Search results for: state machine
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9922

Search results for: state machine

8332 Comprehensive Review of Ultralightweight Security Protocols

Authors: Prashansa Singh, Manjot Kaur, Rohit Bajaj

Abstract:

The proliferation of wireless sensor networks and Internet of Things (IoT) devices in the quickly changing digital landscape has highlighted the urgent need for strong security solutions that can handle these systems’ limited resources. A key solution to this problem is the emergence of ultralightweight security protocols, which provide strong security features while respecting the strict computational, energy, and memory constraints imposed on these kinds of devices. This in-depth analysis explores the field of ultralightweight security protocols, offering a thorough examination of their evolution, salient features, and the particular security issues they resolve. We carefully examine and contrast different protocols, pointing out their advantages and disadvantages as well as the compromises between resource limitations and security resilience. We also study these protocols’ application domains, including the Internet of Things, RFID systems, and wireless sensor networks, to name a few. In addition, the review highlights recent developments and advancements in the field, pointing out new trends and possible avenues for future research. This paper aims to be a useful resource for researchers, practitioners, and developers, guiding the design and implementation of safe, effective, and scalable systems in the Internet of Things era by providing a comprehensive overview of ultralightweight security protocols.

Keywords: wireless sensor network, machine-to-machine, MQTT broker, server, ultralightweight, TCP/IP

Procedia PDF Downloads 82
8331 Influence of Social Media on Perceived Learning Outcome of Agricultural Students in Tertiary Institutions in Oyo State, Nigeria

Authors: Adedoyin Opeyemi Osokoya

Abstract:

The study assesses the influence of social media on perceived learning outcome of agricultural science students in tertiary institutions in Oyo state, Nigeria. The four-stage sampling procedure was used to select participants. All students in the seven tertiary institutions that offer agriculture science as a course of study in Oyo State was the population. A university, a college of agriculture and a college of education were sampled, and a department from each was randomly selected. Twenty percent of the students’ population in the respective selected department gave a sample size of 165. Questionnaire was used to collect information on respondents’ personal characteristics and information related to access to social media. Data were analysed using descriptive statistics, chi-square, correlation, and multiple regression at the 0.05 confidence level. Age and household size were 21.13 ± 2.64 years and 6 ± 2.1 persons respectively. All respondents had access to social media, majority (86.1%) owned Android phone, 57.6% and 52.7% use social media for course work and entertainment respectively, while the commonly visited sites were WhatsApp, Facebook, Google, Opera mini. Over half (53.9%) had an unfavourable attitude towards the use of social media for learning; benefits of the use of social media for learning was high (56.4%). Removal of information barrier created by distance (x̄=1.58) was the most derived benefit, while inadequate power supply (x̄=2.36), was the most severe constraints. Age (β=0.23), sex (β=0.37), ownership of Android phone (β=-1.29), attitude (β=0.37), constraints (β =-0.26) and use of social media (β=0.23) were significant predictors of influence on perceived learning outcomes.

Keywords: use of social media, agricultural science students, undergraduates of tertiary institutions, Oyo State of Nigeria

Procedia PDF Downloads 140
8330 Development of Prediction Models of Day-Ahead Hourly Building Electricity Consumption and Peak Power Demand Using the Machine Learning Method

Authors: Dalin Si, Azizan Aziz, Bertrand Lasternas

Abstract:

To encourage building owners to purchase electricity at the wholesale market and reduce building peak demand, this study aims to develop models that predict day-ahead hourly electricity consumption and demand using artificial neural network (ANN) and support vector machine (SVM). All prediction models are built in Python, with tool Scikit-learn and Pybrain. The input data for both consumption and demand prediction are time stamp, outdoor dry bulb temperature, relative humidity, air handling unit (AHU), supply air temperature and solar radiation. Solar radiation, which is unavailable a day-ahead, is predicted at first, and then this estimation is used as an input to predict consumption and demand. Models to predict consumption and demand are trained in both SVM and ANN, and depend on cooling or heating, weekdays or weekends. The results show that ANN is the better option for both consumption and demand prediction. It can achieve 15.50% to 20.03% coefficient of variance of root mean square error (CVRMSE) for consumption prediction and 22.89% to 32.42% CVRMSE for demand prediction, respectively. To conclude, the presented models have potential to help building owners to purchase electricity at the wholesale market, but they are not robust when used in demand response control.

Keywords: building energy prediction, data mining, demand response, electricity market

Procedia PDF Downloads 316
8329 Electroencephalography (EEG) Analysis of Alcoholic and Control Subjects Using Multiscale Permutation Entropy

Authors: Lal Hussain, Wajid Aziz, Sajjad Ahmed Nadeem, Saeed Arif Shah, Abdul Majid

Abstract:

Brain electrical activity as reflected in Electroencephalography (EEG) have been analyzed and diagnosed using various techniques. Among them, complexity measure, nonlinearity, disorder, and unpredictability play vital role due to the nonlinear interconnection between functional and anatomical subsystem emerged in brain in healthy state and during various diseases. There are many social and economical issues of alcoholic abuse as memory weakness, decision making, impairments, and concentrations etc. Alcoholism not only defect the brains but also associated with emotional, behavior, and cognitive impairments damaging the white and gray brain matters. A recently developed signal analysis method i.e. Multiscale Permutation Entropy (MPE) is proposed to estimate the complexity of long-range temporal correlation time series EEG of Alcoholic and Control subjects acquired from University of California Machine Learning repository and results are compared with MSE. Using MPE, coarsed grained series is first generated and the PE is computed for each coarsed grained time series against the electrodes O1, O2, C3, C4, F2, F3, F4, F7, F8, Fp1, Fp2, P3, P4, T7, and T8. The results computed against each electrode using MPE gives higher significant values as compared to MSE as well as mean rank differences accordingly. Likewise, ROC and Area under the ROC also gives higher separation against each electrode using MPE in comparison to MSE.

Keywords: electroencephalogram (EEG), multiscale permutation entropy (MPE), multiscale sample entropy (MSE), permutation entropy (PE), mann whitney test (MMT), receiver operator curve (ROC), complexity measure

Procedia PDF Downloads 495
8328 Current-Based Multiple Faults Detection in Electrical Motors

Authors: Moftah BinHasan

Abstract:

Induction motors (IM) are vital components in industrial processes whose failure may yield to an unexpected interruption at the industrial plant, with highly incurred consequences in costs, product quality, and safety. Among different detection approaches proposed in the literature, that based on stator current monitoring termed as Motor Current Signature Analysis (MCSA) is the most preferred. MCSA is advantageous due to its non-invasive properties. The popularity of motor current signature analysis comes from being that the current consists of motor harmonics, around the supply frequency, which show some properties related to different situations of healthy and faulty conditions. One of the techniques used with machine line current resorts to spectrum analysis. Besides discussing the fundamentals of MCSA and its applications in the condition monitoring arena, this paper shows a summary of the most frequent faults and their consequence signatures on the stator current spectrum of an induction motor. In addition, this article presents different case studies of induction motor fault diagnosis. These faults were seeded in the machine which was run for more than an hour for each test before the results were recorded for the faulty situations. These results are then compared with those for the healthy cases that were recorded earlier.

Keywords: induction motor, condition monitoring, fault diagnosis, MCSA, rotor, stator, bearing, eccentricity

Procedia PDF Downloads 459
8327 The Structural Pillars in Contemporary Mexico: Legacies of the Past and Lessons for the Future

Authors: Lisdey Espinoza Pedraza

Abstract:

In places from Latin America to Africa, a big number of authoritarian regimes have given way to democratic forces and increasingly responsive and open societies. Many countries have embarked upon a process of democratisation for the first time while many others have moved to restore their democratic roots. Mexico is one of these countries, and although the Mexican state is not democratic neither dictatorial in the strict sense the Anglo-Saxon and European tradition has defined these concepts, it is possible to find elements that combine both concepts. History helps us understand and study the past, interpret the present and predict the future. In the case of the Mexican political system, history has had a very specific effect in each of the areas that comprise the making of what it is now the contemporary Mexican system. Each of the different historical periods has left a legacy that has marked the way the political system has evolved. The historical periods that Mexico has undergone since its emergence as an independent state, have permeated until modern days and some of these legacies are the ones which will help us understand and interpret many of the structures of the current Mexican political system. The most notorious characteristic of contemporary Latin America is its dependency, underdevelopment and economic disparity once this region if compared with Europe and North America. There is a widespread persistence of economic dependence and social problems despite the creation of independent countries. The role of the state is to supervise the development of relations among actors. The political phenomenon is full of a constant process of transitions and the particular case of the formation of the Mexican state evidences this.

Keywords: Mexico, democratisation process, PRI, authoritarian regimes, political transitions, Latin America

Procedia PDF Downloads 292
8326 Marginal Productivity of Small Scale Yam and Cassava Farmers in Kogi State, Nigeria: Data Envelopment Analysis as a Complement

Authors: M. A. Ojo, O. A. Ojo, A. I. Odine, A. Ogaji

Abstract:

The study examined marginal productivity analysis of small scale yam and cassava farmers in Kogi State, Nigeria. Data used for the study were obtained from primary source using a multi-stage sampling technique with structured questionnaires administered to 150 randomly selected yam and cassava farmers from three Local Government Areas of the State. Description statistics, data envelopment analysis and Cobb-Douglas production function were used to analyze the data. The DEA result on the overall technical efficiency of the farmers showed that 40% of the sampled yam and cassava farmers in the study area were operating at frontier and optimum level of production with mean technical efficiency of 1.00. This implies that 60% of the yam and cassava farmers in the study area can still improve their level of efficiency through better utilization of available resources, given the current state of technology. The results of the Cobb-Douglas analysis of factors affecting the output of yam and cassava farmers showed that labour, planting materials, fertilizer and capital inputs positively and significantly affected the output of the yam and cassava farmers in the study area. The study further revealed that yam and cassava farms in the study area operated under increasing returns to scale. This result of marginal productivity analysis further showed that relatively efficient farms were more marginally productive in resource utilization This study also shows that estimating production functions without separating the farms to efficient and inefficient farms bias the parameter values obtained from such production function. It is therefore recommended that yam and cassava farmers in the study area should form cooperative societies so as to enable them have access to productive inputs that will enable them expand. Also, since using a single equation model for production function produces a bias parameter estimates as confirmed above, farms should, therefore, be decomposed into efficient and inefficient ones before production function estimation is done.

Keywords: marginal productivity, DEA, production function, Kogi state

Procedia PDF Downloads 483
8325 Right to Return and Narrative in Refugee Camps: Case Study in Palestinian Displacement

Authors: Naomi I. Austin

Abstract:

Following WWII, the Geneva Conventions and Universal Declaration of Human Rights declared the right to return an unalienable right. The right to return has been disputed by the Israeli government and upheld as an individual by prominent Palestinian activists. Those who contest the Palestinian right to return argue that it would effectively end the state of Israel. After the conquest of Lebanon, the concept of a two-state solution has been effectively shut down. This research paper will seek to utilize interviews from NGO actors and those displaced to be gathered from fieldwork conducted in refugee camps and bases of international actors, exploring durable and multilateral solutions for not only the refugee crisis but the forced displacement of Palestinians that go beyond state actors and government entities. The research will center on the perspective of those displaced to generate a plausible solution to mitigate negative effects on displaced persons. This paper will seek to address whether the right to return is plausible with the expansion of Israeli territorial conquest and the impact of the Israeli expansion on migrations within the Mediterranean region and the EU, especially with policies of integration into the host community.

Keywords: durable solutions, forced displacement, protracted conflict, refugee studies, narrative building, memory, right to return

Procedia PDF Downloads 16
8324 Farmers Perception and Awareness to Climate Change in Some Selected Local Government Areas in Jigawa State, Nigeria

Authors: M. M. Ubayo, U. S. Babuga, A. Garba

Abstract:

The study examined the level of climate change awareness and perception by rice farmers in Jigawa State, Nigeria. A multi-stage and purposive sampling technique was used to select respondents. The state is divided into four agricultural zones namely Birninkudu zone, Gumel zone, Hadejia zone, and Kazaure zone. Two agricultural zones (Gumel zone and Hadejia zones) were purposively selected. Six Local Government Areas (LGAs) were randomly selected from the two zones. Also, twenty rice farmers were purposively selected from each of the LGAS. Data were analyzed using frequency and percentages. The result shows that 83.3% of the respondents are aware of the climate change impact on their rice output. Personal experience is the main sources of climate change information in the study area, another 45.6% adopted use of irrigation as the most effective measure to combating climate change, 25.5% use of early maturing variety. Further studies are needed on how to combat the threat and menace of the climate change in the study area.

Keywords: awareness, perception, climate, change, Jigawa

Procedia PDF Downloads 387
8323 Solid-State Luminescence of Fluorenone Grafted onto Cellulose Aldehyde Backbone Using Different Organic Amine Spacers

Authors: Isam M. Arafa, Mazin Y. Shatnawi, Yaser A. Yousef, Batool Zaid Al-Momani

Abstract:

The present work describes the preparation, characterization, and luminescence of a series of fluorenone (FL) based luminophores grafted onto modified cellulose microfibers. The FL is condensed onto cellulose aldehyde using three diamine spacers (H₂N-NH₂, H₂N(CH₂)₂NH₂ and H₂N(CH₂)₃NH₂) to afford Cell=Spacer=FL. The obtained products were characterized by spectroscopic (FT-IR, UV–Vis), thermal gravimetric analysis (TGA), and microscopic (Optical, SEM) techniques. The UV-Vis spectra of the FL=N(CH₂)ₓNH₂ (x = 0, 2, 3) moieties show that they are transparent in the 375- 800 nm region while they exhibit intense absorption band below 350 nm attributed to n-π* and π-π* transitions. The solid-state photoluminescence (PLs-s) of the cold-pressed pellets of the FL=N(CH₂)ₓNH₂ and Cell=Spacer=FL placed in a quartz cuvette show strong emission in the 500-550 nm region upon irradiation with Xe lamp light (λex = 320 nm). The PLs-s green emission of the grafted Cell=Spacer=FL was evaluated relative to that of the FL-based precursor. These grafted conjugated products have the potential to be used as analyte sensors for typical nitroaromatics/aromatic amines and be further extended to immunoassay studies for aromatic amino acids such as phenylalanine and histidine.

Keywords: luminescence, cellulose, fluorenone, grafting, solid state

Procedia PDF Downloads 72
8322 Stochastic Modeling and Productivity Analysis of a Flexible Manufacturing System

Authors: Mehmet Savsar, Majid Aldaihani

Abstract:

Flexible Manufacturing Systems (FMS) are used to produce a variety of parts on the same equipment. Therefore, their utilization is higher than traditional machining systems. Higher utilization, on the other hand, results in more frequent equipment failures and additional need for maintenance. Therefore, it is necessary to carefully analyze operational characteristics and productivity of FMS or Flexible Manufacturing Cells (FMC), which are smaller configuration of FMS, before installation or during their operation. Appropriate models should be developed to determine production rates based on operational conditions, including equipment reliability, availability, and repair capacity. In this paper, a stochastic model is developed for an automated FMC system, which consists of two machines served by two robots and a single repairman. The model is used to determine system productivity and equipment utilization under different operational conditions, including random machine failures, random repairs, and limited repair capacity. The results are compared to previous study results for FMC system with sufficient repair capacity assigned to each machine. The results show that the model will be useful for design engineers and operational managers to analyze performance of manufacturing systems at the design or operational stages.

Keywords: flexible manufacturing, FMS, FMC, stochastic modeling, production rate, reliability, availability

Procedia PDF Downloads 516
8321 Using Autoencoder as Feature Extractor for Malware Detection

Authors: Umm-E-Hani, Faiza Babar, Hanif Durad

Abstract:

Malware-detecting approaches suffer many limitations, due to which all anti-malware solutions have failed to be reliable enough for detecting zero-day malware. Signature-based solutions depend upon the signatures that can be generated only when malware surfaces at least once in the cyber world. Another approach that works by detecting the anomalies caused in the environment can easily be defeated by diligently and intelligently written malware. Solutions that have been trained to observe the behavior for detecting malicious files have failed to cater to the malware capable of detecting the sandboxed or protected environment. Machine learning and deep learning-based approaches greatly suffer in training their models with either an imbalanced dataset or an inadequate number of samples. AI-based anti-malware solutions that have been trained with enough samples targeted a selected feature vector, thus ignoring the input of leftover features in the maliciousness of malware just to cope with the lack of underlying hardware processing power. Our research focuses on producing an anti-malware solution for detecting malicious PE files by circumventing the earlier-mentioned shortcomings. Our proposed framework, which is based on automated feature engineering through autoencoders, trains the model over a fairly large dataset. It focuses on the visual patterns of malware samples to automatically extract the meaningful part of the visual pattern. Our experiment has successfully produced a state-of-the-art accuracy of 99.54 % over test data.

Keywords: malware, auto encoders, automated feature engineering, classification

Procedia PDF Downloads 72
8320 Fluctuations in Radical Approaches to State Ownership of the Means of Production Over the Twentieth Century

Authors: Tom Turner

Abstract:

The recent financial crisis in 2008 and the growing inequality in developed industrial societies would appear to present significant challenges to capitalism and the free market. Yet there have been few substantial mainstream political or economic challenges to the dominant capitalist and market paradigm to-date. There is no dearth of critical and theoretical (academic) analyses regarding the prevailing systems failures. Yet despite the growing inequality in the developed industrial societies and the financial crisis in 2008 few commentators have advocated the comprehensive socialization or state ownership of the means of production to our knowledge – a core principle of radical Marxism in the 19th and early part of the 20th century. Undoubtedly the experience in the Soviet Union and satellite countries in the 20th century has cast a dark shadow over the notion of centrally controlled economies and state ownership of the means of production. In this paper, we explore the history of a doctrine advocating the socialization or state ownership of the means of production that was central to Marxism and socialism generally. Indeed this doctrine provoked an intense and often acrimonious debate especially for left-wing parties throughout the 20th century. The debate within the political economy tradition has historically tended to divide into a radical and a revisionist approach to changing or reforming capitalism. The radical perspective views the conflict of interest between capital and labor as a persistent and insoluble feature of a capitalist society and advocates the public or state ownership of the means of production. Alternatively, the revisionist perspective focuses on issues of distribution rather than production and emphasizes the possibility of compromise between capital and labor in capitalist societies. Over the 20th century, the radical perspective has faded and even the social democratic revisionist tradition has declined in recent years. We conclude with the major challenges that confront both the radical and revisionist perspectives in the development of viable policy agendas in mature developed democratic societies. Additionally, we consider whether state ownership of the means of production still has relevance in the 21st century and to what extent state ownership is off the agenda as a political issue in the political mainstream in developed industrial societies. A central argument in the paper is that state ownership of the means of production is unlikely to feature as either a practical or theoretical solution to the problems of capitalism post the financial crisis among mainstream political parties of the left. Although the focus here is solely on the shifting views of the radical and revisionist socialist perspectives in the western European tradition the analysis has relevance for the wider socialist movement.

Keywords: sate ownership, ownership means of production, radicals, revisionists

Procedia PDF Downloads 119
8319 Attributes That Influence Respondents When Choosing a Mate in Internet Dating Sites: An Innovative Matching Algorithm

Authors: Moti Zwilling, Srečko Natek

Abstract:

This paper aims to present an innovative predictive analytics analysis in order to find the best combination between two consumers who strive to find their partner or in internet sites. The methodology shown in this paper is based on analysis of consumer preferences and involves data mining and machine learning search techniques. The study is composed of two parts: The first part examines by means of descriptive statistics the correlations between a set of parameters that are taken between man and women where they intent to meet each other through the social media, usually the internet. In this part several hypotheses were examined and statistical analysis were taken place. Results show that there is a strong correlation between the affiliated attributes of man and woman as long as concerned to how they present themselves in a social media such as "Facebook". One interesting issue is the strong desire to develop a serious relationship between most of the respondents. In the second part, the authors used common data mining algorithms to search and classify the most important and effective attributes that affect the response rate of the other side. Results exhibit that personal presentation and education background are found as most affective to achieve a positive attitude to one's profile from the other mate.

Keywords: dating sites, social networks, machine learning, decision trees, data mining

Procedia PDF Downloads 293
8318 Problems Confronting the Teaching of Sex Education in Some Selected Secondary Schools in the Akoko Region of Ondo State, Nigeria

Authors: Jimoh Abiodun Alaba

Abstract:

Context: In many traditional African societies, sex education is often considered a taboo topic. However, the importance of sex education is becoming increasingly evident. This study aims to investigate the challenges faced in teaching sex education in selected secondary schools in the Akoko region of Ondo state, Nigeria. Research Aim: The aim of this study is to identify and examine the problems confronting the teaching of sex education in selected secondary schools in the Akoko region of Ondo state, Nigeria. Methodology: The study utilized a multi-stage sampling method. The first stage involved a purposive selection of ten (10) secondary schools in the Akoko region of Ondo State, while the second stage was a random selection of twenty (20) students, each in the selected secondary schools of the study area. This makes a total of two (200) hundred students that were considered for the survey. Descriptive analysis using percentages was employed to analyze the collected data. Factor analysis was also used to identify the most significant problems. Findings: The study revealed that sex education has been neglected in the sampled secondary schools due to traditional African beliefs that do not support the teaching and learning of this subject. Furthermore, there was evidence to suggest that parents also displayed reluctance towards the teaching of sex education, fearing that it might expose students to inappropriate behavior. Consequently, students were deprived of this essential aspect of education necessary for self-awareness and development. Theoretical Importance: This study contributes to the understanding of the challenges faced in teaching sex education in traditional African societies, specifically in the selected secondary schools in the Akoko region of Ondo state, Nigeria. Data Collection: Data were collected through the administration of 200 questionnaires in ten selected secondary schools. Additionally, information was gathered from federal, state, and local government authorities. Analysis Procedures: The collected data were analyzed using descriptive analysis, employing percentage calculations for better interpretation. Furthermore, factor analysis was conducted to isolate the most significant problems identified. Conclusion: The study concludes that sex education in the sampled secondary schools in the Akoko region of Ondo state, Nigeria, has suffered neglect due to traditional African beliefs and parental concerns. Consequently, students are denied an important aspect of education necessary for their self-awareness and development. Recommendations are made to change the negative perception of sex education, enrich the curriculum, and employ qualified personnel for its teaching. Additionally, it is suggested that sex education should be integrated with moral instruction.

Keywords: African traditional belief, sex, sex education, sexual misdemeanor, morality

Procedia PDF Downloads 85
8317 Smart Textiles Integration for Monitoring Real-time Air Pollution

Authors: Akshay Dirisala

Abstract:

Humans had developed a highly organized and efficient civilization to live in by improving the basic needs of humans like housing, transportation, and utilities. These developments have made a huge impact on major environmental factors. Air pollution is one prominent environmental factor that needs to be addressed to maintain a sustainable and healthier lifestyle. Textiles have always been at the forefront of helping humans shield from environmental conditions. With the growth in the field of electronic textiles, we now have the capability of monitoring the atmosphere in real time to understand and analyze the environment that a particular person is mostly spending their time at. Integrating textiles with the particulate matter sensors that measure air quality and pollutants that have a direct impact on human health will help to understand what type of air we are breathing. This research idea aims to develop a textile product and a process of collecting the pollutants through particulate matter sensors, which are equipped inside a smart textile product and store the data to develop a machine learning model to analyze the health conditions of the person wearing the garment and periodically notifying them not only will help to be cautious of airborne diseases but will help to regulate the diseases and could also help to take care of skin conditions.

Keywords: air pollution, e-textiles, particulate matter sensors, environment, machine learning models

Procedia PDF Downloads 114
8316 Information Disclosure And Financial Sentiment Index Using a Machine Learning Approach

Authors: Alev Atak

Abstract:

In this paper, we aim to create a financial sentiment index by investigating the company’s voluntary information disclosures. We retrieve structured content from BIST 100 companies’ financial reports for the period 1998-2018 and extract relevant financial information for sentiment analysis through Natural Language Processing. We measure strategy-related disclosures and their cross-sectional variation and classify report content into generic sections using synonym lists divided into four main categories according to their liquidity risk profile, risk positions, intra-annual information, and exposure to risk. We use Word Error Rate and Cosin Similarity for comparing and measuring text similarity and derivation in sets of texts. In addition to performing text extraction, we will provide a range of text analysis options, such as the readability metrics, word counts using pre-determined lists (e.g., forward-looking, uncertainty, tone, etc.), and comparison with reference corpus (word, parts of speech and semantic level). Therefore, we create an adequate analytical tool and a financial dictionary to depict the importance of granular financial disclosure for investors to identify correctly the risk-taking behavior and hence make the aggregated effects traceable.

Keywords: financial sentiment, machine learning, information disclosure, risk

Procedia PDF Downloads 94
8315 The “Buffer Layer” An Improved Electrode-Electrolyte Interface For Solid-State Batteries

Authors: Gregory Schmidt

Abstract:

Solid-state lithium batteries are broadly accepted as promising candidates for application in the next generation of EVs as they should offer safer and higher-energy-density batteries. Nonetheless, their development is impeded by many challenges, including the resistive electrode–electrolyte interface originating from the removal of the liquid electrolyte that normally permeates through the porous cathode and ensures efficient ionic conductivity through the cell. One way to tackle this challenge is by formulating composite cathodes containing solid ionic conductors in their structure, but this approach will require the conductors to exhibit chemical stability, electrochemical stability, flexibility, and adhesion and is, therefore, limited to some materials. Recently, Arkema developed a technology called buffering layer which allows the transformation of any conventional porous electrode into a catholyte. This organic layer has a very high ionic conductivity at room temperature, is compatible with all active materials, and can be processed with conventional Gigafactory equipment. Moreover, this layer helps protect the solid ionic conductor from the cathode and anode materials. During this presentation, the manufacture and the electrochemical performance of this layer for different systems of cathode and anode will be discussed.

Keywords: electrochemistry, all solid state battery, materials, interface

Procedia PDF Downloads 97
8314 Implementation of State-Space and Super-Element Techniques for the Modeling and Control of Smart Structures with Damping Characteristics

Authors: Nader Ghareeb, Rüdiger Schmidt

Abstract:

Minimizing the weight in flexible structures means reducing material and costs as well. However, these structures could become prone to vibrations. Attenuating these vibrations has become a pivotal engineering problem that shifted the focus of many research endeavors. One technique to do that is to design and implement an active control system. This system is mainly composed of a vibrating structure, a sensor to perceive the vibrations, an actuator to counteract the influence of disturbances, and finally a controller to generate the appropriate control signals. In this work, two different techniques are explored to create two different mathematical models of an active control system. The first model is a finite element model with a reduced number of nodes and it is called a super-element. The second model is in the form of state-space representation, i.e. a set of partial differential equations. The damping coefficients are calculated and incorporated into both models. The effectiveness of these models is demonstrated when the system is excited by its first natural frequency and an active control strategy is developed and implemented to attenuate the resulting vibrations. Results from both modeling techniques are presented and compared.

Keywords: damping coefficients, finite element analysis, super-element, state-space model

Procedia PDF Downloads 320
8313 New Advanced Medical Software Technology Challenges and Evolution of the Regulatory Framework in Expert Software, Artificial Intelligence, and Machine Learning

Authors: Umamaheswari Shanmugam, Silvia Ronchi

Abstract:

Software, artificial intelligence, and machine learning can improve healthcare through innovative and advanced technologies that can use the large amount and variety of data generated during healthcare services every day; one of the significant advantages of these new technologies is the ability to get experience and knowledge from real-world use and to improve their performance continuously. Healthcare systems and institutions can significantly benefit because the use of advanced technologies improves the efficiency and efficacy of healthcare. Software-defined as a medical device, is stand-alone software that is intended to be used for patients for one or more of these specific medical intended uses: - diagnosis, prevention, monitoring, prediction, prognosis, treatment or alleviation of a disease, any other health conditions, replacing or modifying any part of a physiological or pathological process–manage the received information from in vitro specimens derived from the human samples (body) and without principal main action of its principal intended use by pharmacological, immunological or metabolic definition. Software qualified as medical devices must comply with the general safety and performance requirements applicable to medical devices. These requirements are necessary to ensure high performance and quality and protect patients' safety. The evolution and the continuous improvement of software used in healthcare must consider the increase in regulatory requirements, which are becoming more complex in each market. The gap between these advanced technologies and the new regulations is the biggest challenge for medical device manufacturers. Regulatory requirements can be considered a market barrier, as they can delay or obstacle the device's approval. Still, they are necessary to ensure performance, quality, and safety. At the same time, they can be a business opportunity if the manufacturer can define the appropriate regulatory strategy in advance. The abstract will provide an overview of the current regulatory framework, the evolution of the international requirements, and the standards applicable to medical device software in the potential market all over the world.

Keywords: artificial intelligence, machine learning, SaMD, regulatory, clinical evaluation, classification, international requirements, MDR, 510k, PMA, IMDRF, cyber security, health care systems

Procedia PDF Downloads 88
8312 Theoretical Investigation of Structural and Electronic Properties of AlBi

Authors: S. Louhibi-Fasla, H. Achour, B. Amrani

Abstract:

The purpose of this work is to provide some additional information to the existing data on the physical properties of AlBi with state-of-the-art first-principles method of the full potential linear augmented plane wave (FPLAPW). Additionally to the structural properties, the electronic properties have also been investigated. The dependence of the volume, the bulk modulus, the variation of the thermal expansion α, as well as the Debye temperature are successfully obtained in the whole range from 0 to 30 GPa and temperature range from 0 to 1200 K. The latter are the basis of solid-state science and industrial applications and their study is of importance to extend our knowledge on their specific behaviour when undergoing severe constraints of high pressure and high temperature environments.

Keywords: AlBi, FP-LAPW, structural properties, electronic properties

Procedia PDF Downloads 381
8311 Adaptation to the Current Health Situation as a Determinant of Adherence in Pre - and Senior Age People

Authors: Mariola Głowacka

Abstract:

The aim of the study was to determine the level of adaptation to the current health situation and its impact on the adherence state of people in the pre- and senior age. The work covers the results of the first of the fourteen parts of the study conducted in a group of 2,000 people aged 55 plus. This part of the project was carried out with the use of two standardized tools: the HLC adaptation scale (the health locus of control scale and The Adherence in Chronic DiseasesScale (ACDS). The obtained results showed the range of influence of particular areas of self-acceptance of the health state (health and disease) on their adherence, taking into account specific clinical conditions.

Keywords: adaptation to the current health situation, adherence, senior, badania

Procedia PDF Downloads 102
8310 South Asia’s Political Landscape: Precipitating Terrorism

Authors: Saroj Kumar Rath

Abstract:

India's Muslims represent 15 percent of the nation's population, the world's third largest group in any nation after Indonesia and Pakistan. Extremist groups like the Islamic State, Al Qaeda, the Taliban and the Haqqani network increasingly view India as a target. Several trends explain the rise: Terrorism threats in South Asia are linked and mobile - if one source is batted down, jihadists relocate to find another Islamic cause. As NATO withdraws from Afghanistan, some jihadists will eye India. Pakistan regards India as a top enemy and some officials even encourage terrorists to target areas like Kashmir or Mumbai. Meanwhile, a stream of Wahhabi preachers have visited India, offering hard-line messages; extremist groups like Al Qaeda and the Islamic State compete for influence, and militants even pay jihadists. Muslims as a minority population in India could offer fertile ground for the extremist recruiters. This paper argues that there is an urgent need for the Indian government to profile militants and examine social media sites to attack Wahhabi indoctrination while supporting education and entrepreneurship for all of India's citizens.

Keywords: Al Qaeda, terrorism, Islamic state, India, haqqani network, Pakistan, Taliban

Procedia PDF Downloads 617
8309 Constitutional Status of a Child in the Republic of Belarus and Its Principles

Authors: Maria Ashitko

Abstract:

The Constitution of the Republic of Belarus is based on the principle of the unity of rights and obligations, including those of the child. The constitutional status of the child is aspecific system of constitutional elements established and guaranteed by the state through the current legislation and regulatory acts that ensure the special legal status of the child, his or her constitutional legal capacity, implementation of the principles of the constitutional and legal status of the child, constitutional rights of the child and their safeguards. Under the principles of the constitutional status of the child, we consider the general, normative, social-volitional rules of behavior established by the Constitution of the Republic of Belarus, laws and other regulatory acts that determine the content and social purpose of the legal status of the child. The constitutional and legal status of the child is characterized by the following special principles, which form a feature of the state legal system:1) Ensuring the interests of the child means providing for the child in accordance with his or her age, state of health, characteristics of development, life experience, family life, cultural traditions, ethnicity. 2) The principle of equal responsibility of both parents or their substitutes characterized by caring for the next generation as one of the priority tasks of the state and society, and all issues related to the implementation of children’s rights should be addressed at the constitutional level. 3) We would like to highlight such a special principle as the subprinciple of safeguards, which is the principle of ensuring the safety of the child. It is also worth noting that in legal studies, there is no relationship between safety and constitutional rights as general safeguards of individual rights and freedoms, and as special safeguards for the right to life. 4) The principle of justice is expressed by the fact that in modern conditions, the quality of life is determined not only by material wealth but also by the ability of the state to ensure the harmonization of social relations and social harmony on the basis of humanism and justice. Thus, the specificity of the constitutional status of the child is the age boundary between adulthood and minority; therefore, we propose to highlight the age characteristics of the child as an additional element. It is advisable to highlight such a special principle as the subprinciple of safeguards, which is the principle of ensuring the safety of the child.

Keywords: children’s rights, constitutional status, constitutional principles, constitutional rights

Procedia PDF Downloads 126
8308 Migration-Related Challenges during the Covid-19 Pandemic in South Africa. A Case of Alexandra Township

Authors: Edwin Mwasakidzeni Mutyenyoka

Abstract:

Without ignoring migration-related challenges in transit zones and places of origin, this inquiry focuses on arrived international immigrants’ exacerbated vulnerability during crises. The aim is to underline longstanding inequalities and demonstrate that crises merely amplify and exacerbate challenges that low-income migrants already face during ‘non-crises’ periods. Social protection, as an agenda for reducing vulnerability, poverty, and risk for low-income households, with regard to basic consumption and services, has been foregrounded in the post-apartheid development discourse in South Africa. Evidently, however, the state, through the South African Social Security Agency (SASSA), systemically excludes the majority of non-citizens from state-sponsored social assistance programs - often leaving them heavily dependent on sporadic non-state options and erosive coping mechanisms. In this paper, migration itself should not only be understood as a social protection strategy against poverty and risk but also as a source of vulnerability that often requires social protection. For quasi-ethnographic, it use one migrant destination, Alex Park Township, as a “contact zone” and space of negotiation during the pandemic.

Keywords: south-south migration, crises, social protection, Covid-19 pandemic

Procedia PDF Downloads 91
8307 Discrete PID and Discrete State Feedback Control of a Brushed DC Motor

Authors: I. Valdez, J. Perdomo, M. Colindres, N. Castro

Abstract:

Today, digital servo systems are extensively used in industrial manufacturing processes, robotic applications, vehicles and other areas. In such control systems, control action is provided by digital controllers with different compensation algorithms, which are designed to meet specific requirements for a given application. Due to the constant search for optimization in industrial processes, it is of interest to design digital controllers that offer ease of realization, improved computational efficiency, affordable return rates, and ease of tuning that ultimately improve the performance of the controlled actuators. There is a vast range of options of compensation algorithms that could be used, although in the industry, most controllers used are based on a PID structure. This research article compares different types of digital compensators implemented in a servo system for DC motor position control. PID compensation is evaluated on its two most common architectures: PID position form (1 DOF), and PID speed form (2 DOF). State feedback algorithms are also evaluated, testing two modern control theory techniques: discrete state observer for non-measurable variables tracking, and a linear quadratic method which allows a compromise between the theoretical optimal control and the realization that most closely matches it. The compared control systems’ performance is evaluated through simulations in the Simulink platform, in which it is attempted to model accurately each of the system’s hardware components. The criteria by which the control systems are compared are reference tracking and disturbance rejection. In this investigation, it is considered that the accurate tracking of the reference signal for a position control system is particularly important because of the frequency and the suddenness in which the control signal could change in position control applications, while disturbance rejection is considered essential because the torque applied to the motor shaft due to sudden load changes can be modeled as a disturbance that must be rejected, ensuring reference tracking. Results show that 2 DOF PID controllers exhibit high performance in terms of the benchmarks mentioned, as long as they are properly tuned. As for controllers based on state feedback, due to the nature and the advantage which state space provides for modelling MIMO, it is expected that such controllers evince ease of tuning for disturbance rejection, assuming that the designer of such controllers is experienced. An in-depth multi-dimensional analysis of preliminary research results indicate that state feedback control method is more satisfactory, but PID control method exhibits easier implementation in most control applications.

Keywords: control, DC motor, discrete PID, discrete state feedback

Procedia PDF Downloads 267
8306 A Comparative Study on ANN, ANFIS and SVM Methods for Computing Resonant Frequency of A-Shaped Compact Microstrip Antennas

Authors: Ahmet Kayabasi, Ali Akdagli

Abstract:

In this study, three robust predicting methods, namely artificial neural network (ANN), adaptive neuro fuzzy inference system (ANFIS) and support vector machine (SVM) were used for computing the resonant frequency of A-shaped compact microstrip antennas (ACMAs) operating at UHF band. Firstly, the resonant frequencies of 144 ACMAs with various dimensions and electrical parameters were simulated with the help of IE3D™ based on method of moment (MoM). The ANN, ANFIS and SVM models for computing the resonant frequency were then built by considering the simulation data. 124 simulated ACMAs were utilized for training and the remaining 20 ACMAs were used for testing the ANN, ANFIS and SVM models. The performance of the ANN, ANFIS and SVM models are compared in the training and test process. The average percentage errors (APE) regarding the computed resonant frequencies for training of the ANN, ANFIS and SVM were obtained as 0.457%, 0.399% and 0.600%, respectively. The constructed models were then tested and APE values as 0.601% for ANN, 0.744% for ANFIS and 0.623% for SVM were achieved. The results obtained here show that ANN, ANFIS and SVM methods can be successfully applied to compute the resonant frequency of ACMAs, since they are useful and versatile methods that yield accurate results.

Keywords: a-shaped compact microstrip antenna, artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS), support vector machine (SVM)

Procedia PDF Downloads 441
8305 Disequilibrium between the Demand and Supply of Teachers of English at the Junior Secondary Schools in Gashua, Yobe State: Options for 2015 and Beyond

Authors: Clifford Irikefe Gbeyonron

Abstract:

The Nigerian educational system, which has English language as a major medium of instruction, has been designed in such a way that the cognitive, psychomotor and affective endowments of the Nigerian learner could be explored. However, the human resources that would impart the desired knowledge, skills and values in the learners seem to be in short supply. This paucity is more manifest in the area of teachers of English. As a result, this research was conducted on the demand and supply of teachers of English at the junior secondary schools in Gashua, Yobe State. The results indicate that there was dearth of teachers of English the domain under review. This thus presents a challenge that should propel English language teacher education industries to produce more teachers of English. As a result, this paper recommends that the teacher production process should make use of qualified and enthusiastic teacher trainers that would be able to inculcate in-depth linguistic and communicative competence of English language and English language teaching skills in the potential teachers of English. In addition, English language education service providers should attract and retain the trained teachers of English in the business of English language teaching in such a way that all the states of Nigeria could experience educational development.

Keywords: demand, supply, teachers of English, Yobe State

Procedia PDF Downloads 374
8304 Blockchain-Resilient Framework for Cloud-Based Network Devices within the Architecture of Self-Driving Cars

Authors: Mirza Mujtaba Baig

Abstract:

Artificial Intelligence (AI) is evolving rapidly, and one of the areas in which this field has influenced is automation. The automobile, healthcare, education, and robotic industries deploy AI technologies constantly, and the automation of tasks is beneficial to allow time for knowledge-based tasks and also introduce convenience to everyday human endeavors. The paper reviews the challenges faced with the current implementations of autonomous self-driving cars by exploring the machine learning, robotics, and artificial intelligence techniques employed for the development of this innovation. The controversy surrounding the development and deployment of autonomous machines, e.g., vehicles, begs the need for the exploration of the configuration of the programming modules. This paper seeks to add to the body of knowledge of research assisting researchers in decreasing the inconsistencies in current programming modules. Blockchain is a technology of which applications are mostly found within the domains of financial, pharmaceutical, manufacturing, and artificial intelligence. The registering of events in a secured manner as well as applying external algorithms required for the data analytics are especially helpful for integrating, adapting, maintaining, and extending to new domains, especially predictive analytics applications.

Keywords: artificial intelligence, automation, big data, self-driving cars, machine learning, neural networking algorithm, blockchain, business intelligence

Procedia PDF Downloads 119
8303 Next Generation Radiation Risk Assessment and Prediction Tools Generation Applying AI-Machine (Deep) Learning Algorithms

Authors: Selim M. Khan

Abstract:

Indoor air quality is strongly influenced by the presence of radioactive radon (222Rn) gas. Indeed, exposure to high 222Rn concentrations is unequivocally linked to DNA damage and lung cancer and is a worsening issue in North American and European built environments, having increased over time within newer housing stocks as a function of as yet unclear variables. Indoor air radon concentration can be influenced by a wide range of environmental, structural, and behavioral factors. As some of these factors are quantitative while others are qualitative, no single statistical model can determine indoor radon level precisely while simultaneously considering all these variables across a complex and highly diverse dataset. The ability of AI- machine (deep) learning to simultaneously analyze multiple quantitative and qualitative features makes it suitable to predict radon with a high degree of precision. Using Canadian and Swedish long-term indoor air radon exposure data, we are using artificial deep neural network models with random weights and polynomial statistical models in MATLAB to assess and predict radon health risk to human as a function of geospatial, human behavioral, and built environmental metrics. Our initial artificial neural network with random weights model run by sigmoid activation tested different combinations of variables and showed the highest prediction accuracy (>96%) within the reasonable iterations. Here, we present details of these emerging methods and discuss strengths and weaknesses compared to the traditional artificial neural network and statistical methods commonly used to predict indoor air quality in different countries. We propose an artificial deep neural network with random weights as a highly effective method for assessing and predicting indoor radon.

Keywords: radon, radiation protection, lung cancer, aI-machine deep learnng, risk assessment, risk prediction, Europe, North America

Procedia PDF Downloads 96