionment of the heavy metals was carried out using Principal Component Analysis (PCA). SEM-EDS detects the presence of Cd, Cu, Cr, Zn, Pb, As and Fe in the sediment sample. The average concentration of Cd, Zn, Pb and As in the bed sediments of DB are found to be higher than the crustal abundance. The EF values indicate that Cd and Pb are significantly enriched. From source apportionment studies of the eight metals using PCA revealed that Cd was anthropogenic in origin; Pb, As, Cr, and Zn had mixed sources; whereas Co, Cu and Fe were natural in origin.

Keywords: Deepor Beel, enrichment factor, principal component analysis, trace metals

Procedia PDF Downloads 273
198 Investigation of Xanthomonas euvesicatoria on Seed Germination and Seed to Seedling Transmission in Tomato

Authors: H. Mayton, X. Yan, A. G. Taylor

Abstract:

Infested tomato seeds were used to investigate the influence of Xanthomonas euvesicatoria on germination and seed to seedling transmission in a controlled environment and greenhouse assays in an effort to develop effective seed treatments and characterize seed borne transmission of bacterial leaf spot of tomato. Bacterial leaf spot of tomato, caused by four distinct Xanthomonas species, X. euvesicatoria, X. gardneri, X. perforans, and X. vesicatoria, is a serious disease worldwide. In the United States, disease prevention is expensive for commercial growers in warm, humid regions of the country, and crop losses can be devastating. In this study, four different infested tomato seed lots were extracted from tomato fruits infected with bacterial leaf spot from a field in New York State in 2017 that had been inoculated with X. euvesicatoria. In addition, vacuum infiltration at 61 kilopascals for 1, 5, 10, and 15 minutes and seed soaking for 5, 10, 15, and 30 minutes with different bacterial concentrations were used to artificially infest seed in the laboratory. For controlled environment assays, infested tomato seeds from the field and laboratory were placed othe n moistened blue blotter in square plastic boxes (10 cm x 10 cm) and incubated at 20/30 ˚C with an 8/16 hour light cycle, respectively. Infested tomato seeds from the field and laboratory were also planted in small plastic trays in soil (peat-lite medium) and placed in the greenhouse with 24/18 ˚C day and night temperatures, respectively, with a 14-hour photoperiod. Seed germination was assessed after eight days in the laboratory and 14 days in the greenhouse. Polymerase chain reaction (PCR) using the hrpB7 primers (RST65 [5’- GTCGTCGTTACGGCAAGGTGGTG-3’] and RST69 [5’-TCGCCCAGCGTCATCAGGCCATC-3’]) was performed to confirm presence or absence of the bacterial pathogen in seed lots collected from the field and in germinating seedlings in all experiments. For infested seed lots from the field, germination was lowest (84%) in the seed lot with the highest level of bacterial infestation (55%) and ranged from 84-98%. No adverse effect on germination was observed from artificially infested seeds for any bacterial concentration and method of infiltration when compared to a non-infested control. Germination in laboratory assays for artificially infested seeds ranged from 82-100%. In controlled environment assays, 2.5 % were PCR positive for the pathogen, and in the greenhouse assays, no infected seedlings were detected. From these experiments, X. euvesicatoria does not appear to adversely influence germination. The lowest rate of germination from field collected seed may be due to contamination with multiple pathogens and saprophytic organisms as no effect of artificial bacterial seed infestation in the laboratory on germination was observed. No evidence of systemic movement from seed to seedling was observed in the greenhouse assays; however, in the controlled environment assays, some seedlings were PCR positive. Additional experiments are underway with green fluorescent protein-expressing isolates to further characterize seed to seedling transmission of the bacterial leaf spot pathogen in tomato.

Keywords: bacterial leaf spot, seed germination, tomato, Xanthomonas euvesicatoria

Procedia PDF Downloads 116
197 An Overview of PFAS Treatment Technologies with an In-Depth Analysis of Two Case Studies

Authors: Arul Ayyaswami, Vidhya Ramalingam

Abstract:

Per- and polyfluoroalkyl substances (PFAS) have emerged as a significant environmental concern due to their ubiquity and persistence in the environment. Their chemical characteristics and adverse effects on human health demands more effective and sustainable solutions in remediation of the PFAS. The work presented here encompasses an overview of treatment technologies with two case studies that utilize effective approaches in addressing PFAS contaminated media. Currently the options for treatment of PFAS compounds include Activated carbon adsorption, Ion Exchange, Membrane Filtration, Advanced oxidation processes, Electrochemical treatment, and Precipitation and Coagulation. In the first case study, a pilot study application of colloidal activated carbon (CAC) was completed to address PFAS from aqueous film-forming foam (AFFF) used to extinguish a large fire. The pilot study was used to demonstrate the effectiveness of a CAC in situ permeable reactive barrier (PRB) in effectively stopping the migration of PFOS and PFOA, moving from the source area at high concentrations. Before the CAC PRB installation, an injection test using - fluorescein dye was conducted to determine the primary fracture-induced groundwater flow pathways. A straddle packer injection delivery system was used to isolate discrete intervals and gain resolution over the 70 feet saturated zone targeted for treatment. Flow rates were adjusted, and aquifer responses were recorded for each interval. The results from the injection test were used to design the pilot test injection plan using CAC PRB. Following the CAC PRB application, the combined initial concentration 91,400 ng/L of PFOS and PFOA were reduced to approximately 70 ng/L (99.9% reduction), after only one month following the injection event. The results demonstrate the remedy's effectiveness to quickly and safely contain high concentrations of PFAS in fractured bedrock, reducing the risk to downgradient receptors. The second study involves developing a reductive defluorination treatment process using UV and electron acceptor. This experiment indicates a significant potential in treatment of PFAS contaminated waste media such as landfill leachates. The technology also shows a promising way of tacking these contaminants without the need for secondary waste disposal or any additional pre-treatments.

Keywords: per- and polyfluoroalkyl substances (PFAS), colloidal activated carbon (CAC), destructive PFAS treatment technology, aqueous film-forming foam (AFFF)

Procedia PDF Downloads 45
196 The Role of the Indigenous Radio Today and Its Impact on the Audience: The Case of Dambana FM in Sri Lanka

Authors: Dammika Bandara Herath

Abstract:

A group of people who inherits a long history of existence within a particular country may be known as early inhabitants or indigenous peoples. In other words, they have not migrated to the particular territory from another part of the world and at the same time, they have inhabited the territory in issue prior to the time of a major invasion/migration. According to the UN, there are a number of unique attributes of the indigenous peoples: Self-identification as indigenous people,Historical continuity with pre-colonial and/or pre-settler societies, Distinct social, economic or political systems, Distinct language, culture and beliefs, Form non-dominant groups of society, Resolve to maintain and reproduce their ancestral environments and systems as distinctive peoples and communities. Indigenous peoples constitute 5% of the world’s population. They are also known as tribal people, first people, native people, and indigenous people. Various indigenous communities can be found in about 90 countries in the world. Asia is home to approximately 70 % of these indigenous communities who have their own unique socio-cultural identities. Most indigenous communities remain isolated from the mainstream social, cultural, and economic institutions of their homeland. Yet, they inherited their own unique rights and responsible peculiar to their own group. These include: Protecting the socio-cultural heritage of the group, Protecting the unique identity of their community from socio-cultural changes in the mainstream communities,Protecting their land, Diffusing their cultural heritage to the future generation, Co-existing peacefully with other community .However, indigenous peoples encounter a lot of challenges as a result of socio-cultural change and legal restrictions in the world today. To assist the communities to face these challenges, the mass –media can play a significant role and the radio media has a purpose-built mechanism for this mission, known as the indigenous radio. In Sri Lanka, Dambana FM is such a radio channel based on the indigenous radio model. The target audience of this channel is the vedda / indigenous community of Sri Lanka. This study intends to the current role of the indigenous radio based on Dambana FM, of which the target audience is the indigenous community of Dambana. For the purpose of this study, interviews were conducted among fifty randomly selected respondents from the indigenous community of Dambana. As far as the findings of this study are concerned, problems in the quality of the programmed broadcasted and problems of transmission are the key issues faced by the indigenous radio in Sri Lanka. Based on the findings, the researcher seeks to develop a model to enhance the impact of the indigenous radio on its listeners in Sri Lanka.

Keywords: indigenous, communities, radio, vedda, culture

Procedia PDF Downloads 385
195 Metal Contaminants in River Water and Human Urine after an Episode of Major Pollution by Mining Wastes in the Kasai Province of DR Congo

Authors: Remy Mpulumba Badiambile, Paul Musa Obadia, Malick Useni Mutayo, Jeef Numbi Mukanya, Patient Nkulu Banza, Tony Kayembe Kitenge, Erik Smolders, Jean-François Picron, Vincent Haufroid, Célestin Banza Lubaba Nkulu, Benoit Nemery

Abstract:

Background: In July 2021, the Tshikapa river became heavily polluted by mining wastes from a diamond mine in neighboring Angola, leading to massive killing of fish, as well as disease and even deaths among residents living along the Tshikapa and Kasai rivers, a major contributory of the Congo river. The exact nature of the pollutants was unknown. Methods: In a cross-sectional study conducted in the city of Tshikapa in August 2021, we enrolled by opportunistic sampling 65 residents (11 children < 16y) living alongside the polluted rivers and 65 control residents (5 children) living alongside a non-affected portion of the Kasai river (upstream from the Tshikapa-Kasai confluence). We administered a questionnaire and obtained spot urine samples for measurements of thiocyanate (a metabolite of cyanide) and 26 trace metals (by ICP-MS). Metals (and pH) were also measured in samples of river water. Results: Participants from both groups consumed river water. In the area affected by the pollution, most participants had eaten dead fish. Prevalences of reported health symptoms were higher in the exposed group than among controls: skin rashes (52% vs 0%), diarrhea (40% vs 8%), abdominal pain (8% vs 3%), nausea (3% vs 0%). In polluted water, concentrations [median (range)] were only higher for nickel [(2.2(1.4–3.5)µg/L] and uranium [78(71–91)ng/L] than in non-polluted water [0.8(0.6–1.9)µg/L; 9(7–19)ng/L]. In urine, concentrations [µg/g creatinine, median(IQR)] were significantly higher in the exposed group than in controls for lithium [19.5(12.4–27.3) vs 6.9(5.9–12.1)], thallium [0.41(0.31–0.57) vs 0.19(0.16–0.39)], and uranium [0.026(0.013–0.037)] vs 0.012(0.006–0.024)]. Other elements did not differ between the groups, but levels were higher than reference values for several metals (including manganese, cobalt, nickel, and lead). Urinary thiocyanate concentrations did not differ. Conclusion: This study, after an ecological disaster in the DRC, has documented contamination of river water by nickel and uranium and high urinary levels of some trace metals among affected riverine populations. However, the exact cause of the massive fish kill and disease among residents remains elusive. The capacity to rapidly investigate toxic pollution events must be increased in the area.

Keywords: metal contaminants, river water and human urine, pollution by mining wastes, DR Congo

Procedia PDF Downloads 122
194 Natural Mexican Zeolite Modified with Iron to Remove Arsenic Ions from Water Sources

Authors: Maritza Estela Garay-Rodriguez, Mirella Gutierrez-Arzaluz, Miguel Torres-Rodriguez, Violeta Mugica-Alvarez

Abstract:

Arsenic is an element present in the earth's crust and is dispersed in the environment through natural processes and some anthropogenic activities. Naturally released into the environment through the weathering and erosion of sulphides mineral, some activities such as mining, the use of pesticides or wood preservatives potentially increase the concentration of arsenic in air, water, and soil. The natural arsenic release of a geological material is a threat to the world's drinking water sources. In aqueous phase is found in inorganic form, as arsenate and arsenite mainly, the contamination of groundwater by salts of this element originates what is known as endemic regional hydroarsenicism. The International Agency for Research on Cancer (IARC) categorizes the inorganic As within group I, as a substance with proven carcinogenic action for humans. It has been found the presence of As in groundwater in several countries such as Argentina, Mexico, Bangladesh, Canada and the United States. Regarding the concentration of arsenic in drinking water according to the World Health Organization (WHO) and the Environmental Protection Agency (EPA) establish maximum concentrations of 10 μg L⁻¹. In Mexico, in some states as Hidalgo, Morelos and Michoacán concentrations of arsenic have been found in bodies of water around 1000 μg L⁻¹, a concentration that is well above what is allowed by Mexican regulations with the NOM-127- SSA1-1994 that establishes a limit of 25 μg L⁻¹. Given this problem in Mexico, this research proposes the use of a natural Mexican zeolite (clinoptilolite type) native to the district of Etla in the central valley region of Oaxaca, as an adsorbent for the removal of arsenic. The zeolite was subjected to a conditioning with iron oxide by the precipitation-impregnation method with 0.5 M iron nitrate solution, in order to increase the natural adsorption capacity of this material. The removal of arsenic was carried out in a column with a fixed bed of conditioned zeolite, since it combines the advantages of a conventional filter with those of a natural adsorbent medium, providing a continuous treatment, of low cost and relatively easy to operate, for its implementation in marginalized areas. The zeolite was characterized by XRD, SEM/EDS, and FTIR before and after the arsenic adsorption tests, the results showed that the modification methods used are adequate to prepare adsorbent materials since it does not modify its structure, the results showed that with a particle size of 1.18 mm, an initial concentration of As (V) ions of 1 ppm, a pH of 7 and at room temperature, a removal of 98.7% was obtained with an adsorption capacity of 260 μg As g⁻¹ zeolite. The results obtained indicated that the conditioned zeolite is favorable for the elimination of arsenate in water containing up to 1000 μg As L⁻¹ and could be suitable for removing arsenate from pits of water.

Keywords: adsorption, arsenic, iron conditioning, natural zeolite

Procedia PDF Downloads 151
193 A Review on Agricultural Landscapes as a Habitat of Rodents

Authors: Nadeem Munawar, Tariq Mahmood, Paula Rivadeneira, Ali Akhter

Abstract:

In this paper, we review on rodent species which are common inhabitants of agricultural landscapes where they are an important prey source for a wide variety of avian, reptilian, and mammalian predators. Agricultural fields are surrounded by fallow land, which provide suitable sites for shelter and breeding for rodents, while shrubs, grasses, annual weeds and forbs may provide supplementary food. The assemblage of rodent’s fauna in the cropland habitats including cropped fields, meadows and adjacent field structures like hedgerows, woodland and field margins fluctuates seasonally. The mature agricultural crops provides good source of food and shelter to the rodents and these factors along with favorable climatic factors/season facilitate breeding activities of these rodent species. Changes in vegetation height and vegetative cover affect two important aspects of a rodent’s life: food and shelter. In addition, during non-crop period vegetation can be important for building nests above or below ground and it provides thermal protection for rodents from heat and cold. The review revealed that rodents form a very diverse group of mammals, ranging from tiny pigmy mice to big capybaras, from arboreal flying squirrels to subterranean mole rats, from opportunistic omnivores (e.g. Norway rats) to specialist feeders (e.g. the North African fat sand rats that feed on a single family of plants only). It is therefore no surprise that some species thrive well under the conditions that are found in agricultural fields. The review on the population dynamics of the rodent species indicated that they are agricultural pests probably due to the heterogeneous landscape and to the high rotativity of vegetable crop cultivation. They also cause damage to various crops, directly and indirectly, by gnawing, spoilage, contamination and hoarding activities, besides this behavior they have also significance importance in agricultural habitat. The burrowing activities of rodents alter the soil properties around their burrows which improve its aeration, infiltration, increase the water holding capacity and thus encourage plant growth. These properties are beneficial for the soil because they affect absorption of phosphorus, absorption zinc, copper, other nutrients and the uptake of water and thus rodents are known as indicator species in agricultural fields. Our review suggests that wide crop field’s borders, particularly those contiguous to various cropland fields, should be understood as priority sites for nesting, feeding, and cover for the rodent’s fauna. The goal of this review paper is to provide a comprehensive synthesis of understanding regarding rodent habitat and biodiversity in agricultural landscapes.

Keywords: agricultural landscapes, food, indicator species, shelter

Procedia PDF Downloads 146
192 Training Manual of Organic Agriculture Farming for the Farmers: A Case Study from Kunjpura and Surrounding Villages

Authors: Rishi Pal Singh

Abstract:

In Indian Scenario, Organic agriculture is growing by the conscious efforts of inspired people who are able to create the best promising relationship between the earth and men. Nowadays, the major challenge is its entry into the policy-making framework, its entry into the global market and weak sensitization among the farmers. But, during the last two decades, the contamination in environment and food which is linked with the bad agricultural potential/techniques has diverted the mind set of farmers towards the organic farming. In the view of above concept, a small-scale project has been installed to promote the 20 farmers from the Kunjura and surrounding villages for organic farming. This project is working since from the last 3 crops (starting from October, 2016) and found that it can meet both demands and complete development of rural areas. Farmers of this concept are working on the principles such that the nature never demands unreasonable quantities of water, mining and to destroy the microbes and other organisms. As per details of Organic Monitor estimates, global sales reached in billion in the present analysis. In this initiative, firstly, wheat and rice were considered for farming and observed that the production of crop has grown almost 10-15% per year from the last crop production. This is not linked only with the profit or loss but also emphasized on the concept of health, ecology, fairness and care of soil enrichment. Several techniques were used like use of biological fertilizers instead of chemicals, multiple cropping, temperature management, rain water harvesting, development of own seed, vermicompost and integration of animals. In the first year, to increase the fertility of the land, legumes (moong, cow pea and red gram) were grown in strips for the 60, 90 and 120 days. Simultaneously, the mixture of compost and vermicompost in the proportion of 2:1 was applied at the rate of 2.0 ton per acre which was enriched with 5 kg Azotobacter and 5 kg Rhizobium biofertilizer. To complete the amount of phosphorus, 250 kg rock phosphate was used. After the one month, jivamrut can be used with the irrigation water or during the rainy days. In next season, compost-vermicompost mixture @ 2.5 ton/ha was used for all type of crops. After the completion of this treatment, now the soil is ready for high value ordinary/horticultural crops. The amount of above stated biofertilizers, compost-vermicompost and rock phosphate may be increased for the high alternative fertilizers. The significance of the projects is that now the farmers believe in cultural alternative (use of disease-free their own seed, organic pest management), maintenance of biodiversity, crop rotation practices and health benefits of organic farming. This type of organic farming projects should be installed at the level of gram/block/district administration.

Keywords: organic farming, Kunjpura, compost, bio-fertilizers

Procedia PDF Downloads 170
191 Fe3O4 Decorated ZnO Nanocomposite Particle System for Waste Water Remediation: An Absorptive-Photocatalytic Based Approach

Authors: Prateek Goyal, Archini Paruthi, Superb K. Misra

Abstract:

Contamination of water resources has been a major concern, which has drawn attention to the need to develop new material models for treatment of effluents. Existing conventional waste water treatment methods remain ineffective sometimes and uneconomical in terms of remediating contaminants like heavy metal ions (mercury, arsenic, lead, cadmium and chromium); organic matter (dyes, chlorinated solvents) and high salt concentration, which makes water unfit for consumption. We believe that nanotechnology based strategy, where we use nanoparticles as a tool to remediate a class of pollutants would prove to be effective due to its property of high surface area to volume ratio, higher selectivity, sensitivity and affinity. In recent years, scientific advancement has been made to study the application of photocatalytic (ZnO, TiO2 etc.) nanomaterials and magnetic nanomaterials in remediating contaminants (like heavy metals and organic dyes) from water/wastewater. Our study focuses on the synthesis and monitoring remediation efficiency of ZnO, Fe3O4 and Fe3O4 coated ZnO nanoparticulate system for the removal of heavy metals and dyes simultaneously. Multitude of ZnO nanostructures (spheres, rods and flowers) using multiple routes (microwave & hydrothermal approach) offers a wide range of light active photo catalytic property. The phase purity, morphology, size distribution, zeta potential, surface area and porosity in addition to the magnetic susceptibility of the particles were characterized by XRD, TEM, CPS, DLS, BET and VSM measurements respectively. Further on, the introduction of crystalline defects into ZnO nanostructures can also assist in light activation for improved dye degradation. Band gap of a material and its absorbance is a concrete indicator for photocatalytic activity of the material. Due to high surface area, high porosity and affinity towards metal ions and availability of active surface sites, iron oxide nanoparticles show promising application in adsorption of heavy metal ions. An additional advantage of having magnetic based nanocomposite is, it offers magnetic field responsive separation and recovery of the catalyst. Therefore, we believe that ZnO linked Fe3O4 nanosystem would be efficient and reusable. Improved photocatalytic efficiency in addition to adsorption for environmental remediation has been a long standing challenge, and the nano-composite system offers the best of features which the two individual metal oxides provide for nanoremediation.

Keywords: adsorption, nanocomposite, nanoremediation, photocatalysis

Procedia PDF Downloads 223
190 Cord Blood Hematopoietic Stem Cell Expansion Ability of Mesenchymal Stem Cells Isolated From Different Sources

Authors: Ana M. Lara, Manuela Llano, Felipe Gaitán, Rosa H. Bustos, Ana Maria Perdomo-Arciniegas, Ximena Bonilla

Abstract:

Umbilical cord blood is used as a source of progenitor and stem cells for the regeneration of the hematopoietic and immune system to treat patients with different hematological or non-hematological diseases. This stem cell source represents an advantage over the use of bone marrow or mobilized peripheral blood because it has a lower incidence rate of graft-versus-host disease, probably due to fewer immunological compatibility restrictions. However, its low cellular dose limits its use in pediatric patients. This work proposes the standardization of a cell expansion technique to compensate for the dose of infused cells through the ex-vivo manipulation of hematopoietic progenitor cells from umbilical cord blood before transplantation. The expansion model is carried out through co-cultures with mesenchymal stem cells (MSC) from bone marrow (BM) and less explored fetal tissues such as Wharton's jelly (WJ) and umbilical cord blood (UCB). Initially, a master cell bank of primary mesenchymal stem cells isolated from different sources was established and characterized following International Society of Cell Therapies (ISCT) indications. Additionally, we assessed the effect of a short 25 Gy cycle of gamma irradiation on cell cycle arrest of mesenchymal cells over the support capacity for the expansion of hematopoietic stem cells from umbilical cord blood was evaluated. The results show that co-cultures with MSC from WJ and UCB allow the cellular dose of HSPC to be maximized between 5 and 16 times having a similar support capacity as BM. In addition, was evaluated the hematopoietic stem progenitor cell's HSPC functionality through the evaluation of migration capacity, their differentiation capacity during culture time by flow cytometry to evaluate the expression of membrane markers associated with lineage-committed progenitors, their clonogenic potential, and the evaluation of secretome profile in the expansion process was evaluated. So far, the treatment with gamma irradiation maintains the hematopoietic support capacity of mesenchymal stem cells from the three sources studied compared to treatments without irradiation, favoring the use of fetal tissues that are generally waste to obtain mesenchymal cell lines for ex-vivo expansion systems. With the results obtained, a standardized protocol that will contribute to the development of ex-vivo expansion with MSC on a larger scale will be achieved, enabling its clinical use and expanding its application in adults.

Keywords: ex-vivo expansion, hematopoietic stem cells, hematopoietic stem cell transplantation, mesenchymal stem cells, umbilical cord blood

Procedia PDF Downloads 96
189 Comparative Hematological Analysis of Blood Profile in Experimentally Infected with Trichinella spiralis, Trichinella britovi and Trichinella pseudospiralis Mice

Authors: Valeria T. Dilcheva, Svetlozara L. Petkova, Ivelin Vladov

Abstract:

Trichinellosis is a food-borne parasitic disease caused by nematodes of the genus Trichinella which are zoonotic parasites with cosmopolitan distribution and major socio-economic importance. Human infection is acquired through consumption of undercooked meat from domestic or wild animal. Penetration of Trichinella larvae into striated skeletal muscle cells results in ultrastructural and metabolic changes. Migration of larvae causes the typical symptoms and signs of the disease. The severity of the symptoms depends on the number of ingested Trichinella larvae and the immune response of the host. Eosinophilia is present, with few exceptions, in most cases of human trichinellosis, inasmuch as it is the earliest and most important host response. Even in human asymptomatic cases, increases in eosinophilia of up to 15% have been observed. Eosinophilia appears at an early stage of infection between the second and fifth weeks of infection. By 2005 it was considered that only two species of Trichinella genus were found in the country. After routine trichinelloscopy procedure disseminated single muscle larvae in samples of wild boars and badger were PCR-identified as T. pseudospiralis. The study aimed to observed hematological changes occurring during experimentally induced infection with Trichinella spiralis, T. britovi and T. pseudospiralis in mice. We performed hematological blood profile, tracking 15 blood indicators. In statistical analysis made by Two-way ANOVA, there were significant differences of HGB, MCHC, PLT, Lymph%, Gran% in all three types of trichinellosis compared to control animals. Capsule-forming T. spiralis showed statistically significant differences in HGB, MCHC, Lymph% and PLT compared to the other two species. Non capsule-forming T. pseudospiralis showed statistically significant differences in Lymph%, Gran% relative to the control and in Gran% relative to T. spiralis. It appears rather substantial the process of capsule formation for prolonged immune response and retention of high content of percentage of lymphocytes(Lymph%) and low of granulocyte(Gran%) in T. pseudospiralis, which is contrary to studies for T. spiralis and eosinophilia. Studies and analyzes of some specific blood profile parameters can provide additional data in favor of early diagnosis and adequate treatment as well as provide a better understanding of acute and chronic trichinosis.

Keywords: hematological test, T. britovi, T. spiralis, T. pseudospiralis

Procedia PDF Downloads 153
188 Bringing German History to Tourists

Authors: Gudrun Görlitz, Christian Schölzel, Alexander Vollmar

Abstract:

Sites of Jewish Life in Berlin 1933-1945. Between Persecution and Self-assertion” was realized in a project funded by the European Regional Development Fund. A smartphone app, and a associated web site enable tourists and other participants of this educational offer to learn in a serious way more about the life of Jews in the German capital during the Nazi era. Texts, photos, video and audio recordings communicate the historical content. Interactive maps (both current and historical) make it possible to use predefined or self combined routes. One of the manifold challenges was to create a broad ranged guide, in which all detailed information are well linked with each other. This enables heterogeneous groups of potential users to find a wide range of specific information, corresponding with their particular wishes and interests. The multitude of potential ways to navigate through the diversified information causes (hopefully) the users to utilize app and web site for a second or third time and with a continued interest. Therefore 90 locations, a lot of them situated in Berlin’s city centre, have been chosen. For all of them text-, picture and/or audio/video material gives extensive information. Suggested combinations of several of these “site stories” are leading to the offer of detailed excursion routes. Events and biographies are also presented. A few of the implemented biographies are especially enriched with source material concerning the aspect of (forced) migration of these persons during the Nazi time. All this was done in a close and fruitful interdisciplinary cooperation of computer scientists and historians. The suggested conference paper aims to show the challenges shaping complex source material for practical use by different user-groups in a proper technical and didactic way. Based on the historical research in archives, museums, libraries and digital resources the quantitative dimension of the project can be sized as follows: The paper focuses on the following historiographical and technical aspects: - Shaping the text material didactically for the use in new media, especially a Smartphone-App running on differing platforms; - Geo-referencing of the sites on historical and current map material; - Overlay of old and new maps to present and find the sites; - Using Augmented Reality technologies to re-visualize destroyed buildings; - Visualization of black-/white-picture-material; - Presentation of historical footage and the resulting problems to need too much storage space; - Financial and juridical aspects in gaining copyrights to present archival material.

Keywords: smartphone app, history, tourists, German

Procedia PDF Downloads 351
187 Bioremediation of Phenol in Wastewater Using Polymer-Supported Bacteria

Authors: Areej K. Al-Jwaid, Dmitiry Berllio, Andrew Cundy, Irina Savina, Jonathan L. Caplin

Abstract:

Phenol is a toxic compound that is widely distributed in the environment including the atmosphere, water and soil, due to the release of effluents from the petrochemical and pharmaceutical industries, coking plants and oil refineries. Moreover, a range of daily products, using phenol as a raw material, may find their way into the environment without prior treatment. The toxicity of phenol effects both human and environment health, and various physio-chemical methods to remediate phenol contamination have been used. While these techniques are effective, their complexity and high cost had led to search for alternative strategies to reduce and eliminate high concentrations of phenolic compounds in the environment. Biological treatments are preferable because they are environmentally friendly and cheaper than physico-chemical approaches. Some microorganisms such as Pseudomonas sp., Rhodococus sp., Acinetobacter sp. and Bacillus sp. have shown a high ability to degrade phenolic compounds to provide a sole source of energy. Immobilisation process utilising various materials have been used to protect and enhance the viability of cells, and to provide structural support for the bacterial cells. The aim of this study is to develop a new approach to the bioremediation of phenol based on an immobilisation strategy that can be used in wastewater. In this study, two bacterial species known to be phenol degrading bacteria (Pseudomonas mendocina and Rhodococus koreensis) were purchased from National Collection of Industrial, Food and Marine Bacteria (NCIMB). The two species and mixture of them were immobilised to produce macro porous crosslinked cell cryogels samples by using four types of cross-linker polymer solutions in a cryogelation process. The samples were used in a batch culture to degrade phenol at an initial concentration of 50mg/L at pH 7.5±0.3 and a temperature of 30°C. The four types of polymer solution - i. glutaraldehyde (GA), ii. Polyvinyl alcohol with glutaraldehyde (PVA+GA), iii. Polyvinyl alcohol–aldehyde (PVA-al) and iv. Polyetheleneimine–aldehyde (PEI-al), were used at different concentrations, ranging from 0.5 to 1.5% to crosslink the cells. The results of SEM and rheology analysis indicated that cell-cryogel samples crosslinked with the four cross-linker polymers formed monolithic macro porous cryogels. The samples were evaluated for their ability to degrade phenol. Macro porous cell–cryogels crosslinked with GA and PVA+GA showed an ability to degrade phenol for only one week, while the other samples crosslinked with a combination of PVA-al + PEI-al at two different concentrations have shown higher stability and viability to reuse to degrade phenol at concentration (50 mg/L) for five weeks. The initial results of using crosslinked cell cryogel samples to degrade phenol indicate that is a promising tool for bioremediation strategies especially to eliminate and remove the high concentration of phenol in wastewater.

Keywords: bioremediation, crosslinked cells, immobilisation, phenol degradation

Procedia PDF Downloads 207
186 X-Ray Detector Technology Optimization In CT Imaging

Authors: Aziz Ikhlef

Abstract:

Most of multi-slices CT scanners are built with detectors composed of scintillator - photodiodes arrays. The photodiodes arrays are mainly based on front-illuminated technology for detectors under 64 slices and on back-illuminated photodiode for systems of 64 slices or more. The designs based on back-illuminated photodiodes were being investigated for CT machines to overcome the challenge of the higher number of runs and connection required in front-illuminated diodes. In backlit diodes, the electronic noise has already been improved because of the reduction of the load capacitance due to the routing reduction. This translated by a better image quality in low signal application, improving low dose imaging in large patient population. With the fast development of multi-detector-rows CT (MDCT) scanners and the increasing number of examinations, the clinical community has raised significant concerns on radiation dose received by the patient in both medical and regulatory community. In order to reduce individual exposure and in response to the recommendations of the International Commission on Radiological Protection (ICRP) which suggests that all exposures should be kept as low as reasonably achievable (ALARA), every manufacturer is trying to implement strategies and solutions to optimize dose efficiency and image quality based on x-ray emission and scanning parameters. The added demands on the CT detector performance also comes from the increased utilization of spectral CT or dual-energy CT in which projection data of two different tube potentials are collected. One of the approaches utilizes a technology called fast-kVp switching in which the tube voltage is switched between 80kVp and 140kVp in fraction of a millisecond. To reduce the cross-contamination of signals, the scintillator based detector temporal response has to be extremely fast to minimize the residual signal from previous samples. In addition, this paper will present an overview of detector technologies and image chain improvement which have been investigated in the last few years to improve the signal-noise ratio and the dose efficiency CT scanners in regular examinations and in energy discrimination techniques. Several parameters of the image chain in general and in the detector technology contribute in the optimization of the final image quality. We will go through the properties of the post-patient collimation to improve the scatter-to-primary ratio, the scintillator material properties such as light output, afterglow, primary speed, crosstalk to improve the spectral imaging, the photodiode design characteristics and the data acquisition system (DAS) to optimize for crosstalk, noise and temporal/spatial resolution.

Keywords: computed tomography, X-ray detector, medical imaging, image quality, artifacts

Procedia PDF Downloads 242
185 Enhanced Furfural Extraction from Aqueous Media Using Neoteric Hydrophobic Solvents

Authors: Ahmad S. Darwish, Tarek Lemaoui, Hanifa Taher, Inas M. AlNashef, Fawzi Banat

Abstract:

This research reports a systematic top-down approach for designing neoteric hydrophobic solvents –particularly, deep eutectic solvents (DES) and ionic liquids (IL)– as furfural extractants from aqueous media for the application of sustainable biomass conversion. The first stage of the framework entailed screening 32 neoteric solvents to determine their efficacy against toluene as the application’s conventional benchmark for comparison. The selection criteria for the best solvents encompassed not only their efficiency in extracting furfural but also low viscosity and minimal toxicity levels. Additionally, for the DESs, their natural origins, availability, and biodegradability were also taken into account. From the screening pool, two neoteric solvents were selected: thymol:decanoic acid 1:1 (Thy:DecA) and trihexyltetradecyl phosphonium bis(trifluoromethylsulfonyl) imide [P₁₄,₆,₆,₆][NTf₂]. These solvents outperformed the toluene benchmark, achieving efficiencies of 94.1% and 97.1% respectively, compared to toluene’s 81.2%, while also possessing the desired properties. These solvents were then characterized thoroughly in terms of their physical properties, thermal properties, critical properties, and cross-contamination solubilities. The selected neoteric solvents were then extensively tested under various operating conditions, and an exceptional stable performance was exhibited, maintaining high efficiency across a broad range of temperatures (15–100 °C), pH levels (1–13), and furfural concentrations (0.1–2.0 wt%) with a remarkable equilibrium time of only 2 minutes, and most notably, demonstrated high efficiencies even at low solvent-to-feed ratios. The durability of the neoteric solvents was also validated to be stable over multiple extraction-regeneration cycles, with limited leachability to the aqueous phase (≈0.1%). Moreover, the extraction performance of the solvents was then modeled through machine learning, specifically multiple non-linear regression (MNLR) and artificial neural networks (ANN). The models demonstrated high accuracy, indicated by their low absolute average relative deviations with values of 2.74% and 2.28% for Thy:DecA and [P₁₄,₆,₆,₆][NTf₂], respectively, using MNLR, and 0.10% for Thy:DecA and 0.41% for [P₁₄,₆,₆,₆][NTf₂] using ANN, highlighting the significantly enhanced predictive accuracy of the ANN. The neoteric solvents presented herein offer noteworthy advantages over traditional organic solvents, including their high efficiency in both extraction and regeneration processes, their stability and minimal leachability, making them particularly suitable for applications involving aqueous media. Moreover, these solvents are more environmentally friendly, incorporating renewable and sustainable components like thymol and decanoic acid. This exceptional efficacy of the newly developed neoteric solvents signifies a significant advancement, providing a green and sustainable alternative for furfural production from biowaste.

Keywords: sustainable biomass conversion, furfural extraction, ionic liquids, deep eutectic solvents

Procedia PDF Downloads 49
184 Quercetin and INT3 Inhibits Endocrine Therapy Resistance and Epithelial to Mesenchymal Transition in MCF7 Breast Cancer Cells

Authors: S. Pradhan, D. Pradhan, G. Tripathy

Abstract:

Anti-estrogen treatment resistant is a noteworthy reason for disease relapse and mortality in estrogen receptor alpha (ERα)- positive breast cancers. Tamoxifen or estrogen withdrawal increases the dependance of breast malignancy cells on INT3 signaling. Here, we researched the contribution of Quercetin and INT3 signaling in endocrine resistant breast cancer cells. Methods: We utilized two models of endocrine therapies resistant (ETR-) breast cancer: tamoxifen-resistant (TamR) and long term estrogen-deprived (LTED) MCF7 cells. We assessed the migratory and invasive limit of these cells by Transwell assay. Expression of epithelial to mesenchymal transition (EMT) controllers and in addition INT3 receptors and targets were assessed by real-time PCR and western blot analysis. Besides, we tried in vitro anti-Quercetin monoclonal antibodies (mAbs) and gamma secretase inhibitors (GSIs) as potential EMT reversal therapeutic agents. At last, we created stable Quercetin over expessing MCF7 cells and assessed their EMT features and response to tamoxifen. Results:We found that ETR cells acquired an epithelial to mesenchymal transition (EMT) phenotype and showed expanded levels of Quercetin and INT3 targets. Interestingly, we detected higher level of INT3 however lower levels of INT31 and INT32 proposing a switch to targeting through distinctive INT3 receptors after obtaining of resistance. Anti-Quercetin monoclonal antibodies and the GSI PF03084014 were effective in obstructing the Quercetin/INT3 axis and in part inhibiting the EMT process. As a consequence of this, cell migration and invasion were weakened and the stem cell like population was considerably decreased. Genetic hushing of Quercetin and INT3 prompted proportionate impacts. Finally, stable overexpression of Quercetin was adequate to make MCF7 lethargic to tamoxifen by INT3 activation. Conclusions: ETR cells express abnormal amounts of Quercetin and INT3, whose actuation eventually drives invasive conduct. Anti-Quercetin mAbs and GSI PF03084014 lessen expression of EMT molecules decreasing cellular invasiveness. Quercetin overexpression instigates tamoxifen resistance connected to obtaining of EMT phenotype. Our discovering propose that focusing on Quercetin and/or INT3 warrants further clinical assessment as substantial therapeutic methodologies in endocrine-resistant breast cancer.

Keywords: quercetin, INT3, mesenchymal transition, MCF7 breast cancer cells

Procedia PDF Downloads 297
183 Immunoprotective Role of Baker's Yeast (Saccharomyces cerevisiae) against Experimentally Induced Aflatoxicosis in Broiler Chicks

Authors: Zain Ul Abadeen, Muhammad Zargham Khan, Muhammad Kashif Saleemi, Ahrar Khan, Ijaz Javed Hassan, Aisha Khatoon, Qasim Altaf

Abstract:

Aflatoxins are secondary metabolites produced by toxigenic fungi, and there are four types of aflatoxins include AFB1, AFB2, AFG1 and AFG2. Aflatoxin B1 (AFB1) is considered as most toxic form. It is mainly responsible for the contamination of poultry feed and produces a condition called aflatoxicosis leads to immunosuppression in poultry birds. Saccharomyces cerevisiae is a single cell microorganism and acts as a source of growth factors, minerals and amino acids which improve the immunity and digestibility in poultry birds as probiotics. Saccharomyces cerevisiae is well recognized to cause the biological degradation of mycotoxins (toxin binder) because its cell wall contains β-glucans and mannans which specifically bind with aflatoxins and reduce their absorption or transfer them to some non-toxic compounds. The present study was designed to investigate the immunosuppressive effects of aflatoxins in broiler chicks and the reduction of severity of these effects by the use of Baker’s Yeast (Saccharomyces cerevisiae). One-day-old broiler chicks were procured from local hatchery and were divided into various groups (A-I). These groups were treated with different levels of AFB1 @ 400 µg/kg and 600 µg/kg along with different levels of Baker’s Yeast (Saccharomyces cerevisiae) 0.1% and 0.5 % in the feed. The total duration of the experiment was six weeks and different immunological parameters including the cellular immune response by injecting PHA-P (Phytohemagglutinin-P) in the skin of the birds, phagocytic function of mononuclear cells by Carbon clearance assay from blood samples and humoral immune response against intravenously injected sheep RBCs from the serum samples were determined. The birds from each group were slaughtered at the end of the experiment to determine the presence of gross lesions in the immune organs and these tissues were fixed in 10% neutral buffered formalin for histological investigations. The results showed that AFB1 intoxicated groups had reduced body weight gain, feed intake, organs weight and immunological responses compared to the control and Baker’s Yeast (Saccharomyces cerevisiae) treated groups. Different gross and histological degenerative changes were recorded in the immune organs of AFB1 intoxicated groups compared to control and Baker’s Yeast (Saccharomyces cerevisiae) treated groups. The present study concluded that Baker’s Yeast (Saccharomyces cerevisiae) addition in the feed helps to ameliorate the immunotoxigenic effects produced by AFB1 in broiler chicks.

Keywords: aflatoxins, body weight gain, feed intake, immunological response, toxigenic effect

Procedia PDF Downloads 288
182 Environmental Interactions in Riparian Vegetation Cover in an Urban Stream Corridor: A Case Study of Duzce Asar Suyu

Authors: Engin Eroğlu, Oktay Yıldız, Necmi Aksoy, Akif Keten, Mehmet Kıvanç Ak, Şeref Keskin, Elif Atmaca, Sertaç Kaya

Abstract:

Nowadays, green spaces in urban areas are under threat and decreasing their percentages in the urban areas because of increasing population, urbanization, migration, and some cultural changes in quality. An important element of the natural landscape water and water-related natural ecosystems are exposed to corruption due to these pressures. A landscape has owned many different types of elements or units, a more dominant structure than other landscapes as good or bad perceptible extent different direction and variable reveals a unique structure and character of the landscape. Whereas landscapes deal with two main groups as urban and rural according to their location on the world, especially intersection areas of urban and rural named semi-urban or semi-rural present variety landscape features. The main components of the landscape are defined as patch-matrix-corridor. The corridors include quite various vegetation types such as riparian, wetland and the others. In urban areas, natural water corridors are an important elements of the diversity of the riparian vegetation cover. In particular, water corridors attract attention with a natural diversity and lack of fragmentation, degradation and artificial results. Thanks to these features, without a doubt, water corridors are the important component of all cities in the world. These corridors not only divide the city into two separate sides, but also assured the ecological connectivity between the two sides of the city. The main objective of this study is to determine the vegetation and habitat features of urban stream corridor according to environmental interactions. Within this context, this study will be realized that 'Asar Suyu' is an important component of the city of Düzce. Moreover, the riparian zone touched contiguous area borders of the city and overlaid the urban development limits of the city, determining of characteristics of the corridor will be carried out as floristic and habitat analysis. Consequently, vegetation structure and habitat features which play an important role between riparian zone vegetation covers and environmental interaction will be determined. This study includes first results of The Scientific and Technological Research Council of Turkey (TUBITAK-116O596; 'Determining of Landscape Character of Urban Water Corridors as Visual and Ecological; A Case Study of Asar Suyu in Duzce').

Keywords: corridor, Duzce, landscape ecology, riparian vegetation

Procedia PDF Downloads 320