Search results for: stochastic matrix
1077 Proportionally Damped Finite Element State-Space Model of Composite Laminated Plate with Localized Interface Degeneration
Authors: Shi Qi Koo, Ahmad Beng Hong Kueh
Abstract:
In the present work, the finite element formulation for the investigation of the effects of a localized interfacial degeneration on the dynamic behavior of the [90˚/0˚] laminated composite plate employing the state-space technique is performed. The stiffness of the laminate is determined by assembling the stiffnesses of sub-elements. This includes an introduction of an interface layer adopting the virtually zero-thickness formulation to model the interfacial degeneration. Also, the kinematically consistent mass matrix and proportional damping have been formulated to complete the free vibration governing expression. To simulate the interfacial degeneration of the laminate, the degenerated areas are defined from the center propagating outwards in a localized manner. It is found that the natural frequency, damped frequency and damping ratio of the plate decreases as the degenerated area of the interface increases. On the contrary, the loss factor increases correspondingly.Keywords: dynamic finite element, localized interface degeneration, proportional damping, state-space modeling
Procedia PDF Downloads 3001076 Role of Dispersion of Multiwalled Carbon Nanotubes on Compressive Strength of Cement Paste
Authors: Jyoti Bharj, Sarabjit Singh, Subhash Chander, Rabinder Singh
Abstract:
The outstanding mechanical properties of Carbon Nanotubes (CNTs) have generated great interest for their potential as reinforcements in high performance cementitious composites. The main challenge in research is the proper dispersion of carbon nanotubes in the cement matrix. The present work discusses the role of dispersion of Multiwall Carbon Nanotubes (MWCNTs) on the compressive strength characteristics of hydrated Portland IS 1489 cement paste. Cement-MWCNT composites with different mixing techniques were prepared by adding 0.2% (by weight) of MWCNTs to Portland IS 1489 cement. Rectangle specimens of size approximately 40mm × 40mm ×160mm were prepared and curing of samples was done for 7, 14, 28, and 35 days. An appreciable increase in compressive strength with both techniques; mixture of MWCNTs with cement in powder form and mixture of MWCNTs with cement in hydrated form 7 to 28 days of curing time for all the samples was observed.Keywords: carbon nanotubes, Portland cement, composite, compressive strength
Procedia PDF Downloads 4251075 A Comprehensive Study on Cast NiTi and Ti64 Alloys for Biomedical Applications
Authors: Khaled Mohamed Ibrahim
Abstract:
A comprehensive study on two biomaterials of NiTi and Ti-6Al-4V (Ti64) was done. Those materials were cast using vacuum arc remelting technique. As-cast structure of Ni-Ti alloy consists of NiTi matrix and some fine precipitates of Ni4Ti3. Ti-6Al-4V alloy showed a structure composed of equiaxed β grains and varied α-phase morphologies. Maximum ultimate compressive strength and reduction in height of 2042 MPa of 18%, respectively, were reported for the cast Ti64 alloy. However, minimum ultimate compressive strength of 1804 MPa and low reduction in height of 3% were obtained for the cast NiTi alloy. Wear rate of both Ni-Ti and Ti-6Al-4V alloys significantly increased at saline solution (0.9% NaCl) condition as compared to dry testing condition. Saline solution harmed the wear resistance of about 2 to 4 times compared to the dry condition. Corrosion rate of NiTi alloy at saline solution (0.9% NaCl) was (0.00038 mm/yr) is almost three times the value of Ti64 alloy (0.000171 mm/yr). The corrosion rate of Ti64 in SBF (0.00024 mm/yr) was lower than Ni-Ti (0.0003 mm/yr).Keywords: NiTi, Ti64, vacuum casting, biomaterials
Procedia PDF Downloads 841074 Analytical Terahertz Characterization of In0.53Ga0.47As Transistors and Homogenous Diodes
Authors: Abdelmadjid Mammeri, Fatima Zohra Mahi, Luca Varani, H. Marinchoi
Abstract:
We propose an analytical model for the admittance and the noise calculations of the InGaAs transistor and diode. The development of the small-signal admittance takes into account the longitudinal and transverse electric fields through a pseudo two-dimensional approximation of the Poisson equation. The frequency-dependent of the small-signal admittance response is determined by the total currents and the potentials matrix relation between the gate and the drain terminals. The noise is evaluated by using the real part of the transistor/diode admittance under a small-signal perturbation. The analytical results show that the admittance spectrum exhibits a series of resonant peaks corresponding to the excitation of plasma waves. The appearance of the resonance is discussed and analyzed as functions of the channel length and the temperature. The model can be used, on one hand; to control the appearance of the plasma resonances, and on other hand; can give significant information about the noise frequency dependence in the InGaAs transistor and diode.Keywords: InGaAs transistors, InGaAs diode, admittance, resonant peaks, plasma waves, analytical model
Procedia PDF Downloads 3191073 Effects of Stirring Time and Reinforcement Preheating on the Porosity of Particulate Periwinkle Shell-Aluminium 6063 Metal Matrix Composite (PPS-ALMMC) Produced by Two-Step Casting
Authors: Reginald Umunakwe, Obinna Chibuzor Okoye, Uzoma Samuel Nwigwe, Damilare John Olaleye, Akinlabi Oyetunji
Abstract:
The potential for the development of PPS-AlMMCs as light weight material for industrial applications was investigated. Periwinkle shells were milled and the density of the particles determined. Particulate periwinkle shell of particle size 75µm was used to reinforce aluminium 6063 alloy at 10wt% filler loading using two-step stir casting technique. The composite materials were stirred for five minutes in a semi-solid state and the stirring time varied as 3, 6 and 9 minutes at above the liquidus temperature. A specimen was also produced with pre-heated filler. The effect of variation in stirring time and reinforcement pre-heating on the porosity of the composite materials was investigated. The results of the analysis show that a composition of reinforcement pre-heating and stirring for 3 minutes produced a composite material with the lowest porosity of 1.05%.Keywords: composites, periwinkle shell, two-step casting, porosity
Procedia PDF Downloads 3531072 Assessing the Bioactivity and Cell Viability of Apatite-Wollastonite Glass Ceramics Prepared via Spray Pyrolysis
Authors: Andualem Workie
Abstract:
In this study, we examined the sinterability and bioactivity of MgO-SiO₂-P₂O₅-CaO-CaF₂ glass compositions created through spray pyrolysis. We evaluated the bioactivity of the materials by immersing them for varying periods of time in simulated bodily fluid (SBF) and found that bioactivity was related to the sintering temperature and soaking time. The material's pH value during immersion in SBF was within the range of 7.4-8.2, which is below 8.5 and improves compatibility and reduces toxicity in biological applications. We used X-ray diffraction and scanning electron microscopy to determine the phase compositions and morphologies of the samples and found that the 1100°C sintered A-W GC sample exhibited the highest bioactivity after soaking in SBF. This sample was dominated by fluorapatite, wollastonite, and whitlockite crystals scattered throughout the glass matrix. The crystallinity (%) of the A-W GC increased as its bioactivity improved, making it more suitable for use in pharmaceutical applications. We also conducted a cytotoxicity test on A-W GC samples sintered at different temperatures and found that the glass-ceramics were non-toxic to MC3T3-E1 cells at all extraction concentrations, except for those sintered at 700°C at concentrations of 250, 200, and 150 mg/ml where cell viability (%) was below the threshold of 70%.Keywords: apatite wollastonite glass ceramics, bioactivity, calcination, cell viability
Procedia PDF Downloads 1091071 Robust Numerical Scheme for Pricing American Options under Jump Diffusion Models
Authors: Salah Alrabeei, Mohammad Yousuf
Abstract:
The goal of option pricing theory is to help the investors to manage their money, enhance returns and control their financial future by theoretically valuing their options. However, most of the option pricing models have no analytical solution. Furthermore, not all the numerical methods are efficient to solve these models because they have nonsmoothing payoffs or discontinuous derivatives at the exercise price. In this paper, we solve the American option under jump diffusion models by using efficient time-dependent numerical methods. several techniques are integrated to reduced the overcome the computational complexity. Fast Fourier Transform (FFT) algorithm is used as a matrix-vector multiplication solver, which reduces the complexity from O(M2) into O(M logM). Partial fraction decomposition technique is applied to rational approximation schemes to overcome the complexity of inverting polynomial of matrices. The proposed method is easy to implement on serial or parallel versions. Numerical results are presented to prove the accuracy and efficiency of the proposed method.Keywords: integral differential equations, jump–diffusion model, American options, rational approximation
Procedia PDF Downloads 1261070 Identification of Lean Implementation Hurdles in Indian Industries
Authors: Bhim Singh
Abstract:
Due to increased pressure from global competitors, manufacturing organizations are switching over to lean philosophies from traditional mass production. Lean manufacturing is a manufacturing philosophy which focuses on elimination of various types of wastes and creates maximum value for the end customers. Lean thinking aims to produce high quality products and services at the lowest possible cost with maximum customer responsiveness. Indian Industry is facing lot of problems in this transformation from traditional mass production to lean production. Through this paper an attempt has been made to identify various lean implementation hurdles in Indian industries with the help of a structured survey. Identified hurdles are grouped with the help of factor analysis and rated by calculating descriptive statistics. To show the effect of lean implementation hurdles a hypothesis “Organizations having higher level of lean implementation hurdles will have poor (negative) performance” has been postulated and tested using correlation matrix between performance parameters of the organizations and identified hurdles. The findings of the paper will be helpful to prepare road map to identify and eradicate the lean implementation hurdles.Keywords: factor analysis, global competition, lean implementation, lean hurdles
Procedia PDF Downloads 2541069 Characterization of Cement Mortar Based on Fine Quartz
Authors: K. Arroudj, M. Lanez, M. N. Oudjit
Abstract:
The introduction of siliceous mineral additions in cement production allows, in addition to the ecological and economic gain, improvement of concrete performance. This improvement is mainly due to the fixing of Portlandite, released during the hydration of cement, by fine siliceous, forming denser calcium silicate hydrates and therefore a more compact cementitious matrix. This research is part of the valuation of the Dune Sand (DS) in the cement industry in Algeria. The high silica content of DS motivated us to study its effect, at ground state, on the properties of mortars in fresh and hardened state. For this purpose, cement pastes and mortars based on ground dune sand (fine quartz) has been analyzed with a replacement to cement of 15%, 20% and 25%. This substitution has reduced the amount of heat of hydration and avoids any risk of initial cracking. In addition, the grinding of the dune sand provides amorphous thin populations adsorbed at the surface of the crystal particles of quartz. Which gives to ground quartz pozzolanic character. This character results an improvement of mechanical strength of mortar (66 MPa in the presence of 25% of ground quartz).Keywords: mineralogical structure, pozzolanic reactivity, Quartz, mechanical strength
Procedia PDF Downloads 2891068 Application of Lean Manufacturing Tools in Hot Asphalt Production
Authors: S. Bayona, J. Nunez, D. Paez, C. Diaz
Abstract:
The application of Lean manufacturing tools continues to be an effective solution for increasing productivity, reducing costs and eliminating waste in the manufacture of goods and services. This article analyzes the production process of a hot asphalt manufacturing company from an administrative and technical perspective. Three main phases were analyzed, the first phase was related to the determination of the risk priority number of the main operations in asphalt mix production process by an FMEA (Failure Mode Effects Analysis), in the second phase the Value Stream Mapping (VSM) of the production line was performed and in the third phase a SWOT (Strengths, Weaknesses Opportunities, Threats) matrix was constructed. Among the most valued failure modes were the lack training of workers in occupational safety and health issues, the lack of signaling and classification of granulated material, and the overweight of vehicles loaded. The analysis of the results in the three phases agree on the importance of training operational workers, improve communication with external actors in order to minimize delays in material orders and strengthen control suppliers.Keywords: asphalt, lean manufacturing, productivity, process
Procedia PDF Downloads 1211067 Nanoindentation Behavior and Physical Properties of Polyvinyl Chloride /Styrene Co-Maleic Anhydride Blend Reinforced by Nano-Bentonite
Authors: Dalia Elsawy Abulyazied, Samia Mohamad Mokhtar, Ahmed Magdy Motawie
Abstract:
This article studies the effects of nano-bentonite on the structure and properties of polymer blends nanocomposites, based on polyvinyl chloride (PVC) and styrene co-maleic anhydride (SMA) blend. Modification of Egyptian bentonite (EB) is carried out using organo-modifier namely; octadecylamine (ODA). Octadecylamine bentonite (ODA-B) is characterized using FTIR, XRD and TEM. Nanocomposites of PVC/SMA/ODA-B are prepared by solution intercalation polymerization from 0.50 up to 5 phr. The nanocomposites are characterized by XRD and TEM. Thermal behavior of the nanocomposites is studied. The effect of different content of ODA-B on the nano-mechanical properties is investigated by a nano-indentation test method. Also the swelling and electrical properties of the nanocomposites are measured. The morphology of the nanocomposites shows that ODA-B achieved good dispersion in the PVC/SMA matrix. The thermal stability of the nanocomposites is enhanced due to the presence of the ODA-B. Incorporation of 0.5, 1, 3 and 5 phr. ODA-B into the PVC/SMA blends results in an improvement in nano-hardness of 16%, 76%, 92%, and 68% respectively. The elastic modulus increased by 37% from 4.59 GPa for unreinforced PVC/SMA blend to 6.30 GPa for 3 phr. The cross-link density and the electrical conductivity of the nanocomposites are increased with increasing the content of ODA-B.Keywords: PVC, SMA, nanocomposites, nano-bentonite, nanoindentation, crosslink density
Procedia PDF Downloads 4881066 Damage in Cementitious Materials Exposed to Sodium Chloride Solution and Thermal Cycling: The Effect of Using Supplementary Cementitious Materials
Authors: Fadi Althoey, Yaghoob Farnam
Abstract:
Sodium chloride (NaCl) can interact with the tricalcium aluminate (C3A) and its hydrates in concrete matrix. This interaction can result in formation of a harmful chemical phase as the temperature changes. It is thought that this chemical phase is embroiled in the premature concrete deterioration in the cold regions. This work examines the potential formation of the harmful chemical phase in various pastes prepared by using different types of ordinary portland cement (OPC) and supplementary cementitious materials (SCMs). The quantification of the chemical phase was done by using a low temperature differential scanning calorimetry. The results showed that the chemical phase formation can be reduced by using Type V cement (low content of C3A). The use of SCMs showed different behaviors on the formation of the chemical phase. Slag and Class F fly ash can reduce the chemical phase by the dilution of cement whereas silica fume can reduce the amount of the chemical phase by dilution and pozzolanic activates. Interestingly, the use of Class C fly ash has a negative effect on concrete exposed to NaCl through increasing the formation of the chemical phase.Keywords: concrete, damage, chemcial phase, NaCl, SCMs
Procedia PDF Downloads 1461065 Polymer-Nanographite Nanocomposites for Biosensor Applications
Authors: Payal Mazumdar, Sunita Rattan, Monalisa Mukherjee
Abstract:
Polymer nanocomposites are a special class of materials having unique properties and wide application in diverse areas such as EMI shielding, sensors, photovoltaic cells, membrane separation properties, drug delivery etc. Recently the nanocomposites are being investigated for their use in biomedical fields as biosensors. Though nanocomposites with carbon nanoparticles have received worldwide attention in the past few years, comparatively less work has been done on nanographite although it has in-plane electrical, thermal and mechanical properties comparable to that of carbon nanotubes. The main challenge in the fabrication of these nanocomposites lies in the establishment of homogeneous dispersion of nanographite in polymer matrix. In the present work, attempts have been made to synthesize the nanocomposites of polystyrene and nanographite using click chemistry. The polymer and the nanographite are functionalized prior to the formation of nanocomposites. The polymer, polystyrene, was functionalized with alkyne moeity and nanographite with azide moiety. The fabricating of the nanocomposites was accomplished through click chemistry using Cu (I)-catalyzed Huisgen dipolar cycloaddition. The functionalization of filler and polymer was confirmed by NMR and FTIR. The nanocomposites formed by the click chemistry exhibit better electrical properties and the sensors are evaluated for their application as biosensors.Keywords: nanocomposites, click chemistry, nanographite, biosensor
Procedia PDF Downloads 3121064 Is Electricity Consumption Stationary in Turkey?
Authors: Eyup Dogan
Abstract:
The number of research articles analyzing the integration properties of energy variables has rapidly increased in the energy literature for about a decade. The stochastic behaviors of energy variables are worth knowing due to several reasons. For instance, national policies to conserve or promote energy consumption, which should be taken as shocks to energy consumption, will have transitory effects in energy consumption if energy consumption is found to be stationary in one country. Furthermore, it is also important to know the order of integration to employ an appropriate econometric model. Despite being an important subject for applied energy (economics) and having a huge volume of studies, several known limitations still exist with the existing literature. For example, many of the studies use aggregate energy consumption and national level data. In addition, a huge part of the literature is either multi-country studies or solely focusing on the U.S. This is the first study in the literature that considers a form of energy consumption by sectors at sub-national level. This research study aims at investigating unit root properties of electricity consumption for 12 regions of Turkey by four sectors in addition to total electricity consumption for the purpose of filling the mentioned limits in the literature. In this regard, we analyze stationarity properties of 60 cases . Because the use of multiple unit root tests make the results robust and consistent, we apply Dickey-Fuller unit root test based on Generalized Least Squares regression (DFGLS), Phillips-Perron unit root test (PP) and Zivot-Andrews unit root test with one endogenous structural break (ZA). The main finding of this study is that electricity consumption is trend stationary in 7 cases according to DFGLS and PP, whereas it is stationary process in 12 cases when we take into account the structural change by applying ZA. Thus, shocks to electricity consumption have transitory effects in those cases; namely, agriculture in region 1, region 4 and region 7, industrial in region 5, region 8, region 9, region 10 and region 11, business in region 4, region 7 and region 9, total electricity consumption in region 11. Regarding policy implications, policies to decrease or stimulate the use of electricity have a long-run impact on electricity consumption in 80% of cases in Turkey given that 48 cases are non-stationary process. On the other hand, the past behavior of electricity consumption can be used to predict the future behavior of that in 12 cases only.Keywords: unit root, electricity consumption, sectoral data, subnational data
Procedia PDF Downloads 4161063 Effect of Vesicular Arbuscular mycorrhiza on Phytoremedial Potential and Physiological Changes in Solanum melongena Plants Grown under Heavy Metal Stress
Authors: Ritu Chaturvedi, Mayank Varun, M. S. Paul
Abstract:
Heavy metal contamination of soil is a growing area of concern since the soil is the matrix that supports flora and impacts humans directly. Phytoremediation of contaminated sites is gaining popularity due to its cost effectiveness and solar driven nature. Some hyperaccumulators have been identified for their potential. Metal-accumulating plants have various mechanisms to cope up with stress and one of them is increasing antioxidative capacity. The aim of this research is to assess the effect of Vesicular arbuscular mycorrhiza (VAM) application on the phytoremedial potential of Solanum melongena (Eggplant) and level of photosynthetic pigments along with antioxidative enzymes. Results showed that VAM application increased shoot length, root proliferation pattern of plants. The level of photosynthetic pigments, proline, SOD, CAT, APX altered significantly in response to heavy metal treatment. In conclusion, VAM increased the uptake of heavy metals which lead to the activation of the defense system in plants for scavenging free radicals.Keywords: heavy metal, phytoextraction, phytostabilization, reactive oxygen species
Procedia PDF Downloads 2771062 Microwave Transmission through Metamaterial Based on Permalloy Flakes under Magnetic Resonance and Antiresonance Conditions
Authors: Anatoly B. Rinkevich, Eugeny A. Kuznetsov, Yuri I. Ryabkov
Abstract:
Transmission of electromagnetic waves through a plate of metamaterial based on permalloy flakes and reflection from the plate is investigated. The metamaterial is prepared of permalloy flakes sized from few to 50μ placed into epoxy-amine matrix. Two series of metamaterial samples are under study with the volume portion of permalloy particles 15% and 30%. There is no direct electrical contact between permalloy particles. Microwave measurements have been carried out at frequencies of 12 to 30 GHz in magnetic fields up to 12 kOe. Sharp decrease of transmitted wave is observed under ferromagnetic resonance condition caused by absorption. Under magnetic antiresonance condition, in opposite, maximum of reflection coefficient is observed at frequencies exceeding 30 GHz. For example, for metamaterial sample with the volume portion of permalloy of 30%, the variation of reflection coefficient in magnetic field reaches 300%. These high variations are of interest to develop magnetic field driven microwave devices. Magnetic field variations of refractive index are also estimated.Keywords: ferromagnetic resonance, magnetic antiresonance, microwave metamaterials, permalloy flakes, transmission and reflection coefficients
Procedia PDF Downloads 1471061 Elastohydrodynamic Lubrication Study Using Discontinuous Finite Volume Method
Authors: Prawal Sinha, Peeyush Singh, Pravir Dutt
Abstract:
Problems in elastohydrodynamic lubrication have attracted a lot of attention in the last few decades. Solving a two-dimensional problem has always been a big challenge. In this paper, a new discontinuous finite volume method (DVM) for two-dimensional point contact Elastohydrodynamic Lubrication (EHL) problem has been developed and analyzed. A complete algorithm has been presented for solving such a problem. The method presented is robust and easily parallelized in MPI architecture. GMRES technique is implemented to solve the matrix obtained after the formulation. A new approach is followed in which discontinuous piecewise polynomials are used for the trail functions. It is natural to assume that the advantages of using discontinuous functions in finite element methods should also apply to finite volume methods. The nature of the discontinuity of the trail function is such that the elements in the corresponding dual partition have the smallest support as compared with the Classical finite volume methods. Film thickness calculation is done using singular quadrature approach. Results obtained have been presented graphically and discussed. This method is well suited for solving EHL point contact problem and can probably be used as commercial software.Keywords: elastohydrodynamic, lubrication, discontinuous finite volume method, GMRES technique
Procedia PDF Downloads 2601060 EnumTree: An Enumerative Biclustering Algorithm for DNA Microarray Data
Authors: Haifa Ben Saber, Mourad Elloumi
Abstract:
In a number of domains, like in DNA microarray data analysis, we need to cluster simultaneously rows (genes) and columns (conditions) of a data matrix to identify groups of constant rows with a group of columns. This kind of clustering is called biclustering. Biclustering algorithms are extensively used in DNA microarray data analysis. More effective biclustering algorithms are highly desirable and needed. We introduce a new algorithm called, Enumerative tree (EnumTree) for biclustering of binary microarray data. is an algorithm adopting the approach of enumerating biclusters. This algorithm extracts all biclusters consistent good quality. The main idea of EnumLat is the construction of a new tree structure to represent adequately different biclusters discovered during the process of enumeration. This algorithm adopts the strategy of all biclusters at a time. The performance of the proposed algorithm is assessed using both synthetic and real DNA micryarray data, our algorithm outperforms other biclustering algorithms for binary microarray data. Biclusters with different numbers of rows. Moreover, we test the biological significance using a gene annotation web tool to show that our proposed method is able to produce biologically relevent biclusters.Keywords: DNA microarray, biclustering, gene expression data, tree, datamining.
Procedia PDF Downloads 3741059 Numerical Study for Compressive Strength of Basalt Composite Sandwich Infill Panel
Authors: Viriyavudh Sim, Jung Kyu Choi, Yong Ju Kwak, Oh Hyeon Jeon, Woo Young Jung
Abstract:
In this study, we investigated the buckling performance of basalt fiber reinforced polymer (BFRP) sandwich infill panels. Fiber Reinforced Polymer (FRP) is a major evolution for energy dissipation when used as infill material of frame structure, a basic Polymer Matrix Composite (PMC) infill wall system consists of two FRP laminates surrounding an infill of foam core. Furthermore, this type of component is for retrofitting and strengthening frame structure to withstand the seismic disaster. In-plane compression was considered in the numerical analysis with ABAQUS platform to determine the buckling failure load of BFRP infill panel system. The present result shows that the sandwich BFRP infill panel system has higher resistance to buckling failure than those of glass fiber reinforced polymer (GFRP) infill panel system, i.e. 16% increase in buckling resistance capacity.Keywords: Basalt Fiber Reinforced Polymer (BFRP), buckling performance, FEM analysis, sandwich infill panel
Procedia PDF Downloads 4421058 Local Radial Basis Functions for Helmholtz Equation in Seismic Inversion
Authors: Hebert Montegranario, Mauricio Londoño
Abstract:
Solutions of Helmholtz equation are essential in seismic imaging methods like full wave inversion, which needs to solve many times the wave equation. Traditional methods like Finite Element Method (FEM) or Finite Differences (FD) have sparse matrices but may suffer the so called pollution effect in the numerical solutions of Helmholtz equation for large values of the wave number. On the other side, global radial basis functions have a better accuracy but produce full matrices that become unstable. In this research we combine the virtues of both approaches to find numerical solutions of Helmholtz equation, by applying a meshless method that produce sparse matrices by local radial basis functions. We solve the equation with absorbing boundary conditions of the kind Clayton-Enquist and PML (Perfect Matched Layers) and compared with results in standard literature, showing a promising performance by tackling both the pollution effect and matrix instability.Keywords: Helmholtz equation, meshless methods, seismic imaging, wavefield inversion
Procedia PDF Downloads 5511057 Thermal Resistance Analysis of Flexible Composites Based on Al2O3 Aerogels
Authors: Jianzheng Wei, Duo Zhen, Zhihan Yang, Huifeng Tan
Abstract:
The deployable descent technology is a lightweight entry method using an inflatable heat shield. The heatshield consists of a pressurized core which is covered by different layers of thermal insulation and flexible ablative materials in order to protect against the thermal loads. In this paper, both aluminum and silicon-aluminum aerogels were prepared by freeze-drying method. The latter material has bigger specific surface area and nano-scale pores. Mullite fibers are used as the reinforcing fibers to prepare the aerogel matrix to improve composite flexibility. The flexible composite materials were performed as an insulation layer to an underlying aramid fabric by a thermal shock test at a heat flux density of 120 kW/m2 and uniaxial tensile test. These results show that the aramid fabric with untreated mullite fibers as the thermal protective layer is completely carbonized at the heat of about 60 s. The aramid fabric as a thermal resistance layer of the composite material still has good mechanical properties at the same heat condition.Keywords: aerogel, aramid fabric, flexibility, thermal resistance
Procedia PDF Downloads 1571056 High Performance Fibre Reinforced Alkali Activated Slag Concrete
Authors: A. Sivakumar, K. Srinivasan
Abstract:
The main objective of the study is focused in producing slag based geopolymer concrete obtained with the addition of alkali activator. Test results indicated that the reaction of silicates in slag is based on the reaction potential of sodium hydroxide and the formation of alumino-silicates. The study also comprises on the evaluation of the efficiency of polymer reaction in terms of the strength gain properties for different geopolymer mixtures. Geopolymer mixture proportions were designed for different binder to total aggregate ratio (0.3 & 0.45) and fine to coarse aggregate ratio (0.4 & 0.8). Geopolymer concrete specimens casted with normal curing conditions reported a maximum 28 days compressive strength of 54.75 MPa. The addition of glued steel fibres at 1.0% Vf in geopolymer concrete showed reasonable improvements on the compressive strength, split tensile strength and flexural properties of different geopolymer mixtures. Further, comparative assessment was made for different geopolymer mixtures and the reinforcing effects of steel fibres were investigated in different concrete matrix.Keywords: accelerators, alkali activators, geopolymer, hot air oven curing, polypropylene fibres, slag, steam curing, steel fibres
Procedia PDF Downloads 2771055 Intrusion Detection System Using Linear Discriminant Analysis
Authors: Zyad Elkhadir, Khalid Chougdali, Mohammed Benattou
Abstract:
Most of the existing intrusion detection systems works on quantitative network traffic data with many irrelevant and redundant features, which makes detection process more time’s consuming and inaccurate. A several feature extraction methods, such as linear discriminant analysis (LDA), have been proposed. However, LDA suffers from the small sample size (SSS) problem which occurs when the number of the training samples is small compared with the samples dimension. Hence, classical LDA cannot be applied directly for high dimensional data such as network traffic data. In this paper, we propose two solutions to solve SSS problem for LDA and apply them to a network IDS. The first method, reduce the original dimension data using principal component analysis (PCA) and then apply LDA. In the second solution, we propose to use the pseudo inverse to avoid singularity of within-class scatter matrix due to SSS problem. After that, the KNN algorithm is used for classification process. We have chosen two known datasets KDDcup99 and NSLKDD for testing the proposed approaches. Results showed that the classification accuracy of (PCA+LDA) method outperforms clearly the pseudo inverse LDA method when we have large training data.Keywords: LDA, Pseudoinverse, PCA, IDS, NSL-KDD, KDDcup99
Procedia PDF Downloads 2331054 Multifield Problems in 3D Structural Analysis of Advanced Composite Plates and Shells
Authors: Salvatore Brischetto, Domenico Cesare
Abstract:
Major improvements in future aircraft and spacecraft could be those dependent on an increasing use of conventional and unconventional multilayered structures embedding composite materials, functionally graded materials, piezoelectric or piezomagnetic materials, and soft foam or honeycomb cores. Layers made of such materials can be combined in different ways to obtain structures that are able to fulfill several structural requirements. The next generation of aircraft and spacecraft will be manufactured as multilayered structures under the action of a combination of two or more physical fields. In multifield problems for multilayered structures, several physical fields (thermal, hygroscopic, electric and magnetic ones) interact each other with different levels of influence and importance. An exact 3D shell model is here proposed for these types of analyses. This model is based on a coupled system including 3D equilibrium equations, 3D Fourier heat conduction equation, 3D Fick diffusion equation and electric and magnetic divergence equations. The set of partial differential equations of second order in z is written using a mixed curvilinear orthogonal reference system valid for spherical and cylindrical shell panels, cylinders and plates. The order of partial differential equations is reduced to the first one thanks to the redoubling of the number of variables. The solution in the thickness z direction is obtained by means of the exponential matrix method and the correct imposition of interlaminar continuity conditions in terms of displacements, transverse stresses, electric and magnetic potentials, temperature, moisture content and transverse normal multifield fluxes. The investigated structures have simply supported sides in order to obtain a closed form solution in the in-plane directions. Moreover, a layerwise approach is proposed which allows a 3D correct description of multilayered anisotropic structures subjected to field loads. Several results will be proposed in tabular and graphical formto evaluate displacements, stresses and strains when mechanical loads, temperature gradients, moisture content gradients, electric potentials and magnetic potentials are applied at the external surfaces of the structures in steady-state conditions. In the case of inclusions of piezoelectric and piezomagnetic layers in the multilayered structures, so called smart structures are obtained. In this case, a free vibration analysis in open and closed circuit configurations and a static analysis for sensor and actuator applications will be proposed. The proposed results will be useful to better understand the physical and structural behaviour of multilayered advanced composite structures in the case of multifield interactions. Moreover, these analytical results could be used as reference solutions for those scientists interested in the development of 3D and 2D numerical shell/plate models based, for example, on the finite element approach or on the differential quadrature methodology. The correct impositions of boundary geometrical and load conditions, interlaminar continuity conditions and the zigzag behaviour description due to transverse anisotropy will be also discussed and verified.Keywords: composite structures, 3D shell model, stress analysis, multifield loads, exponential matrix method, layer wise approach
Procedia PDF Downloads 711053 Surface Activation of Carbon Nanotubes Generating a Chemical Interaction in Epoxy Nanocomposite
Authors: Mohamed Eldessouki, Ebraheem Shady, Yasser Gowayed
Abstract:
Carbon nanotubes (CNTs) are known for having high elastic properties with high surface area that promote them as good candidates for reinforcing polymeric matrices. In composite materials, CNTs lack chemical bonding with the surrounding matrix which decreases the possibility of better stress transfer between the components. In this work, a chemical treatment for activating the surface of the multi-wall carbon nanotubes (MWCNT) was applied and the effect of this functionalization on the elastic properties of the epoxy nanocomposites was studied. Functional amino-groups were added to the surface of the CNTs and it was evaluated to be about 34% of the total weight of the CNTs. Elastic modulus was found to increase by about 40% of the neat epoxy resin at CNTs’ weight fraction of 0.5%. The elastic modulus was found to decrease after reaching a certain concentration of CNTs which was found to be 1% wt. The scanning electron microscopic pictures showed the effect of the CNTs on the crack propagation through the sample by forming stress concentrated spots at the nanocomposite samples.Keywords: carbon nanotubes functionalization, crack propagation, elastic modulus, epoxy nanocomposites
Procedia PDF Downloads 4101052 Seismic Response Mitigation of Structures Using Base Isolation System Considering Uncertain Parameters
Authors: Rama Debbarma
Abstract:
The present study deals with the performance of Linear base isolation system to mitigate seismic response of structures characterized by random system parameters. This involves optimization of the tuning ratio and damping properties of the base isolation system considering uncertain system parameters. However, the efficiency of base isolator may reduce if it is not tuned to the vibrating mode it is designed to suppress due to unavoidable presence of system parameters uncertainty. With the aid of matrix perturbation theory and first order Taylor series expansion, the total probability concept is used to evaluate the unconditional response of the primary structures considering random system parameters. For this, the conditional second order information of the response quantities are obtained in random vibration framework using state space formulation. Subsequently, the maximum unconditional root mean square displacement of the primary structures is used as the objective function to obtain optimum damping parameters Numerical study is performed to elucidate the effect of parameters uncertainties on the optimization of parameters of linear base isolator and system performance.Keywords: linear base isolator, earthquake, optimization, uncertain parameters
Procedia PDF Downloads 4391051 The Volume–Volatility Relationship Conditional to Market Efficiency
Authors: Massimiliano Frezza, Sergio Bianchi, Augusto Pianese
Abstract:
The relation between stock price volatility and trading volume represents a controversial issue which has received a remarkable attention over the past decades. In fact, an extensive literature shows a positive relation between price volatility and trading volume in the financial markets, but the causal relationship which originates such association is an open question, from both a theoretical and empirical point of view. In this regard, various models, which can be considered as complementary rather than competitive, have been introduced to explain this relationship. They include the long debated Mixture of Distributions Hypothesis (MDH); the Sequential Arrival of Information Hypothesis (SAIH); the Dispersion of Beliefs Hypothesis (DBH); the Noise Trader Hypothesis (NTH). In this work, we analyze whether stock market efficiency can explain the diversity of results achieved during the years. For this purpose, we propose an alternative measure of market efficiency, based on the pointwise regularity of a stochastic process, which is the Hurst–H¨older dynamic exponent. In particular, we model the stock market by means of the multifractional Brownian motion (mBm) that displays the property of a time-changing regularity. Mostly, such models have in common the fact that they locally behave as a fractional Brownian motion, in the sense that their local regularity at time t0 (measured by the local Hurst–H¨older exponent in a neighborhood of t0 equals the exponent of a fractional Brownian motion of parameter H(t0)). Assuming that the stock price follows an mBm, we introduce and theoretically justify the Hurst–H¨older dynamical exponent as a measure of market efficiency. This allows to measure, at any time t, markets’ departures from the martingale property, i.e. from efficiency as stated by the Efficient Market Hypothesis. This approach is applied to financial markets; using data for the SP500 index from 1978 to 2017, on the one hand we find that when efficiency is not accounted for, a positive contemporaneous relationship emerges and is stable over time. Conversely, it disappears as soon as efficiency is taken into account. In particular, this association is more pronounced during time frames of high volatility and tends to disappear when market becomes fully efficient.Keywords: volume–volatility relationship, efficient market hypothesis, martingale model, Hurst–Hölder exponent
Procedia PDF Downloads 831050 SEM Image Classification Using CNN Architectures
Authors: Güzi̇n Ti̇rkeş, Özge Teki̇n, Kerem Kurtuluş, Y. Yekta Yurtseven, Murat Baran
Abstract:
A scanning electron microscope (SEM) is a type of electron microscope mainly used in nanoscience and nanotechnology areas. Automatic image recognition and classification are among the general areas of application concerning SEM. In line with these usages, the present paper proposes a deep learning algorithm that classifies SEM images into nine categories by means of an online application to simplify the process. The NFFA-EUROPE - 100% SEM data set, containing approximately 21,000 images, was used to train and test the algorithm at 80% and 20%, respectively. Validation was carried out using a separate data set obtained from the Middle East Technical University (METU) in Turkey. To increase the accuracy in the results, the Inception ResNet-V2 model was used in view of the Fine-Tuning approach. By using a confusion matrix, it was observed that the coated-surface category has a negative effect on the accuracy of the results since it contains other categories in the data set, thereby confusing the model when detecting category-specific patterns. For this reason, the coated-surface category was removed from the train data set, hence increasing accuracy by up to 96.5%.Keywords: convolutional neural networks, deep learning, image classification, scanning electron microscope
Procedia PDF Downloads 1301049 An Analysis of Economical Drivers and Technical Challenges for Large-Scale Biohydrogen Deployment
Authors: Rouzbeh Jafari, Joe Nava
Abstract:
This study includes learnings from an engineering practice normally performed on large scale biohydrogen processes. If properly scale-up is done, biohydrogen can be a reliable pathway for biowaste valorization. Most of the studies on biohydrogen process development have used model feedstock to investigate process key performance indicators (KPIs). This study does not intend to compare different technologies with model feedstock. However, it reports economic drivers and technical challenges which help in developing a road map for expanding biohydrogen economy deployment in Canada. BBA is a consulting firm responsible for the design of hydrogen production projects. Through executing these projects, activity has been performed to identify, register and mitigate technical drawbacks of large-scale hydrogen production. Those learnings, in this study, have been applied to the biohydrogen process. Through data collected by a comprehensive literature review, a base case has been considered as a reference, and several case studies have been performed. Critical parameters of the process were identified and through common engineering practice (process design, simulation, cost estimate, and life cycle assessment) impact of these parameters on the commercialization risk matrix and class 5 cost estimations were reported. The process considered in this study is food waste and woody biomass dark fermentation. To propose a reliable road map to develop a sustainable biohydrogen production process impact of critical parameters was studied on the end-to-end process. These parameters were 1) feedstock composition, 2) feedstock pre-treatment, 3) unit operation selection, and 4) multi-product concept. A couple of emerging technologies also were assessed such as photo-fermentation, integrated dark fermentation, and using ultrasound and microwave to break-down feedstock`s complex matrix and increase overall hydrogen yield. To properly report the impact of each parameter KPIs were identified as 1) Hydrogen yield, 2) energy consumption, 3) secondary waste generated, 4) CO2 footprint, 5) Product profile, 6) $/kg-H2 and 5) environmental impact. The feedstock is the main parameter defining the economic viability of biohydrogen production. Through parametric studies, it was found that biohydrogen production favors feedstock with higher carbohydrates. The feedstock composition was varied, by increasing one critical element (such as carbohydrate) and monitoring KPIs evolution. Different cases were studied with diverse feedstock, such as energy crops, wastewater slug, and lignocellulosic waste. The base case process was applied to have reference KPIs values and modifications such as pretreatment and feedstock mix-and-match were implemented to investigate KPIs changes. The complexity of the feedstock is the main bottleneck in the successful commercial deployment of the biohydrogen process as a reliable pathway for waste valorization. Hydrogen yield, reaction kinetics, and performance of key unit operations highly impacted as feedstock composition fluctuates during the lifetime of the process or from one case to another. In this case, concept of multi-product becomes more reliable. In this concept, the process is not designed to produce only one target product such as biohydrogen but will have two or multiple products (biohydrogen and biomethane or biochemicals). This new approach is being investigated by the BBA team and the results will be shared in another scientific contribution.Keywords: biohydrogen, process scale-up, economic evaluation, commercialization uncertainties, hydrogen economy
Procedia PDF Downloads 1141048 Deep Learning for Renewable Power Forecasting: An Approach Using LSTM Neural Networks
Authors: Fazıl Gökgöz, Fahrettin Filiz
Abstract:
Load forecasting has become crucial in recent years and become popular in forecasting area. Many different power forecasting models have been tried out for this purpose. Electricity load forecasting is necessary for energy policies, healthy and reliable grid systems. Effective power forecasting of renewable energy load leads the decision makers to minimize the costs of electric utilities and power plants. Forecasting tools are required that can be used to predict how much renewable energy can be utilized. The purpose of this study is to explore the effectiveness of LSTM-based neural networks for estimating renewable energy loads. In this study, we present models for predicting renewable energy loads based on deep neural networks, especially the Long Term Memory (LSTM) algorithms. Deep learning allows multiple layers of models to learn representation of data. LSTM algorithms are able to store information for long periods of time. Deep learning models have recently been used to forecast the renewable energy sources such as predicting wind and solar energy power. Historical load and weather information represent the most important variables for the inputs within the power forecasting models. The dataset contained power consumption measurements are gathered between January 2016 and December 2017 with one-hour resolution. Models use publicly available data from the Turkish Renewable Energy Resources Support Mechanism. Forecasting studies have been carried out with these data via deep neural networks approach including LSTM technique for Turkish electricity markets. 432 different models are created by changing layers cell count and dropout. The adaptive moment estimation (ADAM) algorithm is used for training as a gradient-based optimizer instead of SGD (stochastic gradient). ADAM performed better than SGD in terms of faster convergence and lower error rates. Models performance is compared according to MAE (Mean Absolute Error) and MSE (Mean Squared Error). Best five MAE results out of 432 tested models are 0.66, 0.74, 0.85 and 1.09. The forecasting performance of the proposed LSTM models gives successful results compared to literature searches.Keywords: deep learning, long short term memory, energy, renewable energy load forecasting
Procedia PDF Downloads 269