Search results for: residential renewable energy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9184

Search results for: residential renewable energy

7594 Study on Bending Characteristics of Square Tube Using Energy Absorption Part

Authors: Shigeyuki Haruyama, Zefry Darmawan, Ken Kaminishi

Abstract:

In the square tube subjected to the bending load, the rigidity of the entire square tube is reduced when a collapse occurs due to local stress concentration. Therefore, in this research, the influence of bending load on the square tube with attached energy absorbing part was examined and reported. The analysis was conducted by using Finite Element Method (FEM) to produced bending deflection and buckling points. Energy absorption was compared from rigidity of attached part and square tube body. Buckling point was influenced by the rigidity of attached part and the thickness rate of square tube.

Keywords: energy absorber, square tube, bending, rigidity

Procedia PDF Downloads 244
7593 Analysis of Energy Consumption Based on Household Appliances in Jodhpur, India

Authors: A. Kumar, V. Devadas

Abstract:

Energy is the basic element for any country’s economic development. India is one of the most populated countries, and is dependent on fossil fuel and nuclear-based energy generation. The energy sector faces huge challenges and is dependent on the import of energy from neighboring countries to fulfill the gap in demand and supply. India has huge setbacks for efficient energy generation, distribution, and consumption, therefore they consume more quantity of energy to produce the same amount of Gross Domestic Product (GDP) compared to the developed countries. Technology and technique use, availability, and affordability in the various sectors are varying according to their economic status. In this paper, an attempt is made to quantify the domestic electrical energy consumption in Jodhpur, India. Survey research methods have been employed and stratified sampling technique-based households were chosen for conducting the investigation. Pre-tested survey schedules are used to investigate the grassroots level study. The collected data are analyzed by employing statistical techniques. Thereafter, a multiple regression model is developed to understand the functions of total electricity consumption in the domestic sector corresponding to other independent variables including electrical appliances, age of the building, household size, education, etc. The study resulted in identifying the governing variable in energy consumption at the household level and their relationship with the efficiency of household-based electrical and energy appliances. The analysis is concluded with the recommendation for optimizing the gap in peak electrical demand and supply in the domestic sector.

Keywords: appliance, consumption, electricity, households

Procedia PDF Downloads 116
7592 Energy Benefits of Urban Platooning with Self-Driving Vehicles

Authors: Eduardo F. Mello, Peter H. Bauer

Abstract:

The primary focus of this paper is the generation of energy-optimal speed trajectories for heterogeneous electric vehicle platoons in urban driving conditions. Optimal speed trajectories are generated for individual vehicles and for an entire platoon under the assumption that they can be executed without errors, as would be the case for self-driving vehicles. It is then shown that the optimization for the “average vehicle in the platoon” generates similar transportation energy savings to optimizing speed trajectories for each vehicle individually. The introduced approach only requires the lead vehicle to run the optimization software while the remaining vehicles are only required to have adaptive cruise control capability. The achieved energy savings are typically between 30% and 50% for stop-to-stop segments in cities. The prime motivation of urban platooning comes from the fact that urban platoons efficiently utilize the available space and the minimization of transportation energy in cities is important for many reasons, i.e., for environmental, power, and range considerations.

Keywords: electric vehicles, energy efficiency, optimization, platooning, self-driving vehicles, urban traffic

Procedia PDF Downloads 182
7591 Experimental Analysis of Electrical Energy Producing Using the Waste Heat of Exhaust Gas by the Help of Thermoelectric Generator

Authors: Dilek Ozlem Esen, Mesut Kaya

Abstract:

The focus of this study is to analyse the results of heat recovery from exhaust gas which is produced by an internal combustion engine (ICE). To obtain a small amount of energy, an exhaust system which is suitable for recovery waste heat has been constructed. Totally 27 TEGs have been used to convert from the heat to electric energy. By producing a small amount of this energy by the help of thermoelectric generators can reduce engine loads thus decreasing pollutant emissions, fuel consumption, and CO2. This case study is conducted in an effort to better understand and improve the performance of thermoelectric heat recovery systems for automotive use. As a result of this study, 0,45 A averaged current rate, 13,02 V averaged voltage rate and 5,8 W averaged electrical energy have been produced in a five hours operation time.

Keywords: thermoelectric, peltier, thermoelectric generator (TEG), exhaust, cogeneration

Procedia PDF Downloads 654
7590 An Experimental Investigation of the Effect of Control Algorithm on the Energy Consumption and Temperature Distribution of a Household Refrigerator

Authors: G. Peker, Tolga N. Aynur, E. Tinar

Abstract:

In order to determine the energy consumption level and cooling characteristics of a domestic refrigerator controlled with various cooling system algorithms, a side by side type (SBS) refrigerator was tested in temperature and humidity controlled chamber conditions. Two different control algorithms; so-called drop-in and frequency controlled variable capacity compressor algorithms, were tested on the same refrigerator. Refrigerator cooling characteristics were investigated for both cases and results were compared with each other. The most important comparison parameters between the two algorithms were taken as; temperature distribution, energy consumption, evaporation and condensation temperatures, and refrigerator run times. Standard energy consumption tests were carried out on the same appliance and resulted in almost the same energy consumption levels, with a difference of %1,5. By using these two different control algorithms, the power consumptions character/profile of the refrigerator was found to be similar. By following the associated energy measurement standard, the temperature values of the test packages were measured to be slightly higher for the frequency controlled algorithm compared to the drop-in algorithm. This paper contains the details of this experimental study conducted with different cooling control algorithms and compares the findings based on the same standard conditions.

Keywords: control algorithm, cooling, energy consumption, refrigerator

Procedia PDF Downloads 373
7589 Experimental Study on Different Load Operation and Rapid Load-change Characteristics of Pulverized Coal Combustion with Self-preheating Technology

Authors: Hongliang Ding, Ziqu Ouyang

Abstract:

Under the basic national conditions that the energy structure is dominated by coal, it is of great significance to realize deep and flexible peak shaving of boilers in pulverized coal power plants, and maximize the consumption of renewable energy in the power grid, to ensure China's energy security and scientifically achieve the goals of carbon peak and carbon neutrality. With the promising self-preheating combustion technology, which had the potential of broad-load regulation and rapid response to load changes, this study mainly investigated the different load operation and rapid load-change characteristics of pulverized coal combustion. Four effective load-stabilization bases were proposed according to preheating temperature, coal gas composition (calorific value), combustion temperature (spatial mean temperature and mean square temperature fluctuation coefficient), and flue gas emissions (CO and NOx concentrations), on the basis of which the load-change rates were calculated to assess the load response characteristics. Due to the improvement of the physicochemical properties of pulverized coal after preheating, stable ignition and combustion conditions could be obtained even at a low load of 25%, with a combustion efficiency of over 97.5%, and NOx emission reached the lowest at 50% load, with the concentration of 50.97 mg/Nm3 (@6%O2). Additionally, the load ramp-up stage displayed higher load-change rates than the load ramp-down stage, with maximum rates of 3.30 %/min and 3.01 %/min, respectively. Furthermore, the driving force formed by high step load was conducive to the increase of load-change rate. The rates based on the preheating indicator attained the highest value of 3.30 %/min, while the rates based on the combustion indicator peaked at 2.71 %/min. In comparison, the combustion indicator accurately described the system’s combustion state and load changes, whereas the preheating indicator was easier to acquire, with a higher load-change rate, hence the appropriate evaluation strategy should depend on the actual situation. This study verified a feasible method for deep and flexible peak shaving of coal-fired power units, further providing basic data and technical supports for future engineering applications.

Keywords: clean coal combustion, load-change rate, peak shaving, self-preheating

Procedia PDF Downloads 68
7588 A Large Language Model-Driven Method for Automated Building Energy Model Generation

Authors: Yake Zhang, Peng Xu

Abstract:

The development of building energy models (BEM) required for architectural design and analysis is a time-consuming and complex process, demanding a deep understanding and proficient use of simulation software. To streamline the generation of complex building energy models, this study proposes an automated method for generating building energy models using a large language model and the BEM library aimed at improving the efficiency of model generation. This method leverages a large language model to parse user-specified requirements for target building models, extracting key features such as building location, window-to-wall ratio, and thermal performance of the building envelope. The BEM library is utilized to retrieve energy models that match the target building’s characteristics, serving as reference information for the large language model to enhance the accuracy and relevance of the generated model, allowing for the creation of a building energy model that adapts to the user’s modeling requirements. This study enables the automatic creation of building energy models based on natural language inputs, reducing the professional expertise required for model development while significantly decreasing the time and complexity of manual configuration. In summary, this study provides an efficient and intelligent solution for building energy analysis and simulation, demonstrating the potential of a large language model in the field of building simulation and performance modeling.

Keywords: artificial intelligence, building energy modelling, building simulation, large language model

Procedia PDF Downloads 26
7587 Electromagnetic and Physicochemical Properties in the Addition of Silicon Oxide on the SSPS Renewable Films

Authors: Niloofar Alipoormazandarani

Abstract:

The rift environmental, efficiency and being environmental-friendly of these innovative food packaging in edible films made them as an alternative to synthetic packages. This issue has been widely studied in this experiment. Some of the greatest advances in food packaging industry is associated with nanotechnology. Recently, a polysaccharide extracted from the cell wall of soybean cotyledons: A soluble soybean polysaccharide (SSPS), a pectin-like structure. In this study, the addition (0%, 1%, 3%, and 5%) of nano silica dioxide (SiO2) film is examined SSPS in different features. The research aims to investigate the effect of nano-SiO2 on the physicochemical and electromagnetic properties of the SSPS films were sonicated and then heated to the melting point, besides the addition of plasticizer. After that, it has been cooled into the room temperature and were dried with Casting method. In final examinations,improvement in Moisture Content and Water Absorption was observed with a significant decrease.Also, in Color measurements there were some obvious differences. These reports indicate that the incorporation of nano-SiO2 and SSPS has the power to be extensively used in pharmaceutical and food packaging industry as well.

Keywords: SSPS, NanoSiO2, food packaging, renewable films

Procedia PDF Downloads 392
7586 An Energy-Balanced Clustering Method on Wireless Sensor Networks

Authors: Yu-Ting Tsai, Chiun-Chieh Hsu, Yu-Chun Chu

Abstract:

In recent years, due to the development of wireless network technology, many researchers have devoted to the study of wireless sensor networks. The applications of wireless sensor network mainly use the sensor nodes to collect the required information, and send the information back to the users. Since the sensed area is difficult to reach, there are many restrictions on the design of the sensor nodes, where the most important restriction is the limited energy of sensor nodes. Because of the limited energy, researchers proposed a number of ways to reduce energy consumption and balance the load of sensor nodes in order to increase the network lifetime. In this paper, we proposed the Energy-Balanced Clustering method with Auxiliary Members on Wireless Sensor Networks(EBCAM)based on the cluster routing. The main purpose is to balance the energy consumption on the sensed area and average the distribution of dead nodes in order to avoid excessive energy consumption because of the increasing in transmission distance. In addition, we use the residual energy and average energy consumption of the nodes within the cluster to choose the cluster heads, use the multi hop transmission method to deliver the data, and dynamically adjust the transmission radius according to the load conditions. Finally, we use the auxiliary cluster members to change the delivering path according to the residual energy of the cluster head in order to its load. Finally, we compare the proposed method with the related algorithms via simulated experiments and then analyze the results. It reveals that the proposed method outperforms other algorithms in the numbers of used rounds and the average energy consumption.

Keywords: auxiliary nodes, cluster, load balance, routing algorithm, wireless sensor network

Procedia PDF Downloads 274
7585 Modal Analysis for Optimal Location of Doubly Fed Induction-Generator-Based Wind Farms for Reduction of Small Signal Oscillation

Authors: Meet Patel, Darshan Patel, Nilay Shah

Abstract:

Excess growth of wind-based renewable energy sources is required to identify the optimal location and damping capacity of doubly fed induction-generator-based (DFIG) wind farms while it penetrates into the transmission network. In this analysis, various ratings of DFIG wind farms are penetrated into the Single Machine Infinite Bus (SMIB ) at a different distance of the transmission line. On the basis of detailed examinations, a prime position is evaluated to maximize the stability of overall systems. A damping controller is designed at an optimum location to mitigate the small oscillations. The proposed model was validated using eigenvalue analysis, calculation of the participation factor, and time-domain simulation.

Keywords: DFIG, small signal stability, eigenvalues, time domain simulation

Procedia PDF Downloads 113
7584 Adsorptive Waste Heat Based Air-Conditioning Control Strategy for Automotives

Authors: Indrasen Raghupatruni, Michael Glora, Ralf Diekmann, Thomas Demmer

Abstract:

As the trend in automotive technology is fast moving towards hybridization and electrification to curb emissions as well as to improve the fuel efficiency, air-conditioning systems in passenger cars have not caught up with this trend and still remain as the major energy consumers amongst others. Adsorption based air-conditioning systems, e.g. with silica-gel water pair, which are already in use for residential and commercial applications, are now being considered as a technology leap once proven feasible for the passenger cars. In this paper we discuss a methodology, challenges and feasibility of implementing an adsorption based air-conditioning system in a passenger car utilizing the exhaust waste heat. We also propose an optimized control strategy with interfaces to the engine control unit of the vehicle for operating this system with reasonable efficiency supported by our simulation and validation results in a prototype vehicle, additionally comparing to existing implementations, simulation based as well as experimental. Finally we discuss the influence of start-stop and hybrid systems on the operation strategy of the adsorption air-conditioning system.

Keywords: adsorption air-conditioning, feasibility study, optimized control strategy, prototype vehicle

Procedia PDF Downloads 435
7583 Analysis of Influence of Geometrical Set of Nozzles on Aerodynamic Drag Level of a Hero’s Based Steam Turbine

Authors: Mateusz Paszko, Miroslaw Wendeker, Adam Majczak

Abstract:

High temperature waste energy offers a number of management options. The most common energy recuperation systems, that are actually used to utilize energy from the high temperature sources are steam turbines working in a high pressure and temperature closed cycles. Due to the high costs of production of energy recuperation systems, especially rotary turbine discs equipped with blades, currently used solutions are limited in use with waste energy sources of temperature below 100 °C. This study presents the results of simulating the flow of the water vapor in various configurations of flow ducts in a reaction steam turbine based on Hero’s steam turbine. The simulation was performed using a numerical model and the ANSYS Fluent software. Simulation computations were conducted with use of the water vapor as an internal agent powering the turbine, which is fully safe for an environment in case of a device failure. The conclusions resulting from the conducted numerical computations should allow for optimization of the flow ducts geometries, in order to achieve the greatest possible efficiency of the turbine. It is expected that the obtained results should be useful for further works related to the development of the final version of a low drag steam turbine dedicated for low cost energy recuperation systems.

Keywords: energy recuperation, CFD analysis, waste energy, steam turbine

Procedia PDF Downloads 210
7582 Probing Anomalous WW γ and WWZ Couplings with Polarized Electron Beam at the LHeC and FCC-Ep Collider

Authors: I. Turk Cakir, A. Senol, A. T. Tasci, O. Cakir

Abstract:

We study the anomalous WWγ and WWZ couplings by calculating total cross sections of the ep→νqγX and ep→νqZX processes at the LHeC with electron beam energy Ee=140 GeV and the proton beam energy Ep=7 TeV, and at the FCC-ep collider with the polarized electron beam energy Ee=80 GeV and the proton beam energy Ep=50 TeV. At the LHeC with electron beam polarization, we obtain the results for the difference of upper and lower bounds as (0.975, 0.118) and (0.285, 0.009) for the anomalous (Δκγ,λγ) and (Δκz,λz) couplings, respectively. As for FCC-ep collider, these bounds are obtained as (1.101,0.065) and (0.320,0.002) at an integrated luminosity of Lint=100 fb-1.

Keywords: anomalous couplings, future circular collider, large hadron electron collider, W-boson and Z-boson

Procedia PDF Downloads 382
7581 Dynamic Programming Based Algorithm for the Unit Commitment of the Transmission-Constrained Multi-Site Combined Heat and Power System

Authors: A. Rong, P. B. Luh, R. Lahdelma

Abstract:

High penetration of intermittent renewable energy sources (RES) such as solar power and wind power into the energy system has caused temporal and spatial imbalance between electric power supply and demand for some countries and regions. This brings about the critical need for coordinating power production and power exchange for different regions. As compared with the power-only systems, the combined heat and power (CHP) systems can provide additional flexibility of utilizing RES by exploiting the interdependence of power and heat production in the CHP plant. In the CHP system, power production can be influenced by adjusting heat production level and electric power can be used to satisfy heat demand by electric boiler or heat pump in conjunction with heat storage, which is much cheaper than electric storage. This paper addresses multi-site CHP systems without considering RES, which lay foundation for handling penetration of RES. The problem under study is the unit commitment (UC) of the transmission-constrained multi-site CHP systems. We solve the problem by combining linear relaxation of ON/OFF states and sequential dynamic programming (DP) techniques, where relaxed states are used to reduce the dimension of the UC problem and DP for improving the solution quality. Numerical results for daily scheduling with realistic models and data show that DP-based algorithm is from a few to a few hundred times faster than CPLEX (standard commercial optimization software) with good solution accuracy (less than 1% relative gap from the optimal solution on the average).

Keywords: dynamic programming, multi-site combined heat and power system, relaxed states, transmission-constrained generation unit commitment

Procedia PDF Downloads 365
7580 Spatial Architecture Impact in Mediation Open Circuit Voltage Control of Quantum Solar Cell Recovery Systems

Authors: Moustafa Osman Mohammed

Abstract:

The photocurrent generations are influencing ultra-high efficiency solar cells based on self-assembled quantum dot (QD) nanostructures. Nanocrystal quantum dots (QD) provide a great enhancement toward solar cell efficiencies through the use of quantum confinement to tune absorbance across the solar spectrum enabled multi-exciton generation. Based on theoretical predictions, QDs have potential to improve systems efficiency in approximate regular electrons excitation intensity greater than 50%. In solar cell devices, an intermediate band formed by the electron levels in quantum dot systems. The spatial architecture is exploring how can solar cell integrate and produce not only high open circuit voltage (> 1.7 eV) but also large short-circuit currents due to the efficient absorption of sub-bandgap photons. In the proposed QD system, the structure allows barrier material to absorb wavelengths below 700 nm while multi-photon processes in the used quantum dots to absorb wavelengths up to 2 µm. The assembly of the electronic model is flexible to demonstrate the atoms and molecules structure and material properties to tune control energy bandgap of the barrier quantum dot to their respective optimum values. In terms of energy virtual conversion, the efficiency and cost of the electronic structure are unified outperform a pair of multi-junction solar cell that obtained in the rigorous test to quantify the errors. The milestone toward achieving the claimed high-efficiency solar cell device is controlling the edge causes of energy bandgap between the barrier material and quantum dot systems according to the media design limits. Despite this remarkable potential for high photocurrent generation, the achievable open-circuit voltage (Voc) is fundamentally limited due to non-radiative recombination processes in QD solar cells. The orientation of voltage recovery system is compared theoretically with experimental Voc variation in mediation upper–limit obtained one diode modeling form at the cells with different bandgap (Eg) as classified in the proposed spatial architecture. The opportunity for improvement Voc is valued approximately greater than 1V by using smaller QDs through QD solar cell recovery systems as confined to other micro and nano operations states.

Keywords: nanotechnology, photovoltaic solar cell, quantum systems, renewable energy, environmental modeling

Procedia PDF Downloads 157
7579 Experimental Investigation of Folding of Rubber-Filled Circular Tubes on Energy Absorption Capacity

Authors: MohammadSadegh SaeediFakher, Jafar Rouzegar, Hassan Assaee

Abstract:

In this research, mechanical behavior and energy absorption capacity of empty and rubber-filled brazen circular tubes under quasi-static axial loading are investigated, experimentally. The brazen tubes were cut out of commercially available brazen circular tubes with the same length and diameter. Some of the specimens were filled with rubbers with three different shores and also, an empty tube was prepared. The specimens were axially compressed between two rigid plates in a quasi-static process using a Zwick testing machine. Load-displacement diagrams and energy absorption of the tested tubes were extracted from experimental data. The results show that filling the brazen tubes with rubber causes those to absorb more energy and the energy absorption of specimens are increased by increasing the shore of rubbers. In comparison to the empty tube, the first fold for the rubber-filled tubes occurs at lower load and it can be concluded that the rubber-filled tubes are better energy absorbers than the empty tubes. Also, in contrast with the empty tubes, the tubes that were filled with lower rubber shore deform asymmetrically.

Keywords: axial compression, quasi-static loading, folding, energy absorbers, rubber-filled tubes

Procedia PDF Downloads 431
7578 Biogas Production Using Water Hyacinth as a Means of Waste Management Control at Hartbeespoort Dam, South Africa

Authors: Trevor Malambo Simbayi, Diane Hildebrandt, Tonderayi Matambo

Abstract:

The rapid growth of population in recent decades has resulted in an increased need for energy to meet human activities. As energy demands increase, the need for other sources of energy other than fossil fuels, increases in turn. Furthermore, environmental concerns such as global warming due to the use of fossil fuels, depleting fossil fuel reserves and the rising cost of oil have contributed to an increased interest in renewables sources of energy. Biogas is a renewable source of energy produced through the process of anaerobic digestion (AD) and it offers a two-fold solution; it provides an environmentally friendly source of energy and its production helps to reduce the amount of organic waste taken to landfills. This research seeks to address the waste management problem caused by an aquatic weed called water hyacinth (Eichhornia crassipes) at the Hartbeespoort (Harties) Dam in the North West Province of South Africa, through biogas production of the weed. Water hyacinth is a category 1 invasive species and it is deemed to be the most problematic aquatic weed. This weed is said to double its size in the space of five days. Eutrophication in the Hartbeespoort Dam has manifested itself through the excessive algae bloom and water hyacinth infestation. A large amount of biomass from water hyacinth and algae are generated per annum from the two hundred hectare surface area of the dam exposed to the sun. This biomass creates a waste management problem. Water hyacinth when in full bloom can cover nearly half of the surface of Hartbeespoort Dam. The presence of water hyacinth in the dam has caused economic and environmental problems. Economic activities such as fishing, boating, and recreation, are hampered by the water hyacinth’s prolific growth. This research proposes the use of water hyacinth as a feedstock or substrate for biogas production in order to find an economic and environmentally friendly means of waste management for the communities living around the Hartbeespoort Dam. In order to achieve this objective, water hyacinth will be collected from the dam and it will be mechanically pretreated before anaerobic digestion. Pretreatment is required for lignocellulosic materials like water hyacinth because such materials are called recalcitrant solid materials. Cow manure will be employed as a source of microorganisms needed for biogas production to occur. Once the water hyacinth and the cow dung are mixed, they will be placed in laboratory anaerobic reactors. Biogas production will be monitored daily through the downward displacement of water. Characterization of the substrates (cow manure and water hyacinth) to determine the nitrogen, sulfur, carbon and hydrogen, total solids (TS) and volatile solids (VS). Liquid samples from the anaerobic digesters will be collected and analyzed for volatile fatty acids (VFAs) composition by means of a liquid gas chromatography machine.

Keywords: anaerobic digestion, biogas, waste management, water hyacinth

Procedia PDF Downloads 196
7577 Empirical Analysis of the Effect of Cloud Movement in a Basic Off-Grid Photovoltaic System: Case Study Using Transient Response of DC-DC Converters

Authors: Asowata Osamede, Christo Pienaar, Johan Bekker

Abstract:

Mismatch in electrical energy (power) or outage from commercial providers, in general, does not promote development to the public and private sector, these basically limit the development of industries. The necessity for a well-structured photovoltaic (PV) system is of importance for an efficient and cost-effective monitoring system. The major renewable energy potential on earth is provided from solar radiation and solar photovoltaics (PV) are considered a promising technological solution to support the global transformation to a low-carbon economy and reduction on the dependence on fossil fuels. Solar arrays which consist of various PV module should be operated at the maximum power point in order to reduce the overall cost of the system. So power regulation and conditioning circuits should be incorporated in the set-up of a PV system. Power regulation circuits used in PV systems include maximum power point trackers, DC-DC converters and solar chargers. Inappropriate choice of power conditioning device in a basic off-grid PV system can attribute to power loss, hence the need for a right choice of power conditioning device to be coupled with the system of the essence. This paper presents the design and implementation of a power conditioning devices in order to improve the overall yield from the availability of solar energy and the system’s total efficiency. The power conditioning devices taken into consideration in the project includes the Buck and Boost DC-DC converters as well as solar chargers with MPPT. A logging interface circuit (LIC) is designed and employed into the system. The LIC is designed on a printed circuit board. It basically has DC current signalling sensors, specifically the LTS 6-NP. The LIC is consequently required to program the voltages in the system (these include the PV voltage and the power conditioning device voltage). The voltage is structured in such a way that it can be accommodated by the data logger. Preliminary results which include availability of power as well as power loss in the system and efficiency will be presented and this would be used to draw the final conclusion.

Keywords: tilt and orientation angles, solar chargers, PV panels, storage devices, direct solar radiation

Procedia PDF Downloads 135
7576 Evaluation of Traditional Housing Texture in Context of Sustainability

Authors: Esra Yaldız, Dicle Aydın

Abstract:

Sustainability is a term that provides deciding about the future considering environment and investigates the harmony and balance between protection and usage of the resource. The main objective of sustainability is creating residential areas is nature compatible or providing continuance thereby adapting existing residential area to nature. In this context, historical and traditional areas must have utilized according to sustainability. Traditional housing texture are identified as a traditional architectural product has been designed based on this term. General characteristics of traditional housing within the context of sustainable architecture are their specific dynamics and components and their harmonisation of environment and nature. Owing to the fact that traditional housing texture harmonizes natural conditions of the region, topography, climate and their context, construction materials are provided from environment and traditional techniques and their forms are used and due to construction materials has natural insulation traditional housing create healthy and comfortable living environment, traditional housing is rather significant in terms of sustainable architecture. The basis of this study comprise the routers in traditional housing design in accordance with the principles of sustainability. These are, accommodating topography, climate, and geography, accessibility, structuring at the scale of human, utilization of green zones, unique to the region used construction materials, the form of construction, building envelope and space organization of dwelling. In this context, the purpose of this study is that vernacular architecture approaches of traditional housing textures which are in Central Anatolia Region Located in Anatolia are utilized with regard to sustainability.

Keywords: Anatolia, sustainability, traditional housing texture, vernacular architecture

Procedia PDF Downloads 453
7575 Load Balancing Technique for Energy - Efficiency in Cloud Computing

Authors: Rani Danavath, V. B. Narsimha

Abstract:

Cloud computing is emerging as a new paradigm of large scale distributed computing. Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable computing resources (e.g., three service models, and four deployment networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction. This cloud model is composed of five essential characteristics models. Load balancing is one of the main challenges in cloud computing, which is required to distribute the dynamic workload across multiple nodes, to ensure that no single node is overloaded. It helps in optimal utilization of resources, enhancing the performance of the system. The goal of the load balancing is to minimize the resource consumption and carbon emission rate, that is the direct need of cloud computing. This determined the need of new metrics energy consumption and carbon emission for energy-efficiency load balancing techniques in cloud computing. Existing load balancing techniques mainly focuses on reducing overhead, services, response time and improving performance etc. In this paper we introduced a Technique for energy-efficiency, but none of the techniques have considered the energy consumption and carbon emission. Therefore, our proposed work will go towards energy – efficiency. So this energy-efficiency load balancing technique can be used to improve the performance of cloud computing by balancing the workload across all the nodes in the cloud with the minimum resource utilization, in turn, reducing energy consumption, and carbon emission to an extent, which will help to achieve green computing.

Keywords: cloud computing, distributed computing, energy efficiency, green computing, load balancing, energy consumption, carbon emission

Procedia PDF Downloads 449
7574 Urban Dust Influence on the Foliar Surface and Biochemical Constituents of Selected Plants in the National Capital Region of Delhi, India

Authors: G. P. Gupta, B. Kumar, S. Singh, U. C. Kulshrestha

Abstract:

Very high loadings of atmospheric dust in the Indian region contribute to remarkably higher levels of particulate matter. During dry weather conditions which prevail most of the year, dustfall is deposited onto the foliar surfaces affecting their morphology, stomata and biochemical constituents. This study reports chemical characteristics of dustfall, its effect on foliar morphology and biochemical constituents of two medicinal plants i.e. Morus (Morus alba) and Arjun (Terminalia arjuna) in the urban environment of National Capital Region (NCR) of Delhi at two sites i.e. Jawaharlal Nehru University (residential) and Sahibabad (industrial). Atmospheric dust was characterized for major anions (F-, Cl-, NO3-, SO4--) and cations (Na+, NH4+, K+, Mg++, Ca++) along with the biochemical parameters Chl a, Chl b, total chlorophyll, carotenoid, total soluble sugar, relative water content (RWC), pH, and ascorbic acid. The results showed that the concentrations of major ions in dustfall were higher at the industrial site as compared to the residential site due to the higher level of anthropogenic activities. Both the plant species grown at industrial site had significantly lower values of chlorophyll ‘a’, chlorophyll ‘b’, total chlorophyll, carotenoid but relatively higher values of total soluble sugar and ascorbic acid indicating stressful conditions due to industrial and vehicular emissions.

Keywords: dustfall, urban environment, biochemical constituents, atmospheric dust

Procedia PDF Downloads 305
7573 Sustainability in Tourism and Hospitality Industry in China: Best Practices and Challenges

Authors: Mkhitaryan Davit

Abstract:

The tourism and hospitality industry plays a significant role in China's economy, but it also poses environmental, social, and economic challenges. This paper examines the concept of sustainability within the context of China's tourism and hospitality industry, exploring best practices from 26 Hotels in 15 cities and identifying key challenges. Drawing upon a comprehensive review of existing literature, case studies, and interviews with industry experts, the paper highlights successful sustainability initiatives implemented by various stakeholders, including government bodies, businesses, and non-governmental organizations. Additionally, it discusses the barriers and obstacles hindering the widespread adoption of sustainable practices in the sector, such as lack of awareness, financial constraints, and regulatory issues. The findings provide insights for policymakers, industry practitioners, and researchers to develop strategies and solutions for promoting sustainable tourism and hospitality practices in China, ultimately contributing to the long-term viability and resilience of the industry.

Keywords: sustainability, waste management, renewable energy, hospitality

Procedia PDF Downloads 52
7572 Research Trends in High Voltage Power Transmission

Authors: Tlotlollo Sidwell Hlalele, Shengzhi Du

Abstract:

High voltage transmission is the most pivotal process in the electrical power industry. It requires a robust infrastructure that can last for decades without causing impairment in human life. Due to the so-called global warming, power transmission system has started to experience some challenges which could presumably escalate more in future. These challenges are earthquake resistance, transmission power losses, and high electromagnetic field. In this paper, research efforts aim to address these challenges are discussed. We focus in particular on the research in regenerative electric energy such as: wind, hydropower, biomass and sea-waves based on the energy storage and transmission possibility. We conclude by drawing attention to specific areas that we believe need more research.

Keywords: power transmission, regenerative energy, power quality, energy storage

Procedia PDF Downloads 352
7571 Growth Mechanism, Structural and Compositional Properties of Cu₂ZnSnS₄ (CZTS) Thin Films Deposited by Sputtering Method from a Compound Target

Authors: Sanusi Abdullahi, Musa Momoh, Abubakar Umar Moreh, Aminu Muhammad Bayawa, Olubunmi Popoola

Abstract:

Kesterite-type Cu₂ZnSnS₄ (CZTS) thin films were deposited on corning glass from a single quaternary target. In this study, we investigated the growth mechanism and the influence of thin film thickness on the structural and compositional properties of CZTS films. All the four samples (as-deposited inclusive) show peaks corresponding to kesterite-type structure. The diffraction peaks of (112) are sharp and the small characteristics peaks of the kesterite structure such as (220)/ (204) and (312)/ (116) are also clearly observed in X-ray diffraction pattern. These results indicate that the quaternary CZTS would be a potential candidate for solar cell applications.

Keywords: RF sputtering, Cu2ZnSnS4 thin film, annealing, growth mechanism, annealing, growth mechanism, renewable energy

Procedia PDF Downloads 373
7570 Energy Absorption of Circular Thin-Walled Tube with Curved-Crease Patterns under Axial Crushing

Authors: Grzegorz Dolzyk, Sungmoon Jung

Abstract:

Thin-walled tubes are commonly used as energy absorption devices for their excellent mechanical properties and high manufacturability. Techniques such as grooving and pre-folded origami shapes were introduced to circular and polygonal tubes to improve its energy absorption efficiency. This paper examines the energy absorption characteristics of circular tubes with pre-embedded curved-crease pattern. Set of numerical analyzes were conducted with different grooving patterns for tubes with various diameter (D) to thickness (t) ratio. It has been found that even very shallow grooving can positively affect thin wall tubes, leading to increased energy absorption and higher crushing load efficiency. The phenomenon is associated with nonsymmetric deformation that is usually observed for tubes with a high D/t ratio ( > 90). Grooving can redirect a natural mode of post-buckling deformation to a one with a higher number of lobes such that its beneficial and more stable. Also, the opposite effect can be achieved, and highly disrupted deformation can be a cause of reduced energy absorption capabilities. Curved-crease engraved patterns can be used to stabilize and change a form of hazardous post-buckling deformation.

Keywords: axial crushing, energy absorption, grooving, thin-wall structures

Procedia PDF Downloads 145
7569 The Development of Wind Energy and Its Social Acceptance: The Role of Income Received by Wind Farm Owners, the Case of Galicia, Northwest Spain

Authors: X. Simon, D. Copena, M. Montero

Abstract:

The last decades have witnessed a significant increase in renewable energy, especially wind energy, to achieve sustainable development. Specialized literature in this field has carried out interesting case studies to extensively analyze both the environmental benefits of this energy and its social acceptance. However, to the best of our knowledge, work to date makes no analysis of the role of private owners of lands with wind potential within a broader territory of strong wind implantation, nor does it estimate their economic incomes relating them to social acceptance. This work fills this gap by focusing on Galicia, territory housing over 4,000 wind turbines and almost 3,400 MW of power. The main difficulty in getting this financial information is that it is classified, not public. We develop methodological techniques (semi- structured interviews and work groups), inserted within the Participatory Research, to overcome this important obstacle. In this manner, the work directly compiles qualitative and quantitative information on the processes as well as the economic results derived from implementing wind energy in Galicia. During the field work, we held 106 semi-structured interviews and 32 workshops with owners of lands occupied by wind farms. The compiled information made it possible to create the socioeconomic database on wind energy in Galicia (SDWEG). This database collects a diversity of quantitative and qualitative information and contains economic information on the income received by the owners of lands occupied by wind farms. In the Galician case, regulatory framework prevented local participation under the community wind farm formula. The possibility of local participation in the new energy model narrowed down to companies wanting to install a wind farm and demanding land occupation. The economic mechanism of local participation begins here, thus explaining the level of acceptance of wind farms. Land owners can receive significant income given that these payments constitute an important source of economic resources, favor local economic activity, allow rural areas to develop productive dynamism projects and improve the standard of living of rural inhabitants. This work estimates that land owners in Galicia perceive about 10 million euros per year in total wind revenues. This represents between 1% and 2% of total wind farm invoicing. On the other hand, relative revenues (Euros per MW), far from the amounts reached in other spaces, show enormous payment variability. This signals the absence of a regulated market, the predominance of partial agreements, and the existence of asymmetric positions between owners and developers. Sustainable development requires the replacement of conventional technologies by low environmental impact technologies, especially those that emit less CO₂. However, this new paradigm also requires rural owners to participate in the income derived from the structural transformation processes linked to sustainable development. This paper demonstrates that regulatory framework may contribute to increasing sustainable technologies with high social acceptance without relevant local economic participation.

Keywords: regulatory framework, social acceptance, sustainable development, wind energy, wind income for landowners

Procedia PDF Downloads 142
7568 Avoiding Medication Errors in Juvenile Facilities

Authors: Tanja Salary

Abstract:

This study uncovers a gap in the research and adds to the body of knowledge regarding medication errors in a juvenile justice facility. The study includes an introduction to data collected about medication errors in a juvenile justice facility and explores contributing factors that relate to those errors. The data represent electronic incident records of the medication errors that were documented from the years 2011 through 2019. In addition, this study reviews both current and historical research of empirical data about patient safety standards and quality care comparing traditional healthcare facilities to juvenile justice residential facilities. The theoretical/conceptual framework for the research study pertains to Bandura and Adams’s (1977) framework of self-efficacy theory of behavioral change and Mark Friedman’s results-based accountability theory (2005). Despite the lack of evidence in previous studies about addressing medication errors in juvenile justice facilities, this presenter will relay information that adds to the body of knowledge to note the importance of how assessing the potential relationship between medication errors. Implications for more research include recommendations for more education and training regarding increased communication among juvenile justice staff, including nurses, who administer medications to juveniles to ensure adherence to patient safety standards. There are several opportunities for future research concerning other characteristics about factors that may affect medication administration errors within the residential juvenile justice facility.

Keywords: juvenile justice, medication errors, psychotropic medications, behavioral health, juveniles, incarcerated youth, recidivism, patient safety

Procedia PDF Downloads 81
7567 Optimization for the Hydraulic Clamping System of an Internal Circulation Two-Platen Injection Molding Machine

Authors: Jian Wang, Lu Yang, Jiong Peng

Abstract:

Internal circulation two-platen clamping system for injection molding machine (IMM) has many potential advantages on energy-saving. In order to estimate its properties, experiments in this paper were carried out. Displacement and pressure of the components were measured. In comparison, the model of hydraulic clamping system was established by using AMESim. The related parameters as well as the energy consumption could be calculated. According to the analysis, the hydraulic system was optimized in order to reduce the energy consumption.

Keywords: AMESim, energy-saving, injection molding machine, internal circulation

Procedia PDF Downloads 550
7566 Assessment and Optimisation of Building Services Electrical Loads for Off-Grid or Hybrid Operation

Authors: Desmond Young

Abstract:

In building services electrical design, a key element of any project will be assessing the electrical load requirements. This needs to be done early in the design process to allow the selection of infrastructure that would be required to meet the electrical needs of the type of building. The type of building will define the type of assessment made, and the values applied in defining the maximum demand for the building, and ultimately the size of supply or infrastructure required, and the application that needs to be made to the distribution network operator, or alternatively to an independent network operator. The fact that this assessment needs to be undertaken early in the design process provides limits on the type of assessment that can be used, as different methods require different types of information, and sometimes this information is not available until the latter stages of a project. A common method applied in the earlier design stages of a project, typically during stages 1,2 & 3, is the use of benchmarks. It is a possibility that some of the benchmarks applied are excessive in relation to the current loads that exist in a modern installation. This lack of accuracy is based on information which does not correspond to the actual equipment loads that are used. This includes lighting and small power loads, where the use of more efficient equipment and lighting has reduced the maximum demand required. The electrical load can be used as part of the process to assess the heat generated from the equipment, with the heat gains from other sources, this feeds into the sizing of the infrastructure required to cool the building. Any overestimation of the loads would contribute to the increase in the design load for the heating and ventilation systems. Finally, with the new policies driving the industry to decarbonise buildings, a prime example being the recently introduced London Plan, loads are potentially going to increase. In addition, with the advent of the pandemic and changes to working practices, and the adoption of electric heating and vehicles, a better understanding of the loads that should be applied will aid in ensuring that infrastructure is not oversized, as a cost to the client, or undersized to the detriment of the building. In addition, more accurate benchmarks and methods will allow assessments to be made for the incorporation of energy storage and renewable technologies as these technologies become more common in buildings new or refurbished.

Keywords: energy, ADMD, electrical load assessment, energy benchmarks

Procedia PDF Downloads 112
7565 Impact of Wheel-Housing on Aerodynamic Drag and Effect on Energy Consumption on an Bus

Authors: Amitabh Das, Yash Jain, Mohammad Rafiq B. Agrewale, K. C. Vora

Abstract:

Role of wheel and underbody aerodynamics of vehicle in the formation of drag forces is detrimental to the fuel (energy) consumption during the course of operation at high velocities. This paper deals with the CFD simulation of the flow around the wheels of a bus with different wheel housing geometry and pattern. Based on benchmarking a model of a bus is selected and analysis is performed. The aerodynamic drag coefficient is obtained and turbulence around wheels is observed using ANSYS Fluent CFD simulation for different combinations of wheel-housing at the front wheels, at the rear wheels and both in the front and rear wheels. The drag force is recorded and corresponding influence on energy consumption on an electric bus is evaluated mathematically. A comparison is drawn between energy consumption of bus body without wheel housing and bus body with wheel housing. The result shows a significant reduction in drag coefficient and fuel consumption.

Keywords: wheel-housing, CFD simulation, drag coefficient, energy consumption

Procedia PDF Downloads 185