Search results for: long term effects.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16462

Search results for: long term effects.

262 Innovation Mechanism in Developing Cultural and Creative Industries

Authors: Liou Shyhnan, Chia Han Yang

Abstract:

The study aims to investigate the promotion of innovation in the development of cultural and creative industries (CCI) and apply research on culture and creativity to this promotion. Using the research perspectives of culture and creativity as the starting points, this study has examined the challenges, trends, and opportunities that have emerged from the development of the CCI until the present. It is found that a definite context of cause and effect exist between them, and that a homologous theoretical basis can be used to understand and interpret them. Based on the characteristics of the aforementioned challenges and trends, this study has compiled two main theoretical systems for conducting research on culture and creativity: (i) reciprocal process between creativity and culture, and (ii) a mechanism for innovation involving multicultural convergence. Both theoretical systems were then used as the foundation to arrive at possible research propositions relating to the two developmental systems. This was respectively done through identification of the theoretical context through a literature review, and interviews and observations of actual case studies within Taiwan’s CCI. In so doing, the critical factors that can address the aforementioned challenges and trends were discovered. Our results indicated that, for reciprocal process between creativity and culture, we recognize that culture serves as creative resources in cultural and creative industries. According to shared consensus, culture provides symbolic meanings and emotional attachment for products and experiences offered by CCI. Besides, different cultures vary in their effects on creativity processes and standards, thus engendering distinctive preferences for and evaluations of the creative expressions and experiences of CCIs. In addition, we identify that creativity serves as the engine for driving the continuation and rebirth of cultures. Accounting for the core of culture, the employment of technology, design, and business facilitates the transformation and innovation mechanism for promoting culture continuity. In addition, with cultural centered, the digital technology, design thinking, and business model are critical constitutes of the innovation mechanism to promote the cultural continuity. Regarding cultural preservation and regeneration of local spaces and folk customs, we argue that the preservation and regeneration of local spaces and cultural cultures must embody the interactive experiences of present-day life. And cultural space and folk custom would regenerate with interact and experience in modern life. Regarding innovation mechanism for multicultural convergence, we propose that innovative stakeholders from different disciplines (e.g., creators, designers, engineers, and marketers) in CCIs rely on the establishment of a cocreation mechanism to promote interdisciplinary interaction. Furthermore, CCI development needs to develop a cocreation mechanism for enhancing the interdisciplinary collaboration among CCI innovation stakeholders. We further argue multicultural mixing would enhance innovation in developing CCI, and assuming an open and mutually enlightening attitude to enrich one another’s cultures in the multicultural exchanges under globalization will create diversity in homogenous CCIs. Finally, for promoting innovation in developing cultural and creative industries, we further propose a model for joint knowledge creation that can be established for enhancing the mutual reinforcement of theoretical and practical research on culture and creativity.

Keywords: culture and creativity, innovation, cultural and creative industries, cultural mixing

Procedia PDF Downloads 297
261 Effects of Hydrogen Bonding and Vinylcarbazole Derivatives on 3-Cyanovinylcarbazole Mediated Photo-Cross-Linking Induced Cytosine Deamination

Authors: Siddhant Sethi, Yasuharu Takashima, Shigetaka Nakamura, Kenzo Fujimoto

Abstract:

Site-directed mutagenesis is a renowned technique to introduce specific mutations in the genome. To achieve site-directed mutagenesis, many chemical and enzymatic approaches have been reported in the past like disulphite induced genome editing, CRISPR-Cas9, TALEN etc. The chemical methods are invasive whereas the enzymatic approaches are time-consuming and expensive. Most of these techniques are unusable in the cellular application due to their toxicity and other limitations. Photo-chemical cytosine deamination, introduced in 2010, is one of the major technique for enzyme-free single-point mutation of cytosine to uracil in DNA and RNA, wherein, 3-cyanovinylcarbazole nucleoside (CNVK) containing oligodeoxyribonucleotide (ODN) having CNVK at -1 position to that of target cytosine is reversibly crosslinked to target DNA strand using 366 nm and then incubated at 90ºC to accommodate deamination. This technique is superior to enzymatic methods of site-directed mutagenesis but has a disadvantage that it requires the use of high temperature for the deamination step which restricts its applicability in the in vivo applications. This study has been focused on improving the technique by reducing the temperature required for deamination. Firstly, the photo-cross-linker, CNVK has been modified by replacing cyano group attached to vinyl group with methyl ester (OMeVK), amide (NH2VK), and carboxylic acid (OHVK) to observe the acceleration in the deamination of target cytosine cross-linked to vinylcarbazole derivative. Among the derivatives, OHVK has shown 2 times acceleration in deamination reaction as compared to CNVK, while the other two derivatives have shown deceleration towards deamination reaction. The trend of rate of deamination reaction follows the same order as that of hydrophilicity of the vinylcarbazole derivatives. OHVK being most hydrophilic has shown highest acceleration while OMeVK is least hydrophilic has proven to be least active for deamination. Secondly, in the related study, the counter-base of the target cytosine, guanine has been replaced by inosine, 2-aminopurine, nebularine, and 5-nitroindole having distinct hydrogen bonding patterns with target cytosine. Among the ODNs with these counter bases, ODN with inosine has shown 12 fold acceleration towards deamination of cytosine cross-linked to CNVK at physiological conditions as compared to guanosine. Whereas, when 2-aminopurine, nebularine, and 5-nitroindole were used, no deamination reaction took place. It can be concluded that inosine has potential to be used as the counter base of target cytosine for the CNVK mediated photo-cross-linking induced deamination of cytosine. The increase in rate of deamination reaction has been attributed to pattern and number of hydrogen bonding between the cytosine and counter base. One of the important factor is presence of hydrogen bond between exo-cyclic amino group of cytosine and the counter base. These results will be useful for development of more efficient technique for site-directed mutagenesis for C → U transformations in the DNA/RNA which might be used in the living system for treatment of various genetic disorders and genome engineering for making designer and non-native proteins.

Keywords: C to U transformation, DNA editing, genome engineering, ultra-fast photo-cross-linking

Procedia PDF Downloads 211
260 Early Biological Effects in Schoolchildren Living in an Area of Salento (Italy) with High Incidence of Chronic Respiratory Diseases: The IMP.AIR. Study

Authors: Alessandra Panico, Francesco Bagordo, Tiziana Grassi, Adele Idolo, Marcello Guido, Francesca Serio, Mattia De Giorgi, Antonella De Donno

Abstract:

In the Province of Lecce (Southeastern Italy) an area with unusual high incidence of chronic respiratory diseases, including lung cancer, was recently identified. The causes of this health emergency are still not entirely clear. In order to determine the risk profile of children living in five municipalities included in this area an epidemiological-molecular study was performed in the years 2014-2016: the IMP.AIR. (Impact of air quality on health of residents in the Municipalities of Sternatia, Galatina, Cutrofiano, Sogliano Cavour and Soleto) study. 122 children aged 6-8 years attending primary school in the study area were enrolled to evaluate the frequency of micronuclei (MNs) in their buccal exfoliated cells. The samples were collected in May 2015 by rubbing the oral mucosa with a soft bristle disposable toothbrush. At the same time, a validated questionnaire was administered to parents to obtain information about health, lifestyle and eating habits of the children. In addition, information on airborne pollutants, routinely detected by the Regional Environmental Agency (ARPA Puglia) in the study area, was acquired. A multivariate analysis was performed to detect any significant association between frequency of MNs (dependent variable) and behavioral factors (independent variables). The presence of MNs was highlighted in the buccal exfoliated cells of about 42% of recruited children with a mean frequency of 0.49 MN/1000 cells, greater than in other areas of Salento. The survey on individual characteristics and lifestyles showed that one in three children was overweight and that most of them had unhealthy eating habits with frequent consumption of foods considered ‘risky’. Moreover many parents (40% of fathers and 12% of mothers) were smokers and about 20% of them admitted to smoking in the house where the children lived. Information regarding atmospheric contaminants was poor. Of the few substances routinely detected by the only one monitoring station located in the study area (PM2.5, SO2, NO2, CO, O3) only ozone showed high concentrations exceeding the limits set by the legislation for 67 times in the year 2015. The study showed that the level of early biological effect markers in children was not negligible. This critical condition could be related to some individual factors and lifestyles such as overweight, unhealthy eating habits and exposure to passive smoking. At present, no relationship with airborne pollutants can be established due to the lack of information on many substances. Therefore, it would be advisable to modify incorrect behaviors and to intensify the monitoring of airborne pollutants (e.g. including detection of PM10, heavy metals, aromatic polycyclic hydrocarbons, benzene) given the epidemiology of chronic respiratory diseases registered in this area.

Keywords: chronic respiratory diseases, environmental pollution, lifestyle, micronuclei

Procedia PDF Downloads 183
259 Towards Visual Personality Questionnaires Based on Deep Learning and Social Media

Authors: Pau Rodriguez, Jordi Gonzalez, Josep M. Gonfaus, Xavier Roca

Abstract:

Image sharing in social networks has increased exponentially in the past years. Officially, there are 600 million Instagrammers uploading around 100 million photos and videos per day. Consequently, there is a need for developing new tools to understand the content expressed in shared images, which will greatly benefit social media communication and will enable broad and promising applications in education, advertisement, entertainment, and also psychology. Following these trends, our work aims to take advantage of the existing relationship between text and personality, already demonstrated by multiple researchers, so that we can prove that there exists a relationship between images and personality as well. To achieve this goal, we consider that images posted on social networks are typically conditioned on specific words, or hashtags, therefore any relationship between text and personality can also be observed with those posted images. Our proposal makes use of the most recent image understanding models based on neural networks to process the vast amount of data generated by social users to determine those images most correlated with personality traits. The final aim is to train a weakly-supervised image-based model for personality assessment that can be used even when textual data is not available, which is an increasing trend. The procedure is described next: we explore the images directly publicly shared by users based on those accompanying texts or hashtags most strongly related to personality traits as described by the OCEAN model. These images will be used for personality prediction since they have the potential to convey more complex ideas, concepts, and emotions. As a result, the use of images in personality questionnaires will provide a deeper understanding of respondents than through words alone. In other words, from the images posted with specific tags, we train a deep learning model based on neural networks, that learns to extract a personality representation from a picture and use it to automatically find the personality that best explains such a picture. Subsequently, a deep neural network model is learned from thousands of images associated with hashtags correlated to OCEAN traits. We then analyze the network activations to identify those pictures that maximally activate the neurons: the most characteristic visual features per personality trait will thus emerge since the filters of the convolutional layers of the neural model are learned to be optimally activated depending on each personality trait. For example, among the pictures that maximally activate the high Openness trait, we can see pictures of books, the moon, and the sky. For high Conscientiousness, most of the images are photographs of food, especially healthy food. The high Extraversion output is mostly activated by pictures of a lot of people. In high Agreeableness images, we mostly see flower pictures. Lastly, in the Neuroticism trait, we observe that the high score is maximally activated by animal pets like cats or dogs. In summary, despite the huge intra-class and inter-class variabilities of the images associated to each OCEAN traits, we found that there are consistencies between visual patterns of those images whose hashtags are most correlated to each trait.

Keywords: emotions and effects of mood, social impact theory in social psychology, social influence, social structure and social networks

Procedia PDF Downloads 167
258 Phycoremiadation of Heavy Metals by Marine Macroalgae Collected from Olaikuda, Rameswaram, Southeast Coast of India

Authors: Suparna Roy, Anatharaman Perumal

Abstract:

The industrial effluent with high amount of heavy metals is known to have adverse effects on the environment. For the removal of heavy metals from aqueous environment, different conventional treatment technologies had been applied gradually which are not economically beneficial and also produce huge quantity of toxic chemical sludge. So, bio-sorption of heavy metals by marine plant is an eco-friendly innovative and alternative technology for removal of these pollutants from aqueous environment. The aim of this study is to evaluate the capacity of heavy metals accumulation and removal by some selected marine macroalgae (seaweeds) from marine environment. Methods: Seaweeds Acanthophora spicifera (Vahl.) Boergesen, Codium tomentosum Stackhouse, Halimeda gracilis Harvey ex. J. Agardh, Gracilaria opuntia Durairatnam.nom. inval. Valoniopsis pachynema (Martens) Boergesen, Caulerpa racemosa var. macrophysa (Sonder ex Kutzing) W. R. Taylor and Hydroclathrus clathratus (C. Agardh) Howe were collected from Olaikuda (09°17.526'N-079°19.662'E), Rameshwaram, south east coast of India during post monsoon period (April’2016). Seaweeds were washed with sterilized and filtered in-situ seawater repeatedly to remove all the epiphytes and debris and clean seaweeds were kept for shade drying for one week. The dried seaweeds were grinded to powder, and one gm powder seaweeds were taken in a 250ml conical flask, and 8 ml of 10 % HNO3 (70 % pure) was added to each sample and kept in room temperature (28 ̊C) for 24 hours and then samples were heated in hotplate at 120 ̊C, boiled to evaporate up to dryness and 20 ml of Nitric acid: Percholoric acid in 4:1 were added to it and again heated to hotplate at 90 ̊C up to evaporate to dryness, then samples were kept in room temperature for few minutes to cool and 10ml 10 % HNO3 were added to it and kept for 24 hours in cool and dark place and filtered with Whatman (589/2) filter paper and the filtrates were collected in 250ml clean conical flask and diluted accurately to 25 ml volume with double deionised water and triplicate of each sample were analysed with Inductively-Coupled plasma analysis (ICP-OES) to analyse total eleven heavy metals (Ag, Cd, B, Cu, Mn, Co, Ni, Cr, Pb, Zn, and Al content of the specified species and data were statistically evaluated for standard deviation. Results: Acanthophora spicifera contains highest amount of Ag (0.1± 0.2 mg/mg) followed by Cu (0.16±0.01 mg/mg), Mn (1.86±0.02 mg/mg), B (3.59±0.2 mg/mg), Halimeda gracilis showed highest accumulation of Al (384.75±0.12mg/mg), Valoniopsis pachynema accumulates maximum amount of Co (0.12±0.01 mg/mg), Zn (0.64±0.02 mg/mg), Caulerpa racemosa var. macrophysa contains Zn (0.63±0.01), Cr (0.26±0.01 mg/mg ), Ni (0.21±0.05), Pb (0.16±0.03 ) and Cd ( 0.02±00 ). Hydroclathrus clathratus, Codium tomentosum and Gracilaria opuntia also contain adequate amount of heavy metals. Conclusions: The mentioned species of seaweeds are contributing important role for decreasing the heavy metals pollution in marine environment by bioaccumulation. So, we can utilise this species to remove excess amount of heavy metals from polluted area.

Keywords: heavy metals pollution, seaweeds, bioaccumulation, eco-friendly, phyco-remediation

Procedia PDF Downloads 209
257 Characteristics-Based Lq-Control of Cracking Reactor by Integral Reinforcement

Authors: Jana Abu Ahmada, Zaineb Mohamed, Ilyasse Aksikas

Abstract:

The linear quadratic control system of hyperbolic first order partial differential equations (PDEs) are presented. The aim of this research is to control chemical reactions. This is achieved by converting the PDEs system to ordinary differential equations (ODEs) using the method of characteristics to reduce the system to control it by using the integral reinforcement learning. The designed controller is applied to a catalytic cracking reactor. Background—Transport-Reaction systems cover a large chemical and bio-chemical processes. They are best described by nonlinear PDEs derived from mass and energy balances. As a main application to be considered in this work is the catalytic cracking reactor. Indeed, the cracking reactor is widely used to convert high-boiling, high-molecular weight hydrocarbon fractions of petroleum crude oils into more valuable gasoline, olefinic gases, and others. On the other hand, control of PDEs systems is an important and rich area of research. One of the main control techniques is feedback control. This type of control utilizes information coming from the system to correct its trajectories and drive it to a desired state. Moreover, feedback control rejects disturbances and reduces the variation effects on the plant parameters. Linear-quadratic control is a feedback control since the developed optimal input is expressed as feedback on the system state to exponentially stabilize and drive a linear plant to the steady-state while minimizing a cost criterion. The integral reinforcement learning policy iteration technique is a strong method that solves the linear quadratic regulator problem for continuous-time systems online in real time, using only partial information about the system dynamics (i.e. the drift dynamics A of the system need not be known), and without requiring measurements of the state derivative. This is, in effect, a direct (i.e. no system identification procedure is employed) adaptive control scheme for partially unknown linear systems that converges to the optimal control solution. Contribution—The goal of this research is to Develop a characteristics-based optimal controller for a class of hyperbolic PDEs and apply the developed controller to a catalytic cracking reactor model. In the first part, developing an algorithm to control a class of hyperbolic PDEs system will be investigated. The method of characteristics will be employed to convert the PDEs system into a system of ODEs. Then, the control problem will be solved along the characteristic curves. The reinforcement technique is implemented to find the state-feedback matrix. In the other half, applying the developed algorithm to the important application of a catalytic cracking reactor. The main objective is to use the inlet fraction of gas oil as a manipulated variable to drive the process state towards desired trajectories. The outcome of this challenging research would yield the potential to provide a significant technological innovation for the gas industries since the catalytic cracking reactor is one of the most important conversion processes in petroleum refineries.

Keywords: PDEs, reinforcement iteration, method of characteristics, riccati equation, cracking reactor

Procedia PDF Downloads 67
256 Capability of a Single Antigen to Induce Both Protective and Disease Enhancing Antibody: An Obstacle in the Creation of Vaccines and Passive Immunotherapies

Authors: Parul Kulshreshtha, Subrata Sinha, Rakesh Bhatnagar

Abstract:

This study was conducted by taking B. anthracis as a model pathogen. On infecting a host, B. anthracis secretes three proteins, namely, protective antigen (PA, 83kDa), edema factor (EF, 89 kDa) and lethal factor (LF, 90 kDa). These three proteins are the components of two anthrax toxins. PA binds to the cell surface receptors, namely, tumor endothelial marker (TEM) 8 and capillary morphogenesis protein (CMG) 2. TEM8 and CMG2 interact with LDL-receptor related protein (LRP) 6 for endocytosis of EF and LF. On entering the cell, EF acts as a calmodulin-dependent adenylate cyclase that causes a prolonged increase of cytosolic cyclic adenosine monophosphate (cAMP). LF is a metalloprotease that cleaves most isoforms of mitogen-activated protein kinase kinases (MAPKK/MEK) close to their N-terminus. By secreting these two toxins, B.anthracis ascertains death of the host. Once the systemic levels of the toxins rise, antibiotics alone cannot save the host. Therefore, toxin-specific inhibitors have to be developed. In this wake, monoclonal antibodies have been developed for the neutralization of toxic effects of anthrax toxins. We created hybridomas by using spleen of mice that were actively immunized with rLFn (recombinant N-terminal domain of lethal factor of B. anthracis) to obtain anti-toxin antibodies. Later on, separate group of mice were immunized with rLFn to obtain a polyclonal control for passive immunization studies of monoclonal antibodies. This led to the identification of one cohort of rLFn-immunized mice that harboured disease-enhancing polyclonal antibodies. At the same time, the monoclonal antibodies from all the hybridomas were being tested. Two hybridomas secreted monoclonal antibodies (H8 and H10) that were cross-reactive with EF (edema factor) and LF (lethal factor), while the other two hybridomas secreted LF-specific antibodies (H7 and H11). The protective efficacy of H7, H8, H10 and H11 was investigated. H7, H8 and H10 were found to be protective. H11 was found to have disease enhancing characteristics in-vitro and in mouse model of challenge with B. anthracis. In this study the disease enhancing character of H11 monoclonal antibody and anti-rLFn polyclonal sera was investigated. Combination of H11 with protective monoclonal antibodies (H8 and H10) reduced its disease enhancing nature both in-vitro and in-vivo. But combination of H11 with LETscFv (an scFv with VH and VL identical to H10 but lacking Fc region) could not abrogate the disease-enhancing character of H11 mAb. Therefore it was concluded that for suppression of disease enhancement, Fc portion was absolutely essential for interaction of H10 with H11. Our study indicates that the protective potential of an antibody depends equally on its idiotype/ antigen specificity and its isotype. A number of monoclonal and engineered antibodies are being explored as immunotherapeutics but it is absolutely essential to characterize each one for their individual and combined protective potential. Although new in the sphere of toxin-based diseases, it is extremely important to characterize the disease-enhancing nature of polyclonal as well as monoclonal antibodies. This is because several anti-viral therapeutics and vaccines have failed in the face of this phenomenon. The passive –immunotherapy thus needs to be well formulated to avoid any contraindications.

Keywords: immunotherapy, polyclonal, monoclonal, antibody-dependent disease enhancement

Procedia PDF Downloads 356
255 Health and Greenhouse Gas Emission Implications of Reducing Meat Intakes in Hong Kong

Authors: Cynthia Sau Chun Yip, Richard Fielding

Abstract:

High meat and especially red meat intakes are significantly and positively associated with a multiple burden of diseases and also high greenhouse gas (GHG) emissions. This study investigated population meat intake patterns in Hong Kong. It quantified the burden of disease and GHG emission outcomes by modeling to adjust Hong Kong population meat intakes to recommended healthy levels. It compared age- and sex-specific population meat, fruit and vegetable intakes obtained from a population survey among adults aged 20 years and over in Hong Kong in 2005-2007, against intake recommendations suggested in the Modelling System to Inform the Revision of the Australian Guide to Healthy Eating (AGHE-2011-MS) technical document. This study found that meat and meat alternatives, especially red meat intakes among Hong Kong males aged 20+ years and over are significantly higher than recommended. Red meat intakes among females aged 50-69 years and other meat and alternatives intakes among aged 20-59 years are also higher than recommended. Taking the 2005-07 age- and sex-specific population meat intake as baselines, three counterfactual scenarios of adjusting Hong Kong adult population meat intakes to AGHE-2011-MS and Pre-2011 AGHE recommendations by the year 2030 were established. Consequent energy intake gaps were substituted with additional legume, fruit and vegetable intakes. To quantify the consequent GHG emission outcomes associated with Hong Kong meat intakes, Cradle-to-ready-to-eat lifecycle assessment emission outcome modelling was used. Comparative risk assessment of burden of disease model was used to quantify the health outcomes. This study found adjusting meat intakes to recommended levels could reduce Hong Kong GHG emission by 17%-44% when compared against baseline meat intake emissions, and prevent 2,519 to 7,012 premature deaths in males and 53 to 1,342 in females, as well as multiple burden of diseases when compared to the baseline meat intake scenario. Comparing lump sum meat intake reduction and outcome measures across the entire population, and using emission factors, and relative risks from individual studies in previous co-benefit studies, this study used age- and sex-specific input and output measures, emission factors and relative risks obtained from high quality meta-analysis and meta-review respectively, and has taken government dietary recommendations into account. Hence evaluations in this study are of better quality and more reflective of real life practices. Further to previous co-benefit studies, this study pinpointed age- and sex-specific population and meat-type-specific intervention points and leverages. When compared with similar studies in Australia, this study also showed that intervention points and leverages among populations in different geographic and cultural background could be different, and that globalization also globalizes meat consumption emission effects. More regional and cultural specific evaluations are recommended to promote more sustainable meat consumption and enhance global food security.

Keywords: burden of diseases, greenhouse gas emissions, Hong Kong diet, sustainable meat consumption

Procedia PDF Downloads 291
254 Sustainable Biostimulant and Bioprotective Compound for the Control of Fungal Diseases in Agricultural Crops

Authors: Geisa Lima Mesquita Zambrosi, Maisa Ciampi Guillardi, Flávia Rodrigues Patrício, Oliveiro Guerreiro Filho

Abstract:

Certified agricultural products are important components of the food industry. However, certifiers have been expanding the list of restricted or prohibited pesticides, limiting the options of products for phytosanitary control of plant diseases, but without offering alternatives to the farmers. Soybean and coffee leaf rust, brown eye spots, and Phoma leaf spots are the main fungal diseases that pose a serious threat to soybean and coffee cultivation worldwide. In conventional farming systems, these diseases are controlled by using synthetic fungicides, which, in addition to intensify the occurrence of fungal resistance, are highly toxic to the environment, farmers and consumers. In organic, agroecological, or regenerative farming systems, product options for plant protection are limited, being available only copper-based compounds, biodefensives or non-standard homemade products. Therefore, there is a growing demand for effective bioprotectors with low environmental impact for adoption in more sustainable agricultural systems. Then, to contribute with the covering of such a gap, we have developed a compound based on plant extracts and metallic elements for foliar application. This product has both biostimulant and bioprotective action, which promotes sustainable disease control, increases productivity as well as reduces the dependence on imported technologies the damages to the environment. The product's components have complementary mechanisms that promote protection against the disease by directly acting on the pathogens and activating the plant's natural defense system. The protective ability of the product against three coffee diseases (coffee leaf rust, brown eye spot, and Phoma leaf spot) and against soybean rust disease was evaluated, in addition to its ability to promote plant growth. Our goal is to offer an effective alternative to control the main coffee fungal diseases and soybean fungal diseases, with a biostimulant effect and low toxicity. The proposed product can also be part of the integrated management of coffee and soybean diseases in conventional farming associated with chemical and biological pesticides, offering the market a sustainable coffee and soybean with high added value and low residue content. Experiments were carried out under controlled conditions to evaluate the effectiveness of the product in controlling rust, phoma, and cercosporiosis in comparison to a control-inoculated plants that did not receive the product. The in vitro and in vivo effects of the product on the pathogen were evaluated using light microscopy and scanning electron microscopy, respectively. The fungistatic action of the product was demonstrated by a reduction of 85% and 95% in spore germination and disease symptoms severity on the leaves of coffee plants, respectively. The formulation had both a protective effect, acting to prevent infection by coffee leaf rust, and a curative effect, reducing the rust symptoms after its establishment.

Keywords: plant disease, natural fungicide, plant health, sustainability, alternative disease management

Procedia PDF Downloads 16
253 3D Label-Free Bioimaging of Native Tissue with Selective Plane Illumination Optical Microscopy

Authors: Jing Zhang, Yvonne Reinwald, Nick Poulson, Alicia El Haj, Chung See, Mike Somekh, Melissa Mather

Abstract:

Biomedical imaging of native tissue using light offers the potential to obtain excellent structural and functional information in a non-invasive manner with good temporal resolution. Image contrast can be derived from intrinsic absorption, fluorescence, or scatter, or through the use of extrinsic contrast. A major challenge in applying optical microscopy to in vivo tissue imaging is the effects of light attenuation which limits light penetration depth and achievable imaging resolution. Recently Selective Plane Illumination Microscopy (SPIM) has been used to map the 3D distribution of fluorophores dispersed in biological structures. In this approach, a focused sheet of light is used to illuminate the sample from the side to excite fluorophores within the sample of interest. Images are formed based on detection of fluorescence emission orthogonal to the illumination axis. By scanning the sample along the detection axis and acquiring a stack of images, 3D volumes can be obtained. The combination of rapid image acquisition speeds with the low photon dose to samples optical sectioning provides SPIM is an attractive approach for imaging biological samples in 3D. To date all implementations of SPIM rely on the use of fluorescence reporters be that endogenous or exogenous. This approach has the disadvantage that in the case of exogenous probes the specimens are altered from their native stage rendering them unsuitable for in vivo studies and in general fluorescence emission is weak and transient. Here we present for the first time to our knowledge a label-free implementation of SPIM that has downstream applications in the clinical setting. The experimental set up used in this work incorporates both label-free and fluorescent illumination arms in addition to a high specification camera that can be partitioned for simultaneous imaging of both fluorescent emission and scattered light from intrinsic sources of optical contrast in the sample being studied. This work first involved calibration of the imaging system and validation of the label-free method with well characterised fluorescent microbeads embedded in agarose gel. 3D constructs of mammalian cells cultured in agarose gel with varying cell concentrations were then imaged. A time course study to track cell proliferation in the 3D construct was also carried out and finally a native tissue sample was imaged. For each sample multiple images were obtained by scanning the sample along the axis of detection and 3D maps reconstructed. The results obtained validated label-free SPIM as a viable approach for imaging cells in a 3D gel construct and native tissue. This technique has the potential use in a near-patient environment that can provide results quickly and be implemented in an easy to use manner to provide more information with improved spatial resolution and depth penetration than current approaches.

Keywords: bioimaging, optics, selective plane illumination microscopy, tissue imaging

Procedia PDF Downloads 223
252 Blended Learning in a Mathematics Classroom: A Focus in Khan Academy

Authors: Sibawu Witness Siyepu

Abstract:

This study explores the effects of instructional design using blended learning in the learning of radian measures among Engineering students. Blended learning is an education programme that combines online digital media with traditional classroom methods. It requires the physical presence of both lecturer and student in a mathematics computer laboratory. Blended learning provides element of class control over time, place, path or pace. The focus was on the use of Khan Academy to supplement traditional classroom interactions. Khan Academy is a non-profit educational organisation created by educator Salman Khan with a goal of creating an accessible place for students to learn through watching videos in a computer assisted computer. The researcher who is an also lecturer in mathematics support programme collected data through instructing students to watch Khan Academy videos on radian measures, and by supplying students with traditional classroom activities. Classroom activities entails radian measure activities extracted from the Internet. Students were given an opportunity to engage in class discussions, social interactions and collaborations. These activities necessitated students to write formative assessments tests. The purpose of formative assessments tests was to find out about the students’ understanding of radian measures, including errors and misconceptions they displayed in their calculations. Identification of errors and misconceptions serve as pointers of students’ weaknesses and strengths in their learning of radian measures. At the end of data collection, semi-structure interviews were administered to a purposefully sampled group to explore their perceptions and feedback regarding the use of blended learning approach in teaching and learning of radian measures. The study employed Algebraic Insight Framework to analyse data collected. Algebraic Insight Framework is a subset of symbol sense which allows a student to correctly enter expressions into a computer assisted systems efficiently. This study offers students opportunities to enter topics and subtopics on radian measures into a computer through the lens of Khan Academy. Khan academy demonstrates procedures followed to reach solutions of mathematical problems. The researcher performed the task of explaining mathematical concepts and facilitated the process of reinvention of rules and formulae in the learning of radian measures. Lastly, activities that reinforce students’ understanding of radian were distributed. Results showed that this study enthused the students in their learning of radian measures. Learning through videos prompted the students to ask questions which brought about clarity and sense making to the classroom discussions. Data revealed that sense making through reinvention of rules and formulae assisted the students in enhancing their learning of radian measures. This study recommends the use of Khan Academy in blended learning to be introduced as a socialisation programme to all first year students. This will prepare students that are computer illiterate to become conversant with the use of Khan Academy as a powerful tool in the learning of mathematics. Khan Academy is a key technological tool that is pivotal for the development of students’ autonomy in the learning of mathematics and that promotes collaboration with lecturers and peers.

Keywords: algebraic insight framework, blended learning, Khan Academy, radian measures

Procedia PDF Downloads 287
251 Comparison of Bioelectric and Biomechanical Electromyography Normalization Techniques in Disparate Populations

Authors: Drew Commandeur, Ryan Brodie, Sandra Hundza, Marc Klimstra

Abstract:

The amplitude of raw electromyography (EMG) is affected by recording conditions and often requires normalization to make meaningful comparisons. Bioelectric methods normalize with an EMG signal recorded during a standardized task or from the experimental protocol itself, while biomechanical methods often involve measurements with an additional sensor such as a force transducer. Common bioelectric normalization techniques for treadmill walking include maximum voluntary isometric contraction (MVIC), dynamic EMG peak (EMGPeak) or dynamic EMG mean (EMGMean). There are several concerns with using MVICs to normalize EMG, including poor reliability and potential discomfort. A limitation of bioelectric normalization techniques is that they could result in a misrepresentation of the absolute magnitude of force generated by the muscle and impact the interpretation of EMG between functionally disparate groups. Additionally, methods that normalize to EMG recorded during the task may eliminate some real inter-individual variability due to biological variation. This study compared biomechanical and bioelectric EMG normalization techniques during treadmill walking to assess the impact of the normalization method on the functional interpretation of EMG data. For the biomechanical method, we normalized EMG to a target torque (EMGTS) and the bioelectric methods used were normalization to the mean and peak of the signal during the walking task (EMGMean and EMGPeak). The effect of normalization on muscle activation pattern, EMG amplitude, and inter-individual variability were compared between disparate cohorts of OLD (76.6 yrs N=11) and YOUNG (26.6 yrs N=11) adults. Participants walked on a treadmill at a self-selected pace while EMG was recorded from the right lower limb. EMG data from the soleus (SOL), medial gastrocnemius (MG), tibialis anterior (TA), vastus lateralis (VL), and biceps femoris (BF) were phase averaged into 16 bins (phases) representing the gait cycle with bins 1-10 associated with right stance and bins 11-16 with right swing. Pearson’s correlations showed that activation patterns across the gait cycle were similar between all methods, ranging from r =0.86 to r=1.00 with p<0.05. This indicates that each method can characterize the muscle activation pattern during walking. Repeated measures ANOVA showed a main effect for age in MG for EMGPeak but no other main effects were observed. Interactions between age*phase of EMG amplitude between YOUNG and OLD with each method resulted in different statistical interpretation between methods. EMGTS normalization characterized the fewest differences (four phases across all 5 muscles) while EMGMean (11 phases) and EMGPeak (19 phases) showed considerably more differences between cohorts. The second notable finding was that coefficient of variation, the representation of inter-individual variability, was greatest for EMGTS and lowest for EMGMean while EMGPeak was slightly higher than EMGMean for all muscles. This finding supports our expectation that EMGTS normalization would retain inter-individual variability which may be desirable, however, it also suggests that even when large differences are expected, a larger sample size may be required to observe the differences. Our findings clearly indicate that interpretation of EMG is highly dependent on the normalization method used, and it is essential to consider the strengths and limitations of each method when drawing conclusions.

Keywords: electromyography, EMG normalization, functional EMG, older adults

Procedia PDF Downloads 68
250 Diversity in the Community - The Disability Perspective

Authors: Sarah Reker, Christiane H. Kellner

Abstract:

From the perspective of people with disabilities, inequalities can also emerge from spatial segregation, the lack of social contacts or limited economic resources. In order to reduce or even eliminate these disadvantages and increase general well-being, community-based participation as well as decentralisation efforts within exclusively residential homes is essential. Therefore, the new research project “Index for participation development and quality of life for persons with disabilities”(TeLe-Index, 2014-2016), which is anchored at the Technische Universität München in Munich and at a large residential complex and service provider for persons with disabilities in the outskirts of Munich aims to assist the development of community-based living environments. People with disabilities should be able to participate in social life beyond the confines of the institution. Since a diverse society is a society in which different individual needs and wishes can emerge and be catered to, the ultimate goal of the project is to create an environment for all citizens–regardless of disability, age or ethnic background–that accommodates their daily activities and requirements. The UN-Convention on the Rights of Persons with Disabilities, which Germany also ratified, postulates the necessity of user-centered design, especially when it comes to evaluating the individual needs and wishes of all citizens. Therefore, a multidimensional approach is required. Based on this insight, the structure of the town-like center will be remodeled to open up the community to all people. This strategy should lead to more equal opportunities and open the way for a much more diverse community. Therefore, macro-level research questions were inspired by quality of life theory and were formulated as follows for different dimensions: •The user dimension: what needs and necessities can we identify? Are needs person-related? Are there any options to choose from? What type of quality of life can we identify? The economic dimension: what resources (both material and staff-related) are available in the region? (How) are they used? What costs (can) arise and what effects do they entail? •The environment dimension: what “environmental factors” such as access (mobility and absence of barriers) prove beneficial or impedimental? In this context, we have provided academic supervision and support for three projects (the construction of a new school, inclusive housing for children and teenagers with disabilities and the professionalization of employees with person-centered thinking). Since we cannot present all the issues of the umbrella-project within the conference framework, we will be focusing on one project more in-depth, namely “Outpatient Housing Options for Children and Teenagers with Disabilities”. The insights we have obtained until now will enable us to present the intermediary results of our evaluation. The most central questions pertaining to this part of the research were the following: •How have the existing network relations been designed? •What meaning (or significance) does the existing service offers and structures have for the everyday life of an external residential group? These issues underpinned the environmental analyses as well as the qualitative guided interviews and qualitative network analyses we carried out.

Keywords: decentralisation, environmental analyses, outpatient housing options for children and teenagers with disabilities, qualitative network analyses

Procedia PDF Downloads 340
249 Permeable Asphalt Pavement as a Measure of Urban Green Infrastructure in the Extreme Events Mitigation

Authors: Márcia Afonso, Cristina Fael, Marisa Dinis-Almeida

Abstract:

Population growth in cities has led to an increase in the infrastructures construction, including buildings and roadways. This aspect leads directly to the soils waterproofing. In turn, changes in precipitation patterns are developing into higher and more frequent intensities. Thus, these two conjugated aspects decrease the rainwater infiltration into soils and increase the volume of surface runoff. The practice of green and sustainable urban solutions has encouraged research in these areas. The porous asphalt pavement, as a green infrastructure, is part of practical solutions set to address urban challenges related to land use and adaptation to climate change. In this field, permeable pavements with porous asphalt mixtures (PA) have several advantages in terms of reducing the runoff generated by the floods. The porous structure of these pavements, compared to a conventional asphalt pavement, allows the rainwater infiltration in the subsoil, and consequently, the water quality improvement. This green infrastructure solution can be applied in cities, particularly in streets or parking lots to mitigate the floods effects. Over the years, the pores of these pavements can be filled by sediment, reducing their function in the rainwater infiltration. Thus, double layer porous asphalt (DLPA) was developed to mitigate the clogging effect and facilitate the water infiltration into the lower layers. This study intends to deepen the knowledge of the performance of DLPA when subjected to clogging. The experimental methodology consisted on four evaluation phases of the DLPA infiltration capacity submitted to three precipitation events (100, 200 and 300 mm/h) in each phase. The evaluation first phase determined the behavior after DLPA construction. In phases two and three, two 500 g/m2 clogging cycles were performed, totaling a 1000 g/m2 final simulation. Sand with gradation accented in fine particles was used as clogging material. In the last phase, the DLPA was subjected to simple sweeping and vacuuming maintenance. A precipitation simulator, type sprinkler, capable of simulating the real precipitation was developed for this purpose. The main conclusions show that the DLPA has the capacity to drain the water, even after two clogging cycles. The infiltration results of flows lead to an efficient performance of the DPLA in the surface runoff attenuation, since this was not observed in any of the evaluation phases, even at intensities of 200 and 300 mm/h, simulating intense precipitation events. The infiltration capacity under clogging conditions decreased about 7% on average in the three intensities relative to the initial performance that is after construction. However, this was restored when subjected to simple maintenance, recovering the DLPA hydraulic functionality. In summary, the study proved the efficacy of using a DLPA when it retains thicker surface sediments and limits the fine sediments entry to the remaining layers. At the same time, it is guaranteed the rainwater infiltration and the surface runoff reduction and is therefore a viable solution to put into practice in permeable pavements.

Keywords: clogging, double layer porous asphalt, infiltration capacity, rainfall intensity

Procedia PDF Downloads 466
248 Predicting Suicidal Behavior by an Accurate Monitoring of RNA Editing Biomarkers in Blood Samples

Authors: Berengere Vire, Nicolas Salvetat, Yoann Lannay, Guillaume Marcellin, Siem Van Der Laan, Franck Molina, Dinah Weissmann

Abstract:

Predicting suicidal behaviors is one of the most complex challenges of daily psychiatric practices. Today, suicide risk prediction using biological tools is not validated and is only based on subjective clinical reports of the at-risk individual. Therefore, there is a great need to identify biomarkers that would allow early identification of individuals at risk of suicide. Alterations of adenosine-to-inosine (A-to-I) RNA editing of neurotransmitter receptors and other proteins have been shown to be involved in etiology of different psychiatric disorders and linked to suicidal behavior. RNA editing is a co- or post-transcriptional process leading to a site-specific alteration in RNA sequences. It plays an important role in the epi transcriptomic regulation of RNA metabolism. On postmortem human brain tissue (prefrontal cortex) of depressed suicide victims, Alcediag found specific alterations of RNA editing activity on the mRNA coding for the serotonin 2C receptor (5-HT2cR). Additionally, an increase in expression levels of ADARs, the RNA editing enzymes, and modifications of RNA editing profiles of prime targets, such as phosphodiesterase 8A (PDE8A) mRNA, have also been observed. Interestingly, the PDE8A gene is located on chromosome 15q25.3, a genomic region that has recurrently been associated with the early-onset major depressive disorder (MDD). In the current study, we examined whether modifications in RNA editing profile of prime targets allow identifying disease-relevant blood biomarkers and evaluating suicide risk in patients. To address this question, we performed a clinical study to identify an RNA editing signature in blood of depressed patients with and without the history of suicide attempts. Patient’s samples were drawn in PAXgene tubes and analyzed on Alcediag’s proprietary RNA editing platform using next generation sequencing technology. In addition, gene expression analysis by quantitative PCR was performed. We generated a multivariate algorithm comprising various selected biomarkers to detect patients with a high risk to attempt suicide. We evaluated the diagnostic performance using the relative proportion of PDE8A mRNA editing at different sites and/or isoforms as well as the expression of PDE8A and the ADARs. The significance of these biomarkers for suicidality was evaluated using the area under the receiver-operating characteristic curve (AUC). The generated algorithm comprising the biomarkers was found to have strong diagnostic performances with high specificity and sensitivity. In conclusion, we developed tools to measure disease-specific biomarkers in blood samples of patients for identifying individuals at the greatest risk for future suicide attempts. This technology not only fosters patient management but is also suitable to predict the risk of drug-induced psychiatric side effects such as iatrogenic increase of suicidal ideas/behaviors.

Keywords: blood biomarker, next-generation-sequencing, RNA editing, suicide

Procedia PDF Downloads 233
247 Effect of Spermidine on Physicochemical Properties of Protein Based Films

Authors: Mohammed Sabbah, Prospero Di Pierro, Raffaele Porta

Abstract:

Protein-based edible films and coatings have attracted an increasing interest in recent years since they might be used to protect pharmaceuticals or improve the shelf life of different food products. Among them, several plant proteins represent an abundant, inexpensive and renewable raw source. These natural biopolymers are used as film forming agents, being able to form intermolecular linkages by various interactions. However, without the addition of a plasticizing agent, many biomaterials are brittle and, consequently, very difficult to be manipulated. Plasticizers are generally small and non-volatile organic additives used to increase film extensibility and reduce its crystallinity, brittleness and water vapor permeability. Plasticizers normally act by decreasing the intermolecular forces along the polymer chains, thus reducing the relative number of polymer-polymer contacts, producing a decrease in cohesion and tensile strength and thereby increasing film flexibility allowing its deformation without rupture. The most commonly studied plasticizers are polyols, like glycerol (GLY) and some mono or oligosaccharides. In particular, GLY not only increases film extensibility but also migrates inside the film network often causing the loss of desirable mechanical properties of the material. Therefore, replacing GLY with a different plasticizer might help to improve film characteristics allowing potential industrial applications. To improve film properties, it seemed of interest to test as plasticizers some cationic small molecules like polyamines (PAs). Putrescine, spermidine (SPD), and spermine are PAs widely distributed in nature and of particular interest for their biological activities that may have some beneficial health effects. Since PAs contains amino instead of hydroxyl functional groups, they are able to trigger ionic interactions with negatively charged proteins. Bitter vetch (Vicia ervilia; BV) is an ancient grain legume crop, originated in the Mediterranean region, which can be found today in many countries around the world. This annual Vicia genus shows several favorable features, being their seeds a cheap and abundant protein source. The main objectives of this study were to investigate the effect of different concentrations of SPD on the mechanical and permeability properties of films prepared with native or heat denatured BV proteins in the presence of different concentrations of SPD and/or GLY. Therefore, a BV seed protein concentrate (BVPC), containing about 77% proteins, was used to prepare film forming solutions (FFSs), whereas GLY and SPD were added as film plasticizers, either singly or in combination, at various concentrations. Since a primary plasticizer is generally defined as a molecule that when added to a material makes it softer, more flexible and easier to be processed, our findings lead to consider SPD as a possible primary plasticizer of protein-based films. In fact, the addition of millimolar concentrations of SPD to BVPC FFS allowed obtaining handleable biomaterials with improved properties. Moreover, SPD can be also considered as a secondary plasticizer, namely an 'extender', because of its ability even to enhance the plasticizing performance of GLY. In conclusion, our studies indicate that innovative edible protein-based films and coatings can be obtained by using PAs as new plasticizers.

Keywords: edible films, glycerol, plasticizers, polyamines, spermidine

Procedia PDF Downloads 174
246 Theoretical and Experimental Investigation of Structural, Electrical and Photocatalytic Properties of K₀.₅Na₀.₅NbO₃ Lead- Free Ceramics Prepared via Different Synthesis Routes

Authors: Manish Saha, Manish Kumar Niranjan, Saket Asthana

Abstract:

The K₀.₅Na₀.₅NbO₃ (KNN) system has emerged as one of the most promising lead-free piezoelectric over the years. In this work, we perform a comprehensive investigation of electronic structure, lattice dynamics and dielectric/ferroelectric properties of the room temperature phase of KNN by combining ab-initio DFT-based theoretical analysis and experimental characterization. We assign the symmetry labels to KNN vibrational modes and obtain ab-initio polarized Raman spectra, Infrared (IR) reflectivity, Born-effective charge tensors, oscillator strengths etc. The computed Raman spectrum is found to agree well with the experimental spectrum. In particular, the results suggest that the mode in the range ~840-870 cm-¹ reported in the experimental studies is longitudinal optical (LO) with A_1 symmetry. The Raman mode intensities are calculated for different light polarization set-ups, which suggests the observation of different symmetry modes in different polarization set-ups. The electronic structure of KNN is investigated, and an optical absorption spectrum is obtained. Further, the performances of DFT semi-local, metal-GGA and hybrid exchange-correlations (XC) functionals, in the estimation of KNN band gaps are investigated. The KNN bandgap computed using GGA-1/2 and HSE06 hybrid functional schemes are found to be in excellant agreement with the experimental value. The COHP, electron localization function and Bader charge analysis is also performed to deduce the nature of chemical bonding in the KNN. The solid-state reaction and hydrothermal methods are used to prepare the KNN ceramics, and the effects of grain size on the physical characteristics these ceramics are examined. A comprehensive study on the impact of different synthesis techniques on the structural, electrical, and photocatalytic properties of ferroelectric ceramics KNN. The KNN-S prepared by solid-state method have significantly larger grain size as compared to that for KNN-H prepared by hydrothermal method. Furthermore, the KNN-S is found to exhibit higher dielectric, piezoelectric and ferroelectric properties as compared to KNN-H. On the other hand, the increased photocatalytic activity is observed in KNN-H as compared to KNN-S. As compared to the hydrothermal synthesis, the solid-state synthesis causes an increase in the relative dielectric permittivity (ε^') from 2394 to 3286, remnant polarization (P_r) from 15.38 to 20.41 μC/cm^², planer electromechanical coupling factor (k_p) from 0.19 to 0.28 and piezoelectric coefficient (d_33) from 88 to 125 pC/N. The KNN-S ceramics are also found to have a lower leakage current density, and higher grain resistance than KNN-H ceramic. The enhanced photocatalytic activity of KNN-H is attributed to relatively smaller particle sizes. The KNN-S and KNN-H samples are found to have degradation efficiencies of RhB solution of 20% and 65%, respectively. The experimental study highlights the importance of synthesis methods and how these can be exploited to tailor the dielectric, piezoelectric and photocatalytic properties of KNN. Overall, our study provides several bench-mark important results on KNN that have not been reported so far.

Keywords: lead-free piezoelectric, Raman intensity spectrum, electronic structure, first-principles calculations, solid state synthesis, photocatalysis, hydrothermal synthesis

Procedia PDF Downloads 22
245 Climate Change Impact on Mortality from Cardiovascular Diseases: Case Study of Bucharest, Romania

Authors: Zenaida Chitu, Roxana Bojariu, Liliana Velea, Roxana Burcea

Abstract:

A number of studies show that extreme air temperature affects mortality related to cardiovascular diseases, particularly among elderly people. In Romania, the summer thermal discomfort expressed by Universal Thermal Climate Index (UTCI) is highest in the Southern part of the country, where Bucharest, the largest Romanian urban agglomeration, is also located. The urban characteristics such as high building density and reduced green areas enhance the increase of the air temperature during summer. In Bucharest, as in many other large cities, the effect of heat urban island is present and determines an increase of air temperature compared to surrounding areas. This increase is particularly important during heat wave periods in summer. In this context, the researchers performed a temperature-mortality analysis based on daily deaths related to cardiovascular diseases, recorded between 2010 and 2019 in Bucharest. The temperature-mortality relationship was modeled by applying distributed lag non-linear model (DLNM) that includes a bi-dimensional cross-basis function and flexible natural cubic spline functions with three internal knots in the 10th, 75th and 90th percentiles of the temperature distribution, for modelling both exposure-response and lagged-response dimensions. Firstly, this study applied this analysis for the present climate. Extrapolation of the exposure-response associations beyond the observed data allowed us to estimate future effects on mortality due to temperature changes under climate change scenarios and specific assumptions. We used future projections of air temperature from five numerical experiments with regional climate models included in the EURO-CORDEX initiative under the relatively moderate (RCP 4.5) and pessimistic (RCP 8.5) concentration scenarios. The results of this analysis show for RCP 8.5 an ensemble-averaged increase with 6.1% of heat-attributable mortality fraction in future in comparison with present climate (2090-2100 vs. 2010-219), corresponding to an increase of 640 deaths/year, while mortality fraction due to the cold conditions will be reduced by 2.76%, corresponding to a decrease by 288 deaths/year. When mortality data is stratified according to the age, the ensemble-averaged increase of heat-attributable mortality fraction for elderly people (> 75 years) in the future is even higher (6.5 %). These findings reveal the necessity to carefully plan urban development in Bucharest to face the public health challenges raised by the climate change. Paper Details: This work is financed by the project URCLIM which is part of ERA4CS, an ERA-NET initiated by JPI Climate, and funded by Ministry of Environment, Romania with co-funding by the European Union (Grant 690462). A part of this work performed by one of the authors has received funding from the European Union’s Horizon 2020 research and innovation programme from the project EXHAUSTION under grant agreement No 820655.

Keywords: cardiovascular diseases, climate change, extreme air temperature, mortality

Procedia PDF Downloads 102
244 Treatment Process of Sludge from Leachate with an Activated Sludge System and Extended Aeration System

Authors: A. Chávez, A. Rodríguez, F. Pinzón

Abstract:

Society is concerned about measures of environmental, economic and social impacts generated in the solid waste disposal. These places of confinement, also known as landfills, are locations where problems of pollution and damage to human health are reduced. They are technically designed and operated, using engineering principles, storing the residue in a small area, compact it to reduce volume and covering them with soil layers. Problems preventing liquid (leachate) and gases produced by the decomposition of organic matter. Despite planning and site selection for disposal, monitoring and control of selected processes, remains the dilemma of the leachate as extreme concentration of pollutants, devastating soil, flora and fauna; aggressive processes requiring priority attention. A biological technology is the activated sludge system, used for tributaries with high pollutant loads. Since transforms biodegradable dissolved and particulate matter into CO2, H2O and sludge; transform suspended and no Settleable solids; change nutrients as nitrogen and phosphorous; and degrades heavy metals. The microorganisms that remove organic matter in the processes are in generally facultative heterotrophic bacteria, forming heterogeneous populations. Is possible to find unicellular fungi, algae, protozoa and rotifers, that process the organic carbon source and oxygen, as well as the nitrogen and phosphorus because are vital for cell synthesis. The mixture of the substrate, in this case sludge leachate, molasses and wastewater is maintained ventilated by mechanical aeration diffusers. Considering as the biological processes work to remove dissolved material (< 45 microns), generating biomass, easily obtained by decantation processes. The design consists of an artificial support and aeration pumps, favoring develop microorganisms (denitrifying) using oxygen (O) with nitrate, resulting in nitrogen (N) in the gas phase. Thus, avoiding negative effects of the presence of ammonia or phosphorus. Overall the activated sludge system includes about 8 hours of hydraulic retention time, which does not prevent the demand for nitrification, which occurs on average in a value of MLSS 3,000 mg/L. The extended aeration works with times greater than 24 hours detention; with ratio of organic load/biomass inventory under 0.1; and average stay time (sludge age) more than 8 days. This project developed a pilot system with sludge leachate from Doña Juana landfill - RSDJ –, located in Bogota, Colombia, where they will be subjected to a process of activated sludge and extended aeration through a sequential Bach reactor - SBR, to be dump in hydric sources, avoiding ecological collapse. The system worked with a dwell time of 8 days, 30 L capacity, mainly by removing values of BOD and COD above 90%, with initial data of 1720 mg/L and 6500 mg/L respectively. Motivating the deliberate nitrification is expected to be possible commercial use diffused aeration systems for sludge leachate from landfills.

Keywords: sludge, landfill, leachate, SBR

Procedia PDF Downloads 246
243 Detection of Antibiotic Resistance Genes and Antibiotic Residues in Plant-based Products

Authors: Morello Sara, Pederiva Sabina, Bianchi Manila, Martucci Francesca, Marchis Daniela, Decastelli Lucia

Abstract:

Vegetables represent an integral part of a healthy diet due to their valuable nutritional properties and the growth in consumer demand in recent years is particularly remarkable for a diet rich in vitamins and micronutrients. However, plant-based products are involved in several food outbreaks connected to various sources of contamination and quite often, bacteria responsible for side effects showed high resistance to antibiotics. The abuse of antibiotics can be one of the main mechanisms responsible for increasing antibiotic resistance (AR). Plants grown for food use can be contaminated directly by spraying antibiotics on crops or indirectly by treatments with antibiotics due to the use of manure, which may contain both antibiotics and genes of antibiotic resistance (ARG). Antibiotic residues could represent a potential way of human health risk due to exposure through the consumption of plant-based foods. The presence of antibiotic-resistant bacteria might pose a particular risk to consumers. The present work aims to investigate through a multidisciplinary approach the occurrence of ARG by means of a biomolecular approach (PCR) and the prevalence of antibiotic residues using a multi residues LC-MS/MS method, both in different plant-based products. During the period from July 2020 to October 2021, a total of 74 plant samples (33 lettuces and 41 tomatoes) were collected from 57 farms located throughout the Piedmont area, and18 out of 74 samples (11 lettuces and 7 tomatoes) were selected to LC-MS/MS analyses. DNA extracted (ExtractME, Blirt, Poland) from plants used on crops and isolated bacteria were analyzed with 6 sets of end-point multiplex PCR (Qiagen, Germany) to detect the presence of resistance genes of the main antibiotic families, such as tet genes (tetracyclines), bla (β-lactams) and mcr (colistin). Simultaneous detection of 43 molecules of antibiotics belonging to 10 different classes (tetracyclines, sulphonamides, quinolones, penicillins, amphenicols, macrolides, pleuromotilines, lincosamides, diaminopyrimidines) was performed using Exion LC system AB SCIEX coupled to a triple quadrupole mass spectrometer QTRAP 5500 from AB SCIEX. The PCR assays showed the presence of ARG in 57% (n=42): tetB (4.8%; n=2), tetA (9.5%; n=4), tetE (2.4%; n=1), tetL (12%; n=5), tetM (26%; n=11), blaSHV (21.5%; n=9), blaTEM (4.8%; n =2) and blaCTX-M (19%; n=8). In none of the analyzed samples was the mcr gene responsible for colistin resistance detected. Results obtained from LC-MS/MS analyses showed that none of the tested antibiotics appear to exceed the LOQ (100 ppb). Data obtained confirmed the presence of bacterial populations containing antibiotic resistance determinants such as tet gene (tetracycline) and bla genes (beta-lactams), widely used in human medicine, which can join the food chain and represent a risk for consumers, especially with raw products. The presence of traces of antibiotic residues in vegetables, in concentration below the LOQ of the LC-MS/MS method applied, cannot be excluded. In conclusion, traces of antibiotic residues could be a health risk to the consumer due to potential involvement in the spread of AR. PCR represents a useful and effective approach to characterize and monitor AR carried by bacteria from the entire food chain.

Keywords: plant-based products, ARG, PCR, antibiotic residues

Procedia PDF Downloads 59
242 Phospholipid Cationic and Zwitterionic Compounds as Potential Non-Toxic Antifouling Agents: A Study of Biofilm Formation Assessed by Micro-titer Assays with Marine Bacteria and Eco-toxicological Effect on Marine Microalgae

Authors: D. Malouch, M. Berchel, C. Dreanno, S. Stachowski-Haberkorn, P-A. Jaffres

Abstract:

Biofouling is a complex natural phenomenon that involves biological, physical and chemical properties related to the environment, the submerged surface and the living organisms involved. Bio-colonization of artificial structures can cause various economic and environmental impacts. The increase in costs associated with the over-consumption of fuel from biocolonized vessels has been widely studied. Measurement drifts from submerged sensors, as well as obstructions in heat exchangers, and deterioration of offshore structures are major difficulties that industries are dealing with. Therefore, surfaces that inhibit biocolonization are required in different areas (water treatment, marine paints, etc.) and many efforts have been devoted to produce efficient and eco-compatible antifouling agents. The different steps of surface fouling are widely described in literature. Studying the biofilm and its stages provides a better understanding of how to elaborate more efficient antifouling strategies. Several approaches are currently applied, such as the use of biocide anti-fouling paint (mainly with copper derivatives) and super-hydrophobic coatings. While these two processes are proving to be the most effective, they are not entirely satisfactory, especially in a context of a changing legislation. Nowadays, the challenge is to prevent biofouling with non-biocide compounds, offering a cost effective solution, but with no toxic effects on marine organisms. Since the micro-fouling phase plays an important role in the regulation of the following steps of biofilm formation, it is desired to reduce or delate biofouling of a given surface by inhibiting the micro-fouling at its early stages. In our recent works, we reported that some amphiphilic compounds exhibited bacteriostatic or bactericidal properties at a concentration that did not affect mammalian eukaryotic cells. These remarkable properties invited us to assess this type of bio-inspired phospholipids to prevent the colonization of surfaces by marine bacteria. Of note, other studies reported that amphiphilic compounds interacted with bacteria leading to a reduction of their development. An amphiphilic compound is a molecule consisting of a hydrophobic domain and a polar head (ionic or non-ionic). These compounds appear to have interesting antifouling properties: some ionic compounds have shown antimicrobial activity, and zwitterions can reduce nonspecific adsorption of proteins. Herein, we investigate the potential of amphiphilic compounds as inhibitors of bacterial growth and marine biofilm formation. The aim of this study is to compare the efficacy of four synthetic phospholipids that features a cationic charge or a zwitterionic polar-head group to prevent microfouling with marine bacteria. Toxicity of these compounds was also studied in order to identify the most promising compounds that inhibit biofilm development and show low cytotoxicity on two links representative of coastal marine food webs: phytoplankton and oyster larvae.

Keywords: amphiphilic phospholipids, biofilm, marine fouling, non-toxique assays

Procedia PDF Downloads 113
241 Dietary Exposure Assessment of Potentially Toxic Trace Elements in Fruits and Vegetables Grown in Akhtala, Armenia

Authors: Davit Pipoyan, Meline Beglaryan, Nicolò Merendino

Abstract:

Mining industry is one of the priority sectors of Armenian economy. Along with the solution of some socio-economic development, it brings about numerous environmental problems, especially toxic element pollution, which largely influences the safety of agricultural products. In addition, accumulation of toxic elements in agricultural products, mainly in edible parts of plants represents a direct pathway for their penetration into the human food chain. In Armenia, the share of plant origin food in overall diet is significantly high, so estimation of dietary intakes of toxic trace elements via consumption of selected fruits and vegetables are of great importance for observing the underlying health risks. Therefore, the present study was aimed to assess dietary exposure of potentially toxic trace elements through the intake of locally grown fruits and vegetables in Akhtala community (Armenia), where not only mining industry is developed, but also cultivation of fruits and vegetables. Moreover, this investigation represents one of the very first attempts to estimate human dietary exposure of potentially toxic trace elements in the study area. Samples of some commonly grown fruits and vegetables (fig, cornel, raspberry, grape, apple, plum, maize, bean, potato, cucumber, onion, greens) were randomly collected from several home gardens located near mining areas in Akhtala community. The concentration of Cu, Mo, Ni, Cr, Pb, Zn, Hg, As and Cd in samples were determined by using an atomic absorption spectrophotometer (AAS). Precision and accuracy of analyses were guaranteed by repeated analysis of samples against NIST Standard Reference Materials. For a diet study, individual-based approach was used, so the consumption of selected fruits and vegetables was investigated through food frequency questionnaire (FFQ). Combining concentration data with contamination data, the estimated daily intakes (EDI) and cumulative daily intakes were assessed and compared with health-based guidance values (HBGVs). According to the determined concentrations of the studied trace elements in fruits and vegetables, it can be stressed that some trace elements (Cu, Ni, Pb, Zn) among the majority of samples exceeded maximum allowable limits set by international organizations. Meanwhile, others (Cr, Hg, As, Cd, Mo) either did not exceed these limits or still do not have established allowable limits. The obtained results indicated that only for Cu the EDI values exceeded dietary reference intake (0.01 mg/kg/Bw/day) for some investigated fruits and vegetables in decreasing order of potato > grape > bean > raspberry > fig > greens. In contrast to this, for combined consumption of selected fruits and vegetables estimated cumulative daily intakes exceeded reference doses in the following sequence: Zn > Cu > Ni > Mo > Pb. It may be concluded that habitual and combined consumption of the above mentioned fruits and vegetables can pose a health risk to the local population. Hence, further detailed studies are needed for the overall assessment of potential health implications taking into consideration adverse health effects posed by more than one toxic trace element.

Keywords: daily intake, dietary exposure, fruits, trace elements, vegetables

Procedia PDF Downloads 276
240 Executive Function and Attention Control in Bilingual and Monolingual Children: A Systematic Review

Authors: Zihan Geng, L. Quentin Dixon

Abstract:

It has been proposed that early bilingual experience confers a number of advantages in the development of executive control mechanisms. Although the literature provides empirical evidence for bilingual benefits, some studies also reported null or mixed results. To make sense of these contradictory findings, the current review synthesize recent empirical studies investigating bilingual effects on children’s executive function and attention control. The publication time of the studies included in the review ranges from 2010 to 2017. The key searching terms are bilingual, bilingualism, children, executive control, executive function, and attention. The key terms were combined within each of the following databases: ERIC (EBSCO), Education Source, PsycINFO, and Social Science Citation Index. Studies involving both children and adults were also included but the analysis was based on the data generated only by the children group. The initial search yielded 137 distinct articles. Twenty-eight studies from 27 articles with a total of 3367 participants were finally included based on the selection criteria. The selective studies were then coded in terms of (a) the setting (i.e., the country where the data was collected), (b) the participants (i.e., age and languages), (c) sample size (i.e., the number of children in each group), (d) cognitive outcomes measured, (e) data collection instruments (i.e., cognitive tasks and tests), and (f) statistic analysis models (e.g., t-test, ANOVA). The results show that the majority of the studies were undertaken in western countries, mainly in the U.S., Canada, and the UK. A variety of languages such as Arabic, French, Dutch, Welsh, German, Spanish, Korean, and Cantonese were involved. In relation to cognitive outcomes, the studies examined children’s overall planning and problem-solving abilities, inhibition, cognitive complexity, working memory (WM), and sustained and selective attention. The results indicate that though bilingualism is associated with several cognitive benefits, the advantages seem to be weak, at least, for children. Additionally, the nature of the cognitive measures was found to greatly moderate the results. No significant differences are observed between bilinguals and monolinguals in overall planning and problem-solving ability, indicating that there is no bilingual benefit in the cooperation of executive function components at an early age. In terms of inhibition, the mixed results suggest that bilingual children, especially young children, may have better conceptual inhibition measured in conflict tasks, but not better response inhibition measured by delay tasks. Further, bilingual children showed better inhibitory control to bivalent displays, which resembles the process of maintaining two language systems. The null results were obtained for both cognitive complexity and WM, suggesting no bilingual advantage in these two cognitive components. Finally, findings on children’s attention system associate bilingualism with heightened attention control. Together, these findings support the hypothesis of cognitive benefits for bilingual children. Nevertheless, whether these advantages are observable appears to highly depend on the cognitive assessments. Therefore, future research should be more specific about the cognitive outcomes (e.g., the type of inhibition) and should report the validity of the cognitive measures consistently.

Keywords: attention, bilingual advantage, children, executive function

Procedia PDF Downloads 161
239 Novel Numerical Technique for Dusty Plasma Dynamics (Yukawa Liquids): Microfluidic and Role of Heat Transport

Authors: Aamir Shahzad, Mao-Gang He

Abstract:

Currently, dusty plasmas motivated the researchers' widespread interest. Since the last two decades, substantial efforts have been made by the scientific and technological community to investigate the transport properties and their nonlinear behavior of three-dimensional and two-dimensional nonideal complex (dusty plasma) liquids (NICDPLs). Different calculations have been made to sustain and utilize strongly coupled NICDPLs because of their remarkable scientific and industrial applications. Understanding of the thermophysical properties of complex liquids under various conditions is of practical interest in the field of science and technology. The determination of thermal conductivity is also a demanding question for thermophysical researchers, due to some reasons; very few results are offered for this significant property. Lack of information of the thermal conductivity of dense and complex liquids at different parameters related to the industrial developments is a major barrier to quantitative knowledge of the heat flux flow from one medium to another medium or surface. The exact numerical investigation of transport properties of complex liquids is a fundamental research task in the field of thermophysics, as various transport data are closely related with the setup and confirmation of equations of state. A reliable knowledge of transport data is also important for an optimized design of processes and apparatus in various engineering and science fields (thermoelectric devices), and, in particular, the provision of precise data for the parameters of heat, mass, and momentum transport is required. One of the promising computational techniques, the homogenous nonequilibrium molecular dynamics (HNEMD) simulation, is over viewed with a special importance on the application to transport problems of complex liquids. This proposed work is particularly motivated by the FIRST TIME to modify the problem of heat conduction equations leads to polynomial velocity and temperature profiles algorithm for the investigation of transport properties with their nonlinear behaviors in the NICDPLs. The aim of proposed work is to implement a NEMDS algorithm (Poiseuille flow) and to delve the understanding of thermal conductivity behaviors in Yukawa liquids. The Yukawa system is equilibrated through the Gaussian thermostat in order to maintain the constant system temperature (canonical ensemble ≡ NVT)). The output steps will be developed between 3.0×105/ωp and 1.5×105/ωp simulation time steps for the computation of λ data. The HNEMD algorithm shows that the thermal conductivity is dependent on plasma parameters and the minimum value of lmin shifts toward higher G with an increase in k, as expected. New investigations give more reliable simulated data for the plasma conductivity than earlier known simulation data and generally the plasma λ0 by 2%-20%, depending on Γ and κ. It has been shown that the obtained results at normalized force field are in satisfactory agreement with various earlier simulation results. This algorithm shows that the new technique provides more accurate results with fast convergence and small size effects over a wide range of plasma states.

Keywords: molecular dynamics simulation, thermal conductivity, nonideal complex plasma, Poiseuille flow

Procedia PDF Downloads 253
238 An Efficient Process Analysis and Control Method for Tire Mixing Operation

Authors: Hwang Ho Kim, Do Gyun Kim, Jin Young Choi, Sang Chul Park

Abstract:

Since tire production process is very complicated, company-wide management of it is very difficult, necessitating considerable amounts of capital and labors. Thus, productivity should be enhanced and maintained competitive by developing and applying effective production plans. Among major processes for tire manufacturing, consisting of mixing component preparation, building and curing, the mixing process is an essential and important step because the main component of tire, called compound, is formed at this step. Compound as a rubber synthesis with various characteristics plays its own role required for a tire as a finished product. Meanwhile, scheduling tire mixing process is similar to flexible job shop scheduling problem (FJSSP) because various kinds of compounds have their unique orders of operations, and a set of alternative machines can be used to process each operation. In addition, setup time required for different operations may differ due to alteration of additives. In other words, each operation of mixing processes requires different setup time depending on the previous one, and this kind of feature, called sequence dependent setup time (SDST), is a very important issue in traditional scheduling problems such as flexible job shop scheduling problems. However, despite of its importance, there exist few research works dealing with the tire mixing process. Thus, in this paper, we consider the scheduling problem for tire mixing process and suggest an efficient particle swarm optimization (PSO) algorithm to minimize the makespan for completing all the required jobs belonging to the process. Specifically, we design a particle encoding scheme for the considered scheduling problem, including a processing sequence for compounds and machine allocation information for each job operation, and a method for generating a tire mixing schedule from a given particle. At each iteration, the coordination and velocity of particles are updated, and the current solution is compared with new solution. This procedure is repeated until a stopping condition is satisfied. The performance of the proposed algorithm is validated through a numerical experiment by using some small-sized problem instances expressing the tire mixing process. Furthermore, we compare the solution of the proposed algorithm with it obtained by solving a mixed integer linear programming (MILP) model developed in previous research work. As for performance measure, we define an error rate which can evaluate the difference between two solutions. As a result, we show that PSO algorithm proposed in this paper outperforms MILP model with respect to the effectiveness and efficiency. As the direction for future work, we plan to consider scheduling problems in other processes such as building, curing. We can also extend our current work by considering other performance measures such as weighted makespan or processing times affected by aging or learning effects.

Keywords: compound, error rate, flexible job shop scheduling problem, makespan, particle encoding scheme, particle swarm optimization, sequence dependent setup time, tire mixing process

Procedia PDF Downloads 240
237 Non-Time and Non-Sense: Temporalities of Addiction for Heroin Users in Scotland

Authors: Laura Roe

Abstract:

This study draws on twelve months of ethnographic fieldwork conducted in 2017 with heroin and poly-substance users in Scotland and explores experiences of time and temporality as factors in continuing drug use. The research largely took place over the year in which drug-related deaths in Scotland reached a record high, and were statistically recorded as the highest in Europe. This qualitative research is therefore significant in understanding both evolving patterns of drug use and the experiential lifeworlds of those who use heroin and other substances in high doses. Methodologies included participant observation, structured and semi-structured interviews, and unstructured conversations with twenty-two regular participants. The fieldwork was conducted in two needle exchanges, a community recovery group and in the community. The initial aim of the study was to assess evolving patterns of drug preferences in order to explore a clinical and user-reported rise in the use of novel psychoactive substances (NPS), which are typically considered to be highly potent, synthetic substances, often available at a low cost. It was found, however, that while most research participants had experimented with NPS with varying intensity, those who used every day regularly consumed heroin, methadone, and alcohol with benzodiazepines such as diazepam or anticonvulsants such as gabapentin. The research found that many participants deliberately pursued the non-fatal effects of overdose, aiming to induce states of dissociation, detachment and uneven consciousness, and did so by both mixing substances and experimenting with novel modes of consumption. Temporality was significant in the decision to consume cocktails of substances, as users described wishing to sever themselves from time; entering into states of ‘non-time’ and insensibility through specific modes of intoxication. Time and temporality similarly impacted other aspects of addicted life. Periods of attempted abstinence witnessed a slowing of time’s passage that was tied to affective states of boredom and melancholy, in addition to a disruptive return of distressing and difficult memories. Abject past memories frequently dominated and disrupted the present, which otherwise could be highly immersive due to the time and energy-consuming nature of seeking drugs while in financial difficulty. There was furthermore a discordance between individual user temporalities and the strict time-based regimes of recovery services and institutional bodies, and the study aims to highlight the impact of such a disjuncture on the efficacy of treatment programs. Many participants had difficulty in adhering to set appointments or temporal frameworks due to their specific temporal situatedness. Overall, exploring increasing tendencies of heroin users in Scotland towards poly-substance use, this study draws on experiences and perceptions of time, analysing how temporality comes to bear on the ways drugs are sought and consumed, and how recovery is imagined and enacted. The study attempts to outline the experiential, intimate and subjective worlds of heroin and poly-substance users while explicating the structural and historical factors that shape them.

Keywords: addiction, poly-substance use, temporality, timelessness

Procedia PDF Downloads 94
236 The Traditional Ceramics Value in the Middle East

Authors: Abdelmessih Malak Sadek Labib

Abstract:

Ceramic materials are known for their stability in harsh environments and excellent electrical, mechanical, and thermal properties. They have been widely used in various applications despite the emergence of new materials such as plastics and composites. However, ceramics are often brittle, which can lead to catastrophic failure. The fragility of ceramics and the mechanisms behind their failure have been a topic of extensive research, particularly in load-bearing applications like veneers. Porcelain, a type of traditional pottery, is commonly used in such applications. Traditional pottery consists of clay, silica, and feldspar, and the presence of quartz in the ceramic body can lead to microcracks and stress concentrations. The mullite hypothesis suggests that the strength of porcelain can be improved by increasing the interlocking of mullite needles in the ceramic body. However, there is a lack of reports on Young's moduli in the literature, leading to erroneous conclusions about the mechanical behavior of porcelain. This project aims to investigate the role of quartz and mullite on the mechanical strength of various porcelains while considering factors such as particle size, flexural strength, and fractographic forces. Research Aim: The aim of this research project is to assess the role of quartz and mullite in enhancing the mechanical strength of different porcelains. The project will also explore the effect of reducing particle size on the properties of porcelain, as well as investigate flexural strength and fractographic techniques. Methodology: The methodology for this project involves using scientific expressions and a mix of modern English to ensure the understanding of all attendees. It will include the measurement of Young's modulus and the evaluation of the mechanical behavior of porcelains through various experimental techniques. Findings: The findings of this study will provide a realistic assessment of the role of quartz and mullite in strengthening and reducing the fragility of porcelain. The research will also contribute to a better understanding of the mechanical behavior of ceramics, specifically in load-bearing applications. Theoretical Importance: The theoretical importance of this research lies in its contribution to the understanding of the factors influencing the mechanical strength and fragility of ceramics, particularly porcelain. By investigating the interplay between quartz, mullite, and other variables, this study will enhance our knowledge of the properties and behavior of traditional ceramics. Data Collection and Analysis Procedures: Data for this research will be collected through experiments involving the measurement of Young's modulus and other mechanical properties of porcelains. The effects of quartz, mullite, particle size, flexural strength, and fractographic forces will be examined and analyzed using appropriate statistical techniques and fractographic analysis. Questions Addressed: This research project aims to address the following questions: (1) How does the presence of quartz and mullite affect the mechanical strength of porcelain? (2) What is the impact of reducing particle size on the properties of porcelain? (3) How do flexural strength and fractographic forces influence the behavior of porcelains? Conclusion: In conclusion, this research project aims to enhance the understanding of the role of quartz and mullite in strengthening and reducing the fragility of porcelain. By investigating the mechanical properties of porcelains and considering factors such as particle size, flexural strength, and fractographic forces, this study will contribute to the knowledge of traditional ceramics and their potential applications. The findings will have practical implications for the use of ceramics in various fields.

Keywords: stability, harsh environments, electrical, techniques, mechanical disadvantages, materials

Procedia PDF Downloads 43
235 Evaluation of Wheat Varieties for Water Use Efficiency under Staggering Sowing Times and Variable Irrigation Regimes under Timely and Late Sown Conditions

Authors: Vaibhav Baliyan, S. S. Parihar

Abstract:

With the rise in temperature during reproductive phase and moisture stress, winter wheat yields are likely to decrease because of limited plant growth, higher rate of night respiration, higher spikelet sterility or number of grains per spike and restricted embryo development thereby reducing grain number. Crop management practices play a pivotal role in minimizing adverse effects of terminal heat stress on wheat production. Amongst various agronomic management practices, adjusting sowing date, crop cultivars and irrigation scheduling have been realized to be simple yet powerful, implementable and eco-friendly mitigation strategies to sustain yields under elevated temperature conditions. Taking into account, large variability in wheat production in space and time, a study was conducted to identify the suitable wheat varieties under both early and late planting with suitable irrigation schedule for minimizing terminal heat stress effect and thereby improving wheat production. Experiments were conducted at research farms of Indian Agricultural Research Institute, New Delhi, India, separately for timely and late sown conditions with suitable varieties with staggering dates of sowing from 1st November to 30th November in case of timely sown and from 1st December to 31st December for late sown condition. The irrigation schedule followed for both the experiments were 100% of ETc (evapotranspiration of crop), 80% of ETc and 60% of ETc. Results of the timely sown experiment indicated that 1st November sowing resulted in higher grain yield followed by 10th November. However, delay in sowing thereafter resulted in gradual decrease in yield and the maximum reduction was noticed under 30th November sowing. Amongst the varieties, HD3086 produced higher grain yield compared to other varieties. Irrigation applied based on 100% of ETc gave higher yield comparable to 80% of ETc but both were significantly higher than 60% of ETc. It was further observed that even liberal irrigation under 100% of ETc could not compensate the yield under delayed sowing suggesting that rise in temperature beyond January adversely affected the growth and development of crop as well as forced maturity resulting in significant reduction of yield attributing characters due to terminal heat stress. Similar observations were recorded under late sown experiment too. Planting on 1st December along with 100% ETc of irrigation schedule resulted in significantly higher grain yield as compared to other dates and irrigation regimes. Further, it was observed that reduction in yield under late sown conditions was significantly large than the timely sown conditions irrespective of the variety grown and irrigation schedule followed. Delayed sowing resulted in reducing crop growth period and forced maturity in turn led to significant deterioration in all the yield attributing characters and there by reduction in yield suggesting that terminal heat stress had greater impact on yield under late sown crop than timely sown due to temperature rise coinciding with reproductive phase of the crop.

Keywords: climate, irrigation, mitigation, wheat

Procedia PDF Downloads 96
234 Investigating the Thermal Comfort Properties of Mohair Fabrics

Authors: Adine Gericke, Jiri Militky, Mohanapriya Venkataraman

Abstract:

Mohair, obtained from the Angora goat, is a luxury fiber and recognized as one of the best quality natural fibers. Expansion of the use of mohair into technical and functional textile products necessitates the need for a better understanding of how the use of mohair in fabrics will impact on its thermo-physiological comfort related properties. Despite its popularity, very little information is available on the quantification of the thermal and moisture management properties of mohair fabrics. This study investigated the effect of fibrous matter composition and fabric structural parameters on conductive and convective heat transfers to attain more information on the thermal comfort properties of mohair fabrics. Dry heat transfer through textiles may involve conduction through the fibrous phase, radiation through fabric interstices and convection of air within the structure. Factors that play a major role in heat transfer by conduction are fabric areal density (g/m2) and derived quantities such as cover factor and porosity. Convective heat transfer through fabrics is found in environmental conditions where there is wind-flow or the object is moving (e.g. running or walking). The thermal comfort properties of mohair fibers were objectively evaluated firstly in comparison with other textile fibers and secondly in a variety of fabric structures. Two sample sets were developed for this purpose, with fibre content, yarn structure and fabric design as main variables. SEM and microscopic images were obtained to closely examine the physical structures of the fibers and fabrics. Thermal comfort properties such as thermal resistance and thermal conductivity, as well as fabric thickness, were measured on the well-known Alambeta test instrument. Clothing insulation (clo) was calculated from the above. The thermal properties of fabrics under heat convection was evaluated using a laboratory model device developed at the Technical University of Liberec (referred to as the TP2-instrument). The effects of the different variables on fabric thermal comfort properties were analyzed statistically using TIBCO Statistica Software. The results showed that fabric structural properties, specifically sample thickness, played a significant role in determining the thermal comfort properties of the fabrics tested. It was found that regarding thermal resistance related to conductive heat flow, the effect of fiber type was not always statistically significant, probably as a result of the amount of trapped air within the fabric structure. The very low thermal conductivity of air, compared to that of the fibers, had a significant influence on the total conductivity and thermal resistance of the samples. This was confirmed by the high correlation of these factors with sample thickness. Regarding convective heat flow, the most important factor influencing the ability of the fabric to allow dry heat to move through the structure, was again fabric thickness. However, it would be wrong to totally disregard the effect of fiber composition on the thermal resistance of textile fabrics. In this study, the samples containing mohair or mohair/wool were consistently thicker than the others even though weaving parameters were kept constant. This can be ascribed to the physical properties of the mohair fibers that renders it exceptionally well towards trapping air among fibers (in a yarn) as well as among yarns (inside a fabric structure). The thicker structures trap more air to provide higher thermal insulation, but also prevent the free flow of air that allow thermal convection.

Keywords: mohair fabrics, convective heat transfer, thermal comfort properties, thermal resistance

Procedia PDF Downloads 126
233 Hydrogeomatic System for the Economic Evaluation of Damage by Flooding in Mexico

Authors: Alondra Balbuena Medina, Carlos Diaz Delgado, Aleida Yadira Vilchis Fránces

Abstract:

In Mexico, each year news is disseminated about the ravages of floods, such as the total loss of housing, damage to the fields; the increase of the costs of the food, derived from the losses of the harvests, coupled with health problems such as skin infection, etc. In addition to social problems such as delinquency, damage in education institutions and the population in general. The flooding is a consequence of heavy rains, tropical storms and or hurricanes that generate excess water in drainage systems that exceed its capacity. In urban areas, heavy rains can be one of the main factors in causing flooding, in addition to excessive precipitation, dam breakage, and human activities, for example, excessive garbage in the strainers. In agricultural areas, these can hardly achieve large areas of cultivation. It should be mentioned that for both areas, one of the significant impacts of floods is that they can permanently affect the livelihoods of many families, cause damage, for example in their workplaces such as farmlands, commercial or industry areas and where services are provided. In recent years, Information and Communication Technologies (ICT) have had an accelerated development, being reflected in the growth and the exponential evolution of the innovation giving; as a result, the daily generation of new technologies, updates, and applications. Innovation in the development of Information Technology applications has impacted on all areas of human activity. They influence all the orders of life of individuals, reconfiguring the way of perceiving and analyzing the world such as, for instance, interrelating with people as individuals and as a society, in the economic, political, social, cultural, educational, environmental, etc. Therefore the present work describes the creation of a system of calculation of flood costs for housing areas, retail establishments and agricultural areas from the Mexican Republic, based on the use and application of geotechnical tools being able to be useful for the benefit of the sectors of public, education and private. To generate analysis of hydrometereologic affections and with the obtained results to realize the Geoinformatics tool was constructed from two different points of view: the geoinformatic (design and development of GIS software) and the methodology of flood damage validation in order to integrate a tool that provides the user the monetary estimate of the effects caused by the floods. With information from the period 2000-2014, the functionality of the application was corroborated. For the years 2000 to 2009 only the analysis of the agricultural and housing areas was carried out, incorporating for the commercial establishment's information of the period 2010 - 2014. The method proposed for the resolution of this research project is a fundamental contribution to society, in addition to the tool itself. Therefore, it can be summarized that the problems that are in the physical-geographical environment, conceiving them from the point of view of the spatial analysis, allow to offer different alternatives of solution and also to open up slopes towards academia and research.

Keywords: floods, technological innovation, monetary estimation, spatial analysis

Procedia PDF Downloads 195