Search results for: phenological
26 The Evaluation of Apricot (Prunus armeniaca L.) Materials Collected from Southeast Anatolia Region of Turkey
Authors: M. Kubilay Önal
Abstract:
The objective of this study was to determine the adaptabilities of native apricot materials collected from Southeast Anatolia region of Turkey to Aegean Region conditions. Different phenological and pomological characteristics of the cultivars were observed during study. Determination of promising types for adaptation trials were performed employing the 'weighed-ranking' method. To determine them the relative points were given to the characteristics such as yield, average fruit weight, attractiveness, soluble solid, seed ratio by weight and aroma. As a result of two-year evaluation studies on the phenological and pomological characteristics of 22 types, 9 out of them, viz., nos. 2235, 2236, 2237, 2239, 2242, 2244, 2246, 2249, 2257 were selected as promising ones.Keywords: apricot, phenological characters, pomological characters, weight-ranking method
Procedia PDF Downloads 28125 Evaluation of Ceres Wheat and Rice Model for Climatic Conditions in Haryana, India
Authors: Mamta Rana, K. K. Singh, Nisha Kumari
Abstract:
The simulation models with its soil-weather-plant atmosphere interacting system are important tools for assessing the crops in changing climate conditions. The CERES-Wheat & Rice vs. 4.6 DSSAT was calibrated and evaluated for one of the major producers of wheat and rice state- Haryana, India. The simulation runs were made under irrigated conditions and three fertilizer applications dose of N-P-K to estimate crop yield and other growth parameters along with the phenological development of the crop. The genetic coefficients derived by iteratively manipulating the relevant coefficients that characterize the phenological process of wheat and rice crop to the best fit match between the simulated and observed anthesis, physological maturity and final grain yield. The model validated by plotting the simulated and remote sensing derived LAI. LAI product from remote sensing provides the edge of spatial, timely and accurate assessment of crop. For validating the yield and yield components, the error percentage between the observed and simulated data was calculated. The analysis shows that the model can be used to simulate crop yield and yield components for wheat and rice cultivar under different management practices. During the validation, the error percentage was less than 10%, indicating the utility of the calibrated model for climate risk assessment in the selected region.Keywords: simulation model, CERES-wheat and rice model, crop yield, genetic coefficient
Procedia PDF Downloads 30524 Phenological Variability among Stipagrostis ciliata Accessions Growing under Arid Bioclimate of Southern of Tunisia
Authors: Lobna Mnif Fakhfakh, Mohamed Chaieb
Abstract:
Most ecological studies in North Africa arid bioclimate reveal a process of continuous degradation of pastoral ecosystems as a result of overgrazing during a long time. This degradation appears across the depletion of perennial grass species. Indeed, the majority of steppe ecosystems are characterized by a low density of perennial grasses. The objective of the present work is to examine the phenology and the above ground growth of several Stipagrostis ciliata accessions, growing under different arid bioclimate of North Africa (case of Tunisia). The results of the ANOVA test, next to the mean values of all measurements show significant differences in all morphological parameters of S. ciliata accessions. Plant diameter, biovolume, root biomass with protective sleeve and spike number show very significant. Differences between S. ciliata accessions. Significance tests for the differences of means indicate high distinctiveness of accessions. Pearson’s correlation analysis of the morphological traits suggests that these traits are significantly and positively correlated. Cluster analysis indicates overall differences among accessions and exhibits the presence of three clusters. The Principal component analysis (PCA) is applied on a table with four observations and 12 variables. Dispersion of Stipagrostis ciliata accessions on the first two axes of principal component analysis confirms the presence of three groups of plants. The characterization of Stipagrostis ciliata plants has shown that significant differences exist in terms of morphological and phenological parameters.Keywords: accession, morphology, phenology, Stipagrostis ciliata
Procedia PDF Downloads 25423 Determination of Performances of Some Mulberry (Morus spp.) Species Selected from Different Places of Turkey under Kahramanmaras Conditions
Authors: Muruvvet Ilgin, Ilknur Agca
Abstract:
Common mulberry (Morus levigate Wall.) and purple mulberry (Morus rubra L.) species which were selected from different regions of Turkey were used as material in order to determine their performance. Therefore, phenological observations, pomological analysis (fruit size, fruit weight, fruit stalk length, acidity and TSS (Total Soluble Solids) and phytochemical properties organic acids (oxalic acid, succinic acid, citric acid, fumaric acid and malic acid) and vitamin C (ascorbic acid) total phenolics and antioxidant capacity values of mulberries) were determined. Phenological observations of seven different periods were also identified. Fruit weight values varied between 3.48 to 4.26 g. TSS contents value were from 14.36 to 21.30%, and fruit acidity was determined between 0.29 to 2.02%. The amount of ascorbic acid of Finger mulberry (Morus levigate Wall.) and purple mulberry (Morus rubra L.) species were identified as 35.60% and 363.28%. The highest value of total phenolic contents belonged to with a finger mulberry genotypes P1 934.80 mg/100g whereas the lowest one was of purple mulberry genotypes 278.70 mg/100g. FRAP and TEAC methods were used for determination of antioxidant capacity of the values of 0.58-22.65 micromol TE/kg and 20.34-31.6 micromol TE/kg. Total phenolics contents and antioxidant capacity strongly depends on fruit color intensity with a positive correlation. The obtained results have been found to be important as a source of future pharmacological studies and pomological and breeding programs.Keywords: mulberry, phenology, phytochemical property, pomology
Procedia PDF Downloads 23122 Phenological and Molecular Genetic Diversity Analysis among Saudi durum Wheat Landraces
Authors: Naser B. Almari, Salem S. Alghamdi, Muhammad Afzal, Mohamed Helmy El Shal
Abstract:
Wheat landraces are a rich genetic resource for boosting agronomic qualities in breeding programs while also providing diversity and unique adaptation to local environmental conditions. These genotypes have grown increasingly important in the face of recent climate change challenges. This research aimed to look at the genetic diversity of Saudi Durum wheat landraces using morpho-phenological and molecular data. The principal components analysis (PCA) analysis recorded 78.47 % variance and 1.064 eigenvalues for the first six PCs of the total, respectively. The significant characters contributed more to the diversity are the length of owns at the tip relative to the length of the ear, culm: glaucosity of the neck, flag leaf: glaucosity of the sheath, flag leaf: anthocyanin coloration of auricles, plant: frequency of plants with recurved flag leaves, ear: length, and ear: shape in profile in the PC1. The significant wheat genotypes contributed more in the PC1 (8, 14, 497, 650, 569, 590, 594, 598, 600, 601, and 604). The cluster analysis recorded an 85.42 cophenetic correlation among the 22 wheat genotypes and grouped the genotypes into two main groups. Group, I contain 8 genotypes, however, the 2nd group contains 12 wheat genotypes, while two genotypes (13 and 497) are standing alone in the dendrogram and unable to make a group with any one of the genotypes. The second group was subdivided into two subgroups. The genotypes (14, 602, and 600) were present in the second sub-group. The genotypes were grouped into two main groups. The first group contains 17 genotypes, while the second group contains 3 (8, 977, and 594) wheat genotypes. The genotype (602) was standing alone and unable to make a group with any wheat genotype. The genotypes 650 and 13 also stand alone in the first group. Using the Mantel test, the data recorded a significant (R2 = 0.0006) correlation (phenotypic and genetic) among 22 wheat durum genotypes.Keywords: durum wheat, PCA, cluster analysis, SRAP, genetic diversity
Procedia PDF Downloads 11521 Modeling Vegetation Phenological Characteristics of Terrestrial Ecosystems
Authors: Zongyao Sha
Abstract:
Green vegetation plays a vital role in energy flows and matter cycles in terrestrial ecosystems, and vegetation phenology may not only be influenced by but also impose active feedback on climate changes. The phenological events of vegetation, such as the start of the season (SOS), end of the season (EOS), and length of the season (LOS), can respond to climate changes and affect gross primary productivity (GPP). Here we coupled satellite remote sensing imagery with FLUXNET observations to systematically map the shift of SOS, EOS, and LOS in global vegetated areas and explored their response to climate fluctuations and feedback on GPP during the last two decades. Results indicated that SOS advanced significantly, at an average rate of 0.19 days/year at a global scale, particularly in the northern hemisphere above the middle latitude (≥30°N) and that EOS was slightly delayed during the past two decades, resulting in prolonged LOS in 72.5% of the vegetated area. The climate factors, including seasonal temperature and precipitation, are attributed to the shifts in vegetation phenology but with a high spatial and temporal difference. The study revealed interactions between vegetation phenology and climate changes. Both temperature and precipitation affect vegetation phenology. Higher temperature as a direct consequence of global warming advanced vegetation green-up date. On the other hand, 75.9% and 20.2% of the vegetated area showed a positive correlation and significant positive correlation between annual GPP and length of vegetation growing season (LOS), likely indicating an enhancing effect on vegetation productivity and thus increased carbon uptake from the shifted vegetation phenology. Our study highlights a comprehensive view of the vegetation phenology changes of the global terrestrial ecosystems during the last two decades. The interactions between the shifted vegetation phenology and climate changes may provide useful information for better understanding the future trajectory of global climate changes. The feedback on GPP from the shifted vegetation phenology may serve as an adaptation mechanism for terrestrial ecosystems to mitigate global warming through improved carbon uptake from the atmosphere.Keywords: vegetation phenology, growing season, NPP, correlation analysis
Procedia PDF Downloads 10220 Advancing Phenological Understanding of Plants/Trees Through Phenocam Digital Time-lapse Images
Authors: Siddhartha Khare, Suyash Khare
Abstract:
Phenology, a crucial discipline in ecology, offers insights into the seasonal dynamics of organisms within natural ecosystems and the underlying environmental triggers. Leveraging the potent capabilities of digital repeat photography, PhenoCams capture invaluable data on the phenology of crops, plants, and trees. These cameras yield digital imagery in Red Green Blue (RGB) color channels, and some advanced systems even incorporate Near Infrared (NIR) bands. This study presents compelling case studies employing PhenoCam technology to unravel the phenology of black spruce trees. Through the analysis of RGB color channels, a range of essential color metrics including red chromatic coordinate (RCC), green chromatic coordinate (GCC), blue chromatic coordinate (BCC), vegetation contrast index (VCI), and excess green index (ExGI) are derived. These metrics illuminate variations in canopy color across seasons, shedding light on bud and leaf development. This, in turn, facilitates a deeper understanding of phenological events and aids in delineating the growth periods of trees and plants. The initial phase of this study addresses critical questions surrounding the fidelity of continuous canopy greenness records in representing bud developmental phases. Additionally, it discerns which color-based index most accurately tracks the seasonal variations in tree phenology within evergreen forest ecosystems. The subsequent section of this study delves into the transition dates of black spruce (Picea mariana (Mill.) B.S.P.) phenology. This is achieved through a fortnightly comparative analysis of the MODIS normalized difference vegetation index (NDVI) and the enhanced vegetation index (EVI). By employing PhenoCam technology and leveraging advanced color metrics, this study significantly advances our comprehension of black spruce tree phenology, offering valuable insights for ecological research and management.Keywords: phenology, remote sensing, phenocam, color metrics, NDVI, GCC
Procedia PDF Downloads 6019 Global Climate Change and Insect Pollinators
Authors: Asim Abbasi, Muhammad Sufyan, Iqra, Muhammad Ibrahim Shahid, Muhammad Ashfaq
Abstract:
The foundation of human life on earth relies on many ecosystem services provided by insects of which pollination owes a vital role. The pollination service offered by insects has annual worth of approximately €153 billion. The majority of the flowering plants depends on entomophiles pollination for their reproduction and formation of seeds and fruits. The quantity and quality of insect pollination have multiple implications for stable ecosystem, diverse species level, food security and climate change resilience. The rapidly mounting human population, depletion of natural resources and the global climate change forced us to enter an era of pollination crisis. Climate change not only alters the phenology, population abundance and geographic ranges of different pollinators but also hinders their pollination activities. The successful pollination process relies heavily on the synchronization of biological events of pollinators with the phenological stages of the flowering plants. However, there are possibilities that impending climatic changes may result in asynchrony between plant-pollinators interactions and also mitigate the extent of pollination. The trophic mismatch mostly occurs when pollinators and plants inhabiting the same environment use different environmental cues to regulate their biological events, as these cues are not equally affected by climate change. Synchrony has also been disrupted when one of the interacting species has migratory nature and depend on cues for migration. Moreover, irregular rainfalls and up-surging temperature also disrupts the foraging behaviour of pollinators resulting in reduced flowers visits by insect. Climate change has a direct impact on the behavior and physiology of honey bees, the best known pollinators owing to their extreme floral fidelity. Rising temperature not only alleviates the quantity and quality of floral environment but also alters the bee’s colony harvesting and development ability. Furthermore, a possible earlier decline of flowers is expected in a growing season due to this rising temperature. This may also lead to disrupt the efficiency bumblebee queen that require a constant and adequate nectar and pollen supply throughout the entire growing season for healthy colony production. Considering the role of insect pollination in our ecosystem, their associated risks regarding climate change should be addressed properly for devising a well-focused research needed for their conservation.Keywords: climate change, phenological, pollination, synchronization
Procedia PDF Downloads 21818 Winter Wheat Yield Forecasting Using Sentinel-2 Imagery at the Early Stages
Authors: Chunhua Liao, Jinfei Wang, Bo Shan, Yang Song, Yongjun He, Taifeng Dong
Abstract:
Winter wheat is one of the main crops in Canada. Forecasting of within-field variability of yield in winter wheat at the early stages is essential for precision farming. However, the crop yield modelling based on high spatial resolution satellite data is generally affected by the lack of continuous satellite observations, resulting in reducing the generalization ability of the models and increasing the difficulty of crop yield forecasting at the early stages. In this study, the correlations between Sentinel-2 data (vegetation indices and reflectance) and yield data collected by combine harvester were investigated and a generalized multivariate linear regression (MLR) model was built and tested with data acquired in different years. It was found that the four-band reflectance (blue, green, red, near-infrared) performed better than their vegetation indices (NDVI, EVI, WDRVI and OSAVI) in wheat yield prediction. The optimum phenological stage for wheat yield prediction with highest accuracy was at the growing stages from the end of the flowering to the beginning of the filling stage. The best MLR model was therefore built to predict wheat yield before harvest using Sentinel-2 data acquired at the end of the flowering stage. Further, to improve the ability of the yield prediction at the early stages, three simple unsupervised domain adaptation (DA) methods were adopted to transform the reflectance data at the early stages to the optimum phenological stage. The winter wheat yield prediction using multiple vegetation indices showed higher accuracy than using single vegetation index. The optimum stage for winter wheat yield forecasting varied with different fields when using vegetation indices, while it was consistent when using multispectral reflectance and the optimum stage for winter wheat yield prediction was at the end of flowering stage. The average testing RMSE of the MLR model at the end of the flowering stage was 604.48 kg/ha. Near the booting stage, the average testing RMSE of yield prediction using the best MLR was reduced to 799.18 kg/ha when applying the mean matching domain adaptation approach to transform the data to the target domain (at the end of the flowering) compared to that using the original data based on the models developed at the booting stage directly (“MLR at the early stage”) (RMSE =1140.64 kg/ha). This study demonstrated that the simple mean matching (MM) performed better than other DA methods and it was found that “DA then MLR at the optimum stage” performed better than “MLR directly at the early stages” for winter wheat yield forecasting at the early stages. The results indicated that the DA had a great potential in near real-time crop yield forecasting at the early stages. This study indicated that the simple domain adaptation methods had a great potential in crop yield prediction at the early stages using remote sensing data.Keywords: wheat yield prediction, domain adaptation, Sentinel-2, within-field scale
Procedia PDF Downloads 6417 Monitoring of Rice Phenology and Agricultural Practices from Sentinel 2 Images
Authors: D. Courault, L. Hossard, V. Demarez, E. Ndikumana, D. Ho Tong Minh, N. Baghdadi, F. Ruget
Abstract:
In the global change context, efficient management of the available resources has become one of the most important topics, particularly for sustainable crop development. Timely assessment with high precision is crucial for water resource and pest management. Rice cultivated in Southern France in the Camargue region must face a challenge, reduction of the soil salinity by flooding and at the same time reduce the number of herbicides impacting negatively the environment. This context has lead farmers to diversify crop rotation and their agricultural practices. The objective of this study was to evaluate this crop diversity both in crop systems and in agricultural practices applied to rice paddy in order to quantify the impact on the environment and on the crop production. The proposed method is based on the combined use of crop models and multispectral data acquired from the recent Sentinel 2 satellite sensors launched by the European Space Agency (ESA) within the homework of the Copernicus program. More than 40 images at fine spatial resolution (10m in the optical range) were processed for 2016 and 2017 (with a revisit time of 5 days) to map crop types using random forest method and to estimate biophysical variables (LAI) retrieved by inversion of the PROSAIL canopy radiative transfer model. Thanks to the high revisit time of Sentinel 2 data, it was possible to monitor the soil labor before flooding and the second sowing made by some farmers to better control weeds. The temporal trajectories of remote sensing data were analyzed for various rice cultivars for defining the main parameters describing the phenological stages useful to calibrate two crop models (STICS and SAFY). Results were compared to surveys conducted with 10 farms. A large variability of LAI has been observed at farm scale (up to 2-3m²/m²) which induced a significant variability in the yields simulated (up to 2 ton/ha). Observations on more than 300 fields have also been collected on land use. Various maps were elaborated, land use, LAI, flooding and sowing, and harvest dates. All these maps allow proposing a new typology to classify these paddy crop systems. Key phenological dates can be estimated from inverse procedures and were validated against ground surveys. The proposed approach allowed to compare the years and to detect anomalies. The methods proposed here can be applied at different crops in various contexts and confirm the potential of remote sensing acquired at fine resolution such as the Sentinel2 system for agriculture applications and environment monitoring. This study was supported by the French national center of spatial studies (CNES, funded by the TOSCA).Keywords: agricultural practices, remote sensing, rice, yield
Procedia PDF Downloads 27416 Researches on Attractive Flowered Natural Woody Plants of Bursa Flora in Terms of Landscape Design
Authors: Elvan Ender, Murat Zencirkıran
Abstract:
One of the most important criteria that increase the success of design in landscape architecture is the visual effect. The characteristics that affect visual appearance in plant design vary depending on the phenological periods of the plants. In plants, although different effects are observed in different periods of the year, this effect is felt most prominently in flowering periods. For this reason, knowing the flowering time, duration and flower characteristics should be considered as a factor increasing the success of plant design. In this study, flower characteristics of natural woody plants with attractive flowers have been examined. Because of the variability of these characteristics of plants in the region, consideration of these criteria in the planting design processes in the region may increase the success of the design. At the same time, when species selection is made considering the obtained data, visuality and sustainability of natural species can be possible in Bursa city with planting design.Keywords: Bursa, flower characteristics, natural plants, planting design
Procedia PDF Downloads 26615 Effects of Nitroxin Fertilizer on Physiological Characters Forage Millet under Drought Stress Conditions
Authors: Mohammad Darbani, Jafar Masoud Sinaki, Armaghan Abedzadeh Neyshaburi
Abstract:
An experiment was conducted as split plot factorial design using randomized complete block design in Damghan in 2012-2013 in order to investigate the effects of irrigation cut off (based on the Phenological stages of plants) on physiological properties of forage millet cultivars. The treatments included three irrigation levels (control with full irrigation, irrigation cut off when flowering started, and irrigation cut off when flowering ended) in the main plots, and applying nitroxin biofertilizer (+), not applying nitroxin biofertilizer (control), and Iranian forage millet cultivars (Bastan, Pishahang, and Isfahan) in the subplots. The highest rate of ashes and water-soluble carbohydrates content were observed in the cultivar Bastan (8.22 and 8.91%, respectively), the highest content of fiber and water (74.17 and 48.83%, respectively) in the treatment of irrigation cut off when flowering started, and the largest proline concentration (μmol/gfw-1) was seen in the treatment of irrigation cut off when flowering started. very rapid growth of millet, its short growing season, drought tolerance, its unique feature regarding harvest time, and its response to nitroxin biofertilizer can help expanding its cultivation in arid and semi-arid regions of Iran.Keywords: irrigation cut off, forage millet, Nitroxin fertilizer, physiological properties
Procedia PDF Downloads 60914 Assessment the Correlation of Rice Yield Traits by Simulation and Modelling Methods
Authors: Davood Barari Tari
Abstract:
In order to investigate the correlation of rice traits in different nitrogen management methods by modeling programming, an experiment was laid out in rice paddy field in an experimental field at Caspian Coastal Sea region from 2013 to 2014. Variety used was Shiroudi as a high yielding variety. Nitrogen management was in two methods. Amount of nitrogen at four levels (30, 60, 90, and 120 Kg N ha-1 and control) and nitrogen-splitting at four levels (T1: 50% in base + 50% in maximum tillering stage, T2= 33.33% basal +33.33% in maximum tillering stage +33.33% in panicle initiation stage, T3=25% basal+37.5% in maximum tillering stage +37.5% in panicle initiation stage, T4: 25% in basal + 25% in maximum tillering stage + 50% in panicle initiation stage). Results showed that nitrogen traits, total grain number, filled spikelets, panicle number per m2 had a significant correlation with grain yield. Results related to calibrated and validation of rice model methods indicated that correlation between rice yield and yield components was accurate. The correlation between panicle length and grain yield was minimum. Physiological indices was simulated with low accuracy. According to results, investigation of the correlation between rice traits in physiological, morphological and phenological characters and yield by modeling and simulation methods are very useful.Keywords: rice, physiology, modelling, simulation, yield traits
Procedia PDF Downloads 34213 Climate Change Adaptation of the Portuguese Viticultural Sector
Authors: H. Fraga, J. A. Santos
Abstract:
Vitiviniculture in Portugal is a key socio-economic sector, with a strong connection to local traditions and culture. Despite being a relatively small country, with prevailing Mediterranean environments, Portugal comprises an exceptionally large diversity of growth conditions (Terroirs). The vineyard area in Portugal is over 190 thousand hectares, being the eleventh wine producer and ninth wine exporter worldwide. Owing to the strong impact of weather and climate conditions on grapevine physiological development, grape berry quantity and quality show important inter-annual variability. Grapevines are also susceptible to climate change, as their responses will be unavoidably different under future climates. These impacts may change wine typicity of a given region or even its viticultural suitability. The current study reveals that the projected warming and drying trends for Portugal under the Representative Concentration Pathway (RCP) 4.5 and 8.5, are projected to 1) significantly shift current grapevine growing thermal conditions (e.g., heat and chill accumulation), 2) enhance water stress, 3) anticipate phenological timings and 4) modify yields. Moreover, the present study provides some hints regarding the effectiveness of mulching and irrigation as climate change adaptation measures. Our results show that the effectiveness of these adaptation measures will strongly rest on the strength of the climate change signal at a local scale, thus emphasizing the need for local-to-regional climate change assessments.Keywords: viticulture, climate change, adaptation measures, Portugal
Procedia PDF Downloads 14612 Stipagrostis ciliata (Desf.) De Winter: A Promising Pastoral Species for Ecological Restoration in North African Arid Bioclimate
Authors: Lobna Mnif Fakhfakh, Mohamed Chaieb
Abstract:
Most ecological studies in North Africa reveal a process of continuous degradation of pastoral ecosystems as a result of overgrazing. This degradation appears across the depletion of perennial grass species. Indeed, the majority of steppic ecosystems are characterized by a low density of perennial grasses. This phenomenon reveals a drop in food value of rangelands, which is now estimated at less than 100 UF.ha -1. -1 Year in all North African steppes. However, for ecological restoration initiatives, some species such the genus of Stipagrostis and Stipa can be considered a good candidates species for effective pastoral improvement under arid bioclimate. The present work concerns Stipagrostis ciliata (Desf.) De Winter, perennial grasses, abundant in ecosystems characterized by the high content of gypsum (CaSO4)2H2O in the southern Tunisia. This tufted species with C4 biochemical photosynthesis type is able to grow and develop under high temperature and low annual rainfall, where the minimum water potential (ψmd), can reach -4 MPa during the summer season with a phenological growth maintained throughout the season unfavorable. At this point in the early autumn rains, S. ciliata begins its growth, especially with a heading which occurs 2-3 weeks after the first autumn rains. From the foregoing, it can be concluded that Stipagrostis ciliata is an excellent promising pastoral species for the ecological restoration, and enhancement of ecosystems biological productivity in arid bioclimate of North Africa.Keywords: Stipagrostis ciliata, pastoral species, ecological restoration, arid bioclimate
Procedia PDF Downloads 41611 Insects and Meteorological Inventories in a Mango-Based Agroforestry System in Bangladesh
Authors: Md. Ruhul Amin, Shakura Namni, Md. Ramiz Uddin Miah, Md. Giashuddin Miah, Mohammad Zakaria, Sang Jae Suh, Yong Jung Kwon
Abstract:
Insect species abundance and diversity associated with meteorological factors during January to June 2013 at a mango-based agroforestry research field in Bangladesh, and the effects of pests and pollinator species on mango are presented in this study. Among the collected and identified insects, nine species belong to 3 orders were found as pollinator, 11 species in 5 orders as pest, and 13 species in 6 orders as predator. The mango hopper, fruit fly and stone weevil appeared as major pest because of their high levels of abundance and infestation. The hoppers caused 100% inflorescence damage followed by fruit fly (51.7% fruit) and stone weevil (31.0% mature fruit). The major pests exerted significantly higher abundance compared to pollinator, predator and minor pests. Hemipteroid insects were most abundant (60%) followed by Diptera (21%), Hymenoptera (10%), Lepidoptera (5%), and Coleoptera (4%). Insect population increased with increasing trend of temperature and humidity, and revealed peak abundance during April-May. The flower visiting insects differed in their landing duration and showed preference to forage with time of a day. Their foraging activity was found to be peaked between 11.00 am to 01.00 pm. The activity of the pollinators led to higher level of fruit set. This study provides baseline information about the phenological patterns of insect abundance in an agroforestry research field which could be an indication to incorporate some aspects of pest management.Keywords: agroforestry, abundance, abiotic factors, insects, mango
Procedia PDF Downloads 44110 Biodiversity and Climate Change: Consequences for Norway Spruce Mountain Forests in Slovakia
Authors: Jozef Mindas, Jaroslav Skvarenina, Jana Skvareninova
Abstract:
Study of the effects of climate change on Norway Spruce (Picea abies) forests has mainly focused on the diversity of tree species diversity of tree species as a result of the ability of species to tolerate temperature and moisture changes as well as some effects of disturbance regime changes. The tree species’ diversity changes in spruce forests due to climate change have been analyzed via gap model. Forest gap model is a dynamic model for calculation basic characteristics of individual forest trees. Input ecological data for model calculations have been taken from the permanent research plots located in primeval forests in mountainous regions in Slovakia. The results of regional scenarios of the climatic change for the territory of Slovakia have been used, from which the values are according to the CGCM3.1 (global) model, KNMI and MPI (regional) models. Model results for conditions of the climate change scenarios suggest a shift of the upper forest limit to the region of the present subalpine zone, in supramontane zone. N. spruce representation will decrease at the expense of beech and precious broadleaved species (Acer sp., Sorbus sp., Fraxinus sp.). The most significant tree species diversity changes have been identified for the upper tree line and current belt of dwarf pine (Pinus mugo) occurrence. The results have been also discussed in relation to most important disturbances (wind storms, snow and ice storms) and phenological changes which consequences are little known. Special discussion is focused on biomass production changes in relation to carbon storage diversity in different carbon pools.Keywords: biodiversity, climate change, Norway spruce forests, gap model
Procedia PDF Downloads 2889 Analysis of Intra-Varietal Diversity for Some Lebanese Grapevine Cultivars
Authors: Stephanie Khater, Ali Chehade, Lamis Chalak
Abstract:
The progressive replacement of the Lebanese autochthonous grapevine cultivars during the last decade by the imported foreign varieties almost resulted in the genetic erosion of the local germplasm and the confusion with cultivars' names. Hence there is a need to characterize these local cultivars and to assess the possible existing variability at the cultivar level. This work was conducted in an attempt to evaluate the intra-varietal diversity within Lebanese traditional cultivars 'Aswad', 'Maghdoushe', 'Maryame', 'Merweh', 'Meksese' and 'Obeide'. A total of 50 accessions distributed over five main geographical areas in Lebanon were collected and submitted to both ampelographic description and ISSR DNA analysis. A set of 35 ampelographic descriptors previously established by the International Office of Vine and Wine and related to leaf, bunch, berry, and phenological stages, were examined. Variability was observed between accessions within cultivars for blade shape, density of prostrate and erect hairs, teeth shape, berry shape, size and color, cluster shape and size, and flesh juiciness. At the molecular level, nine ISSR (inter-simple sequence repeat) primers, previously developed for grapevine, were used in this study. These primers generated a total of 35 bands, of which 30 (85.7%) were polymorphic. Totally, 29 genetic profiles were differentiated, of which 9 revealed within 'Obeide', 6 for 'Maghdoushe', 5 for 'Merweh', 4 within 'Maryame', 3 for 'Aswad' and 2 within 'Meksese'. Findings of this study indicate the existence of several genotypes that form the basis of the main indigenous cultivars grown in Lebanon and which should be further considered in the establishment of new vineyards and selection programs.Keywords: ampelography, autochthonous cultivars, ISSR markers, Lebanon, Vitis vinifera L.
Procedia PDF Downloads 1418 A Hybrid Image Fusion Model for Generating High Spatial-Temporal-Spectral Resolution Data Using OLI-MODIS-Hyperion Satellite Imagery
Authors: Yongquan Zhao, Bo Huang
Abstract:
Spatial, Temporal, and Spectral Resolution (STSR) are three key characteristics of Earth observation satellite sensors; however, any single satellite sensor cannot provide Earth observations with high STSR simultaneously because of the hardware technology limitations of satellite sensors. On the other hand, a conflicting circumstance is that the demand for high STSR has been growing with the remote sensing application development. Although image fusion technology provides a feasible means to overcome the limitations of the current Earth observation data, the current fusion technologies cannot enhance all STSR simultaneously and provide high enough resolution improvement level. This study proposes a Hybrid Spatial-Temporal-Spectral image Fusion Model (HSTSFM) to generate synthetic satellite data with high STSR simultaneously, which blends the high spatial resolution from the panchromatic image of Landsat-8 Operational Land Imager (OLI), the high temporal resolution from the multi-spectral image of Moderate Resolution Imaging Spectroradiometer (MODIS), and the high spectral resolution from the hyper-spectral image of Hyperion to produce high STSR images. The proposed HSTSFM contains three fusion modules: (1) spatial-spectral image fusion; (2) spatial-temporal image fusion; (3) temporal-spectral image fusion. A set of test data with both phenological and land cover type changes in Beijing suburb area, China is adopted to demonstrate the performance of the proposed method. The experimental results indicate that HSTSFM can produce fused image that has good spatial and spectral fidelity to the reference image, which means it has the potential to generate synthetic data to support the studies that require high STSR satellite imagery.Keywords: hybrid spatial-temporal-spectral fusion, high resolution synthetic imagery, least square regression, sparse representation, spectral transformation
Procedia PDF Downloads 2357 Optimized Cropping Calendar and Land Suitability for Maize through GIS and Crop Modelling
Authors: Marilyn S. Painagan, Willie Jones B. Saliling
Abstract:
This paper reports an optimized cropping calendar and land suitability for maize in North Cotabato derived from modeling crop productivity over time and space. Using Quantum GIS, eight representative soil types and 0.3o x 0.3o climate grids shapefiles were intersected to form thirty two pedoclimatic zones within the boundaries of the province. Surveys were done to ascertain crop performance and phenological properties on field. Based on these surveys, crop parameters were calibrated specific for a variety of maize. Soil properties and climatic data (daily precipitation, maximum and minimum temperatures) from pedoclimatic zones were loaded to the FAO Aquacrop Water Productivity Model along with the crop properties from field surveys to simulate yield from 1980 to 2010. The average yield per month was computed to come up with the month of planting having the highest and lowest probable yield in a year assuming that all lands were planted with maize. The yield attributes were visualized in the Quantum GIS environment. The study revealed that optimal cropping patterns varied across North Cotabato. Highest probable yield (8000 kg/ha) can be obtained when maize is planted on May and September (sandy clay-loam soils) in the northern part of the province while the lowest probable yield (1000 kg/ha) can be obtained when maize is planted on January, February and March (clay loam soils) at the northern part of the province. Yields are simulated on the basis of varieties currently planted by farmers of North Cotabato. The resulting maps suggest where and when maize is most suitable to achieve high yields. There is a need to ground truth and validate the cropping calendar on field.Keywords: aquacrop, quantum GIS, maize, cropping calendar, water productivity
Procedia PDF Downloads 2556 Biopotential of Introduced False Indigo and Albizia’s Weevils in Host Plant Control and Duration of Its Development Stages in Southern Regions of Panonian Basin
Authors: Renata Gagić-Serdar, Miroslava Markovic, Ljubinko Rakonjac, Aleksandar Lučić
Abstract:
The paper present the results of the entomological experimental studies of the biological, ecological, and (bionomic) insect performances, such as seasonal adaptation of introduced monophagous false indigo and albizias weevil’s Acanthoscelides pallidipennis Motschulsky. and Bruchidius terrenus (Sharp), Coleoptera: Chrysomelidae: Bruchinae, to phenological phases of aggressive invasive host plant Amorpha fruticosa L. and Albizia julibrissin (Fabales: Fabaceae) on the territory of Republic of Serbia with special attention on assessing and monitoring of new formed and detected inter species relations between autochthons parasite wasps from fauna (Hymenoptera: Chalcidoidea) and herbaceous seed weevil beetle. During 15 years (2006-2021), on approximately 30 localities, data analyses were done for observed experimental host plants from samples with statistical significance. Status of genera from families Hymenoptera: Chalcidoidea.: Pteromalidae and Eulophidae, after intensive investigations, has been trophicly identified. Recorded seed pest species of A. fruticosa or A. julibrissin (Fabales: Fabaceae) was introduced in Serbia and planted as ornamental trees, they also were put undergo different kinds of laboratory and field research tests during this period in a goal of collecting data about lasting each of develop stage of their seed beetles. Field generations in different stages were also monitored by continuous infested seed collecting and its disection. Established host plant-seed predator linkage was observed in correlation with different environment parameters, especially water level fluctuations in bank corridor formation stands and riparian cultures.Keywords: amorpha, albizia, chalcidoid wasp, invasiveness, weevils
Procedia PDF Downloads 945 Web and Smart Phone-based Platform Combining Artificial Intelligence and Satellite Remote Sensing Data to Geoenable Villages for Crop Health Monitoring
Authors: Siddhartha Khare, Nitish Kr Boro, Omm Animesh Mishra
Abstract:
Recent food price hikes may signal the end of an era of predictable global grain crop plenty due to climate change, population expansion, and dietary changes. Food consumption will treble in 20 years, requiring enormous production expenditures. Climate and the atmosphere changed owing to rainfall and seasonal cycles in the past decade. India's tropical agricultural relies on evapotranspiration and monsoons. In places with limited resources, the global environmental change affects agricultural productivity and farmers' capacity to adjust to changing moisture patterns. Motivated by these difficulties, satellite remote sensing might be combined with near-surface imaging data (smartphones, UAVs, and PhenoCams) to enable phenological monitoring and fast evaluations of field-level consequences of extreme weather events on smallholder agriculture output. To accomplish this technique, we must digitally map all communities agricultural boundaries and crop kinds. With the improvement of satellite remote sensing technologies, a geo-referenced database may be created for rural Indian agriculture fields. Using AI, we can design digital agricultural solutions for individual farms. Main objective is to Geo-enable each farm along with their seasonal crop information by combining Artificial Intelligence (AI) with satellite and near-surface data and then prepare long term crop monitoring through in-depth field analysis and scanning of fields with satellite derived vegetation indices. We developed an AI based algorithm to understand the timelapse based growth of vegetation using PhenoCam or Smartphone based images. We developed an android platform where user can collect images of their fields based on the android application. These images will be sent to our local server, and then further AI based processing will be done at our server. We are creating digital boundaries of individual farms and connecting these farms with our smart phone application to collect information about farmers and their crops in each season. We are extracting satellite-based information for each farm from Google earth engine APIs and merging this data with our data of tested crops from our app according to their farm’s locations and create a database which will provide the data of quality of crops from their location.Keywords: artificial intelligence, satellite remote sensing, crop monitoring, android and web application
Procedia PDF Downloads 1004 Soybean Seed Composition Prediction From Standing Crops Using Planet Scope Satellite Imagery and Machine Learning
Authors: Supria Sarkar, Vasit Sagan, Sourav Bhadra, Meghnath Pokharel, Felix B.Fritschi
Abstract:
Soybean and their derivatives are very important agricultural commodities around the world because of their wide applicability in human food, animal feed, biofuel, and industries. However, the significance of soybean production depends on the quality of the soybean seeds rather than the yield alone. Seed composition is widely dependent on plant physiological properties, aerobic and anaerobic environmental conditions, nutrient content, and plant phenological characteristics, which can be captured by high temporal resolution remote sensing datasets. Planet scope (PS) satellite images have high potential in sequential information of crop growth due to their frequent revisit throughout the world. In this study, we estimate soybean seed composition while the plants are in the field by utilizing PlanetScope (PS) satellite images and different machine learning algorithms. Several experimental fields were established with varying genotypes and different seed compositions were measured from the samples as ground truth data. The PS images were processed to extract 462 hand-crafted vegetative and textural features. Four machine learning algorithms, i.e., partial least squares (PLSR), random forest (RFR), gradient boosting machine (GBM), support vector machine (SVM), and two recurrent neural network architectures, i.e., long short-term memory (LSTM) and gated recurrent unit (GRU) were used in this study to predict oil, protein, sucrose, ash, starch, and fiber of soybean seed samples. The GRU and LSTM architectures had two separate branches, one for vegetative features and the other for textures features, which were later concatenated together to predict seed composition. The results show that sucrose, ash, protein, and oil yielded comparable prediction results. Machine learning algorithms that best predicted the six seed composition traits differed. GRU worked well for oil (R-Squared: of 0.53) and protein (R-Squared: 0.36), whereas SVR and PLSR showed the best result for sucrose (R-Squared: 0.74) and ash (R-Squared: 0.60), respectively. Although, the RFR and GBM provided comparable performance, the models tended to extremely overfit. Among the features, vegetative features were found as the most important variables compared to texture features. It is suggested to utilize many vegetation indices for machine learning training and select the best ones by using feature selection methods. Overall, the study reveals the feasibility and efficiency of PS images and machine learning for plot-level seed composition estimation. However, special care should be given while designing the plot size in the experiments to avoid mixed pixel issues.Keywords: agriculture, computer vision, data science, geospatial technology
Procedia PDF Downloads 1373 Anabasine Intoxication and its Relation to Plant Development Stages
Authors: Thaís T. Valério Caetano, João Máximo De Siqueira, Carlos Alexandre Carollo, Arthur Ladeira Macedo, Vanessa C. Stein
Abstract:
Nicotiana glauca, commonly known as wild tobacco or tobacco bush, belongs to the Solanaceae family. It is native to South America but has become naturalized in various regions, including Australia, California, Africa, and the Mediterranean. N. glauca is listed in the Global Invasive Species Database (GISD) and the Invasive Species Compendium (CABI). It is known for producing pyridine alkaloids, including anabasine, which is highly toxic. Anabasine is predominantly found in the leaves and can cause severe health issues such as neuromuscular blockade, respiratory arrest, and cardiovascular problems when ingested. Mistaken identity with edible plants like spinach has resulted in food poisoning cases in Israel and Brazil. Anabasine, a minor alkaloid constituent of tobacco, may contribute to tobacco addiction by mimicking or enhancing the effects of nicotine. Therefore, it is essential to investigate the production pattern of anabasine and its relationship to the developmental stages of the plant. This study aimed to establish the relationship between the phenological plant age, cultivation place, and the increase in anabasine concentration, which can lead to human intoxication cases. In this study, N. glauca plants were collected from three different rural areas in Brazil for a year to examine leaves at various stages of development. Samples were also obtained from cultivated plants in Marilândia, Minas Gerais, Brazil, as well as from Divinópolis, Minas Gerais, Brazil, and Arraial do Cabo, Rio de Janeiro, Brazil. In vitro cultivated plants on MS medium were included in the study. The collected leaves were dried, powdered, and stored. Alkaloid extraction was performed using a methanol and water mixture, followed by liquid-liquid extraction with chloroform. The anabasine content was determined using HPLC-DAD analysis with nicotine as a standard. The results indicated that anabasine production increases with the plant's development, peaking in adult leaves during the reproduction phase and declining afterward. In vitro, plants showed similar anabasine production to young leaves. The successful adaptation of N. glauca in new environments poses a global problem, and the correlation between anabasine production and the plant's developmental stages has been understudied. The presence of substances produced by the plant can pose a risk to other species, especially when mistaken for edible plants. The findings from this study shed light on the pattern of anabasine production and its association with plant development, contributing to a better understanding of the potential risks associated with N. glauca and the importance of accurate identification.Keywords: nicotiana glauca graham, global invasive species database, alkaloids, toxic
Procedia PDF Downloads 882 Anabasine Intoxication and Its Relation to Plant Develoment Stages
Authors: Thaís T. Valério Caetano, Lívia de Carvalho Ferreira, João Máximo De Siqueira, Carlos Alexandre Carollo, Arthur Ladeira Macedo, Vanessa C. Stein
Abstract:
Nicotiana glauca, commonly known as wild tobacco or tobacco bush, belongs to the Solanaceae family. It is native to South America but has become naturalized in various regions, including Australia, California, Africa, and the Mediterranean. N. glauca is listed in the Global Invasive Species Database (GISD) and the Invasive Species Compendium (CABI). It is known for producing pyridine alkaloids, including anabasine, which is highly toxic. Anabasine is predominantly found in the leaves and can cause severe health issues such as neuromuscular blockade, respiratory arrest, and cardiovascular problems when ingested. Mistaken identity with edible plants like spinach has resulted in food poisoning cases in Israel and Brazil. Anabasine, a minor alkaloid constituent of tobacco, may contribute to tobacco addiction by mimicking or enhancing the effects of nicotine. Therefore, it is essential to investigate the production pattern of anabasine and its relationship to the developmental stages of the plant. This study aimed to establish the relationship between the phenological plant age, cultivation place, and the increase in anabasine concentration, which can lead to human intoxication cases. In this study, N. glauca plants were collected from three different rural areas in Brazil during a year to examine leaves at various stages of development. Samples were also obtained from cultivated plants in Marilândia, Minas Gerais, Brazil, as well as from Divinópolis, Minas Gerais, Brazil, and Arraial do Cabo, Rio de Janeiro, Brazil. In vitro cultivated plants on MS medium were included in the study. The collected leaves were dried, powdered, and stored. Alkaloid extraction was performed using a methanol and water mixture, followed by liquid-liquid extraction with chloroform. The anabasine content was determined using HPLC-DAD analysis with nicotine as a standard. The results indicated that anabasine production increases with the plant's development, peaking in adult leaves during the reproduction phase and declining afterward. In vitro, plants showed similar anabasine production to young leaves. The successful adaptation of N. glauca in new environments poses a global problem, and the correlation between anabasine production and the plant's developmental stages has been understudied. The presence of substances produced by the plant can pose a risk to other species, especially when mistaken for edible plants. The findings from this study shed light on the pattern of anabasine production and its association with plant development, contributing to a better understanding of the potential risks associated with N. glauca and the importance of accurate identification.Keywords: alkaloid production, invasive species, nicotiana glauca, plant phenology
Procedia PDF Downloads 831 Combination of Unmanned Aerial Vehicle and Terrestrial Laser Scanner Data for Citrus Yield Estimation
Authors: Mohammed Hmimou, Khalid Amediaz, Imane Sebari, Nabil Bounajma
Abstract:
Annual crop production is one of the most important macroeconomic indicators for the majority of countries around the world. This information is valuable, especially for exporting countries which need a yield estimation before harvest in order to correctly plan the supply chain. When it comes to estimating agricultural yield, especially for arboriculture, conventional methods are mostly applied. In the case of the citrus industry, the sale before harvest is largely practiced, which requires an estimation of the production when the fruit is on the tree. However, conventional method based on the sampling surveys of some trees within the field is always used to perform yield estimation, and the success of this process mainly depends on the expertise of the ‘estimator agent’. The present study aims to propose a methodology based on the combination of unmanned aerial vehicle (UAV) images and terrestrial laser scanner (TLS) point cloud to estimate citrus production. During data acquisition, a fixed wing and rotatory drones, as well as a terrestrial laser scanner, were tested. After that, a pre-processing step was performed in order to generate point cloud and digital surface model. At the processing stage, a machine vision workflow was implemented to extract points corresponding to fruits from the whole tree point cloud, cluster them into fruits, and model them geometrically in a 3D space. By linking the resulting geometric properties to the fruit weight, the yield can be estimated, and the statistical distribution of fruits size can be generated. This later property, which is information required by importing countries of citrus, cannot be estimated before harvest using the conventional method. Since terrestrial laser scanner is static, data gathering using this technology can be performed over only some trees. So, integration of drone data was thought in order to estimate the yield over a whole orchard. To achieve that, features derived from drone digital surface model were linked to yield estimation by laser scanner of some trees to build a regression model that predicts the yield of a tree given its features. Several missions were carried out to collect drone and laser scanner data within citrus orchards of different varieties by testing several data acquisition parameters (fly height, images overlap, fly mission plan). The accuracy of the obtained results by the proposed methodology in comparison to the yield estimation results by the conventional method varies from 65% to 94% depending mainly on the phenological stage of the studied citrus variety during the data acquisition mission. The proposed approach demonstrates its strong potential for early estimation of citrus production and the possibility of its extension to other fruit trees.Keywords: citrus, digital surface model, point cloud, terrestrial laser scanner, UAV, yield estimation, 3D modeling
Procedia PDF Downloads 142