Search results for: automatic selective door operations
1956 Autism Spectrum Disorder Classification Algorithm Using Multimodal Data Based on Graph Convolutional Network
Authors: Yuntao Liu, Lei Wang, Haoran Xia
Abstract:
Machine learning has shown extensive applications in the development of classification models for autism spectrum disorder (ASD) using neural image data. This paper proposes a fusion multi-modal classification network based on a graph neural network. First, the brain is segmented into 116 regions of interest using a medical segmentation template (AAL, Anatomical Automatic Labeling). The image features of sMRI and the signal features of fMRI are extracted, which build the node and edge embedding representations of the brain map. Then, we construct a dynamically updated brain map neural network and propose a method based on a dynamic brain map adjacency matrix update mechanism and learnable graph to further improve the accuracy of autism diagnosis and recognition results. Based on the Autism Brain Imaging Data Exchange I dataset(ABIDE I), we reached a prediction accuracy of 74% between ASD and TD subjects. Besides, to study the biomarkers that can help doctors analyze diseases and interpretability, we used the features by extracting the top five maximum and minimum ROI weights. This work provides a meaningful way for brain disorder identification.Keywords: autism spectrum disorder, brain map, supervised machine learning, graph network, multimodal data, model interpretability
Procedia PDF Downloads 791955 Innovative Three Wire Capacitor Circuit System for Efficiency and Comfort Improvement of Ceiling Fans
Authors: R. K. Saket, K. S. Anand Kumar
Abstract:
This paper presents an innovative 3-wire capacitor circuit system used to increase the efficiency and comfort improvement of permanent split-capacitor ceiling fan. In this innovative circuit, current has been reduced to save electrical power. The system could be used to replace standard single phase motor 2-wire capacitor configuration by cost effective split value X rated of optimized AC capacitors with the auxiliary winding to provide reliable ceiling fan operation and improved machine performance to save power. In basic system operations, comparisons with conventional ceiling fan are described.Keywords: permanent split-capacitor motor, innovative 3-wire capacitor circuit system, standard 2-wire capacitor circuit system, metalized film X-rated capacitor
Procedia PDF Downloads 5271954 Analytical Hierarchical Process for Multi-Criteria Decision-Making
Authors: Luis Javier Serrano Tamayo
Abstract:
This research on technology makes a first approach to the selection of an amphibious landing ship with strategic capabilities, through the implementation of a multi-criteria model using Analytical Hierarchical Process (AHP), in which a significant group of alternatives of latest technology has been considered. The variables were grouped at different levels to match design and performance characteristics, which affect the lifecycle as well as the acquisition, maintenance and operational costs. The model yielded an overall measure of effectiveness and an overall measure of cost of each kind of ship that was compared each other inside the model and showed in a Pareto chart. The modeling was developed using the Expert Choice software, based on AHP method.Keywords: analytic hierarchy process, multi-criteria decision-making, Pareto analysis, Colombian Marine Corps, projection operations, expert choice, amphibious landing ship
Procedia PDF Downloads 5531953 A Deep-Learning Based Prediction of Pancreatic Adenocarcinoma with Electronic Health Records from the State of Maine
Authors: Xiaodong Li, Peng Gao, Chao-Jung Huang, Shiying Hao, Xuefeng B. Ling, Yongxia Han, Yaqi Zhang, Le Zheng, Chengyin Ye, Modi Liu, Minjie Xia, Changlin Fu, Bo Jin, Karl G. Sylvester, Eric Widen
Abstract:
Predicting the risk of Pancreatic Adenocarcinoma (PA) in advance can benefit the quality of care and potentially reduce population mortality and morbidity. The aim of this study was to develop and prospectively validate a risk prediction model to identify patients at risk of new incident PA as early as 3 months before the onset of PA in a statewide, general population in Maine. The PA prediction model was developed using Deep Neural Networks, a deep learning algorithm, with a 2-year electronic-health-record (EHR) cohort. Prospective results showed that our model identified 54.35% of all inpatient episodes of PA, and 91.20% of all PA that required subsequent chemoradiotherapy, with a lead-time of up to 3 months and a true alert of 67.62%. The risk assessment tool has attained an improved discriminative ability. It can be immediately deployed to the health system to provide automatic early warnings to adults at risk of PA. It has potential to identify personalized risk factors to facilitate customized PA interventions.Keywords: cancer prediction, deep learning, electronic health records, pancreatic adenocarcinoma
Procedia PDF Downloads 1611952 Modified Gold Screen Printed Electrode with Ruthenium Complex for Selective Detection of Porcine DNA
Authors: Siti Aishah Hasbullah
Abstract:
Studies on identification of pork content in food have grown rapidly to meet the Halal food standard in Malaysia. The used mitochondria DNA (mtDNA) approaches for the identification of pig species is thought to be the most precise marker due to the mtDNA genes are present in thousands of copies per cell, the large variability of mtDNA. The standard method commonly used for DNA detection is based on polymerase chain reaction (PCR) method combined with gel electrophoresis but has major drawback. Its major drawbacks are laborious, need longer time and toxic to handle. Therefore, the need for simplicity and fast assay of DNA is vital and has triggered us to develop DNA biosensors for porcine DNA detection. Therefore, the aim of this project is to develop electrochemical DNA biosensor based on ruthenium (II) complex, [Ru(bpy)2(p-PIP)]2+ as DNA hybridization label. The interaction of DNA and [Ru(bpy)2(p-HPIP)]2+ will be studied by electrochemical transduction using Gold Screen-Printed Electrode (GSPE) modified with gold nanoparticles (AuNPs) and succinimide acrylic microspheres. The electrochemical detection by redox active ruthenium (II) complex was measured by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The results indicate that the interaction of [Ru(bpy)2(PIP)]2+ with hybridization complementary DNA has higher response compared to single-stranded and mismatch complementary DNA. Under optimized condition, this porcine DNA biosensor incorporated modified GSPE shows good linear range towards porcine DNA.Keywords: gold, screen printed electrode, ruthenium, porcine DNA
Procedia PDF Downloads 3121951 Comparative Connectionism: Study of the Biological Constraints of Learning Through the Manipulation of Various Architectures in a Neural Network Model under the Biological Principle of the Correlation Between Structure and Function
Authors: Giselle Maggie-Fer Castañeda Lozano
Abstract:
The main objective of this research was to explore the role of neural network architectures in simulating behavioral phenomena as a potential explanation for selective associations, specifically related to biological constraints on learning. Biological constraints on learning refer to the limitations observed in conditioning procedures, where learning is expected to occur. The study involved simulations of five different experiments exploring various phenomena and sources of biological constraints in learning. These simulations included the interaction between response and reinforcer, stimulus and reinforcer, specificity of stimulus-reinforcer associations, species differences, neuroanatomical constraints, and learning in uncontrolled conditions. The overall results demonstrated that by manipulating neural network architectures, conditions can be created to model and explain diverse biological constraints frequently reported in comparative psychology literature as learning typicities. Additionally, the simulations offer predictive content worthy of experimental testing in the pursuit of new discoveries regarding the specificity of learning. The implications and limitations of these findings are discussed. Finally, it is suggested that this research could inaugurate a line of inquiry involving the use of neural networks to study biological factors in behavior, fostering the development of more ethical and precise research practices.Keywords: comparative psychology, connectionism, conditioning, experimental analysis of behavior, neural networks
Procedia PDF Downloads 771950 Distribution and Taxonomy of Marine Fungi in Nha Trang Bay and Van Phong Bay, Vietnam
Authors: Thu Thuy Pham, Thi Chau Loan Tran, Van Duy Nguyen
Abstract:
Marine fungi play an important role in the marine ecosystems. Marine fungi also supply biomass and metabolic products of industrial value. Currently, the biodiversity of marine fungi along the coastal areas of Vietnam has not yet been studied fully. The objective of this study is to assess the spatial and temporal diversity of planktonic fungi from the coastal waters of Nha Trang Bay and Van Phong Bay in Central Vietnam using culture-dependent and independent approach. Using culture-dependent approach, filamentous fungi and yeasts were isolated on selective media and then classified by phenotype and genotype based on the sequencing of ITS (internal transcribed spacers) regions of rDNA with two primer pairs (ITS1F_KYO2 and ITS4; NS1 and NS8). Using culture-independent approach, environmental DNA samples were isolated and amplified using fungal-specific ITS primer pairs. A total of over 160 strains were isolated from 10 seawater sampling stations at 50 cm depth. They were classified into diverse genera and species of both yeast and mold. At least 5 strains could be potentially novel species. Our results also revealed that planktonic fungi were molecularly diverse with hundreds of phylotypes recovered across these two bays. The results of the study provide data about the distribution and taxonomy of mycoplankton in this area, thereby allowing assessment of their positive role in the biogeochemical cycle of coastal ecosystems and the development of new bioactive compounds for industrial applications.Keywords: biodiversity, ITS, marine fungi, Nha Trang Bay, Van Phong Bay
Procedia PDF Downloads 1941949 Needs of Omani Children in First Grade during Their Transition from Kindergarten to Primary School: An Ethnographic Study
Authors: Zainab Algharibi, Julie McAdam, Catherine Fagan
Abstract:
The purpose of this paper is to shed light on how Omani children in the first grade experience their needs during their transition to primary school. Theoretically, the paper was built on two perspectives: Dewey's concept of continuity of experience and the boundary objects introduced by Vygotsky (CHAT). The methodology of the study is based on the crucial role of children’s agency which is a very important activity as an educational tool to enhance the child’s participation in the learning process and develop their ability to face various issues in their life. Thus, the data were obtained from 45 children in grade one from 4 different primary schools using drawing and visual narrative activities, in addition to researcher observations during the start of the first weeks of the academic year for the first grade. As the study dealt with children, all of the necessary ethical laws were followed. This paper is considered original since it seeks to deal with the issue of children's transition from kindergarten to primary school in Oman, if not in the Arab region. Therefore, it is expected to fill an important gap in this field and present a proposal that will be a door for researchers to enter this research field later. The analysis of drawing and visual narrative was performed according to the social semiotics approach in two phases. The first is to read out the surface message “denotation,” while the second is to go in-depth via the symbolism obtained from children while they talked and drew letters and signs. This stage is known as “signified”; a video was recorded of each child talking about their drawing and expressing themself. Then, the data were organised and classified according to a cross-data network. Regarding the researcher observation analyses, the collected data were analysed according to the model was developed for the "grounded theory". It is based on comparing the recent data collected from observations with data previously encoded by other methods in which children were drawing alongside the visual narrative in the current study, in order to identify the similarities and differences, and also to clarify the meaning of the accessed categories and to identify sub-categories of them with a description of possible links between them. This is a kind of triangulation in data collection. The study came up with a set of findings, the most vital being that the children's greatest interest goes to their social and psychological needs, such as friends, their teacher, and playing. Also, their biggest fears are a new place, a new teacher, and not having friends, while they showed less concern for their need for educational knowledge and skills.Keywords: children’s academic needs, children’s social needs, transition, primary school
Procedia PDF Downloads 1111948 Estimating PM2.5 Concentrations Based on Landsat 8 Imagery and Historical Field Data over the Metropolitan Area of Mexico City
Authors: Rodrigo T. Sepulveda-Hirose, Ana B. Carrera-Aguilar, Francisco Andree Ramirez-Casas, Alondra Orozco-Gomez, Miguel Angel Sanchez-Caro, Carlos Herrera-Ventosa
Abstract:
High concentrations of particulate matter in the atmosphere pose a threat to human health, especially over areas with high concentrations of population; however, field air pollution monitoring is expensive and time-consuming. In order to achieve reduced costs and global coverage of the whole urban area, remote sensing can be used. This study evaluates PM2.5 concentrations, over the Mexico City´s metropolitan area, are estimated using atmospheric reflectance from LANDSAT 8, satellite imagery and historical PM2.5 measurements of the Automatic Environmental Monitoring Network of Mexico City (RAMA). Through the processing of the available satellite images, a preliminary model was generated to evaluate the optimal bands for the generation of the final model for Mexico City. Work on the final model continues with the results of the preliminary model. It was found that infrared bands have helped to model in other cities, but the effectiveness that these bands could provide for the geographic and climatic conditions of Mexico City is still being evaluated.Keywords: air pollution modeling, Landsat 8, PM2.5, remote sensing
Procedia PDF Downloads 2031947 Optimizing Pick and Place Operations in a Simulated Work Cell for Deformable 3D Objects
Authors: Troels Bo Jørgensen, Preben Hagh Strunge Holm, Henrik Gordon Petersen, Norbert Kruger
Abstract:
This paper presents a simulation framework for using machine learning techniques to determine robust robotic motions for handling deformable objects. The main focus is on applications in the meat sector, which mainly handle three-dimensional objects. In order to optimize the robotic handling, the robot motions have been parameterized in terms of grasp points, robot trajectory and robot speed. The motions are evaluated based on a dynamic simulation environment for robotic control of deformable objects. The evaluation indicates certain parameter setups, which produce robust motions in the simulated environment, and based on a visual analysis indicate satisfactory solutions for a real world system.Keywords: deformable objects, robotic manipulation, simulation, real world system
Procedia PDF Downloads 2861946 Daily Variations of Particulate Matter (PM10) in Industrial Sites in an Suburban Area of Sour El Ghozlane, Algeria
Authors: Sidali Khedidji, Riad Ladji, Noureddine Yassaa
Abstract:
In this study, particulate matter (PM10) which are hazardous for environment and human health were investigated in Sour El Ghozlane suburban atmosphere at a sampling point from March 2013 to April 2013. Ambient concentration measurements of polycyclic aromatic hydrocarbons were carried out at a regional study of the cement industry in Sour El Ghozlane. During sampling, the airborne particulate matter was enriched onto PTFE filters by using a two medium volume samplers with or without a size-selective inlet for PM10 and TSP were used and each sampling period lasted approximately 24 h. The organic compounds were characterized using gas chromatography coupled with mass spectrometric detection (GC-MSD). Total concentrations for PAHs recorded in sour el ghozlane suburban ranged from 101 to 204 ng m-3. Gravimeter method was applied to the black smoke concentration data for Springer seasons. The 24 h average concentrations of PM10 and TSP of Sour El Ghozlane suburban atmosphere were found in the range 4.76–165.76 μg/m3 and 28.63–800.14 μg/m3, respectively, in the sampling period. Meteorological factors, such as (relative humidity and temperature) were typically found to be affecting PMs, especially PM10. Air temperature did not seem to be significantly affecting TSP and PM10 mass concentrations.The guide value fixed by the European Community «40 μg/m3» not to exceed 35 days, were exceeded in some samples. However, it should be noted that the value limit fixed by the Algerian regulations «80 μg/m3» has been exceeded in 3 samplers during the period study.Keywords: PAHs, PM10, TSP, particulate matter, cement industry
Procedia PDF Downloads 3811945 Data Augmentation for Automatic Graphical User Interface Generation Based on Generative Adversarial Network
Authors: Xulu Yao, Moi Hoon Yap, Yanlong Zhang
Abstract:
As a branch of artificial neural network, deep learning is widely used in the field of image recognition, but the lack of its dataset leads to imperfect model learning. By analysing the data scale requirements of deep learning and aiming at the application in GUI generation, it is found that the collection of GUI dataset is a time-consuming and labor-consuming project, which is difficult to meet the needs of current deep learning network. To solve this problem, this paper proposes a semi-supervised deep learning model that relies on the original small-scale datasets to produce a large number of reliable data sets. By combining the cyclic neural network with the generated countermeasure network, the cyclic neural network can learn the sequence relationship and characteristics of data, make the generated countermeasure network generate reasonable data, and then expand the Rico dataset. Relying on the network structure, the characteristics of collected data can be well analysed, and a large number of reasonable data can be generated according to these characteristics. After data processing, a reliable dataset for model training can be formed, which alleviates the problem of dataset shortage in deep learning.Keywords: GUI, deep learning, GAN, data augmentation
Procedia PDF Downloads 1881944 Emerging Technologies in Distance Education
Authors: Eunice H. Li
Abstract:
This paper discusses and analyses a small portion of the literature that has been reviewed for research work in Distance Education (DE) pedagogies that I am currently undertaking. It begins by presenting a brief overview of Taylor's (2001) five-generation models of Distance Education. The focus of the discussion will be on the 5th generation, Intelligent Flexible Learning Model. For this generation, educational and other institutions make portal access and interactive multi-media (IMM) an integral part of their operations. The paper then takes a brief look at current trends in technologies – for example smart-watch wearable technology such as Apple Watch. The emergent trends in technologies carry many new features. These are compared to former DE generational features. Also compared is the time span that has elapsed between the generations that are referred to in Taylor's model. This paper is a work in progress. The paper therefore welcome new insights, comparisons and critique of the issues discussed.Keywords: distance education, e-learning technologies, pedagogy, generational models
Procedia PDF Downloads 4661943 Developing a Place-Name Gazetteer for Singapore by Mining Historical Planning Archives and Selective Crowd-Sourcing
Authors: Kevin F. Hsu, Alvin Chua, Sarah X. Lin
Abstract:
As a multilingual society, Singaporean names for different parts of the city have changed over time. Residents included Indigenous Malays, dialect-speakers from China, European settler-colonists, and Tamil-speakers from South India. Each group would name locations in their own languages. Today, as ancestral tongues are increasingly supplanted by English, contemporary Singaporeans’ understanding of once-common place names is disappearing. After demolition or redevelopment, some urban places will only exist in archival records or in human memory. United Nations conferences on the standardization of geographic names have called attention to how place names relate to identity, well-being, and a sense of belonging. The Singapore Place-Naming Project responds to these imperatives by capturing past and present place names through digitizing historical maps, mining archival records, and applying selective crowd-sourcing to trace the evolution of place names throughout the city. The project ensures that both formal and vernacular geographical names remain accessible to historians, city planners, and the public. The project is compiling a gazetteer, a geospatial archive of placenames, with streets, buildings, landmarks, and other points of interest (POI) appearing in the historic maps and planning documents of Singapore, currently held by the National Archives of Singapore, the National Library Board, university departments, and the Urban Redevelopment Authority. To create a spatial layer of information, the project links each place name to either a geo-referenced point, line segment, or polygon, along with the original source material in which the name appears. This record is supplemented by crowd-sourced contributions from civil service officers and heritage specialists, drawing from their collective memory to (1) define geospatial boundaries of historic places that appear in past documents, but maybe unfamiliar to users today, and (2) identify and record vernacular place names not captured in formal planning documents. An intuitive interface allows participants to demarcate feature classes, vernacular phrasings, time periods, and other knowledge related to historical or forgotten spaces. Participants are stratified into age bands and ethnicity to improve representativeness. Future iterations could allow additional public contributions. Names reveal meanings that communities assign to each place. While existing historical maps of Singapore allow users to toggle between present-day and historical raster files, this project goes a step further by adding layers of social understanding and planning documents. Tracking place names illuminates linguistic, cultural, commercial, and demographic shifts in Singapore, in the context of transformations of the urban environment. The project also demonstrates how a moderated, selectively crowd-sourced effort can solicit useful geospatial data at scale, sourced from different generations, and at higher granularity than traditional surveys, while mitigating negative impacts of unmoderated crowd-sourcing. Stakeholder agencies believe the project will achieve several objectives, including Supporting heritage conservation and public education; Safeguarding intangible cultural heritage; Providing historical context for street, place or development-renaming requests; Enhancing place-making with deeper historical knowledge; Facilitating emergency and social services by tagging legal addresses to vernacular place names; Encouraging public engagement with heritage by eliciting multi-stakeholder input.Keywords: collective memory, crowd-sourced, digital heritage, geospatial, geographical names, linguistic heritage, place-naming, Singapore, Southeast Asia
Procedia PDF Downloads 1331942 A Comparative Analysis of Vocabulary Learning Strategies among EFL Freshmen and Senior Medical Sciences Students across Different Fields of Study
Authors: M. Hadavi, Z. Hashemi
Abstract:
Learning strategies play an important role in the development of language skills. Vocabulary learning strategies as the backbone of these strategies have become a major part of English language teaching. This study is a comparative analysis of Vocabulary Learning Strategies (VLS) use and preference among freshmen and senior EFL medical sciences students with different fields of study. 449 students (236 freshman and 213 seniors) participated in the study. 64.6% were female and 35.4% were male. The instrument utilized in this research was a questionnaire consisting of 41 items related to the students’ approach to vocabulary learning. The items were classified under eight sections as dictionary strategies, guessing strategies, study preferences, memory strategies, autonomy, note- taking strategies, selective attention, and social strategies. The participants were asked to answer each item with a 5-point Likert-style frequency scale as follows:1) I never or almost never do this, 2) I don’t usually do this, 3) I sometimes do this, 4) I usually do this, and 5)I always or almost always do this. The results indicated that freshmen students and particularly surgical technology students used more strategies compared to the seniors. Overall guessing and dictionary strategies were the most frequently used strategies among all the learners (p=0/000). The mean and standard deviation of using VLS in the students who had no previous history of participating in the private English language classes was less than the students who had attended these type of classes (p=0/000). Female students tended to use social and study preference strategies whereas male students used mostly guessing and dictionary strategies. It can be concluded that the senior students under instruction from the university have learned to rely on themselves and choose the autonomous strategies more, while freshmen students use more strategies that are related to the study preferences.Keywords: vocabulary leaning strategies, medical sciences, students, linguistics
Procedia PDF Downloads 4551941 A Speeded up Robust Scale-Invariant Feature Transform Currency Recognition Algorithm
Authors: Daliyah S. Aljutaili, Redna A. Almutlaq, Suha A. Alharbi, Dina M. Ibrahim
Abstract:
All currencies around the world look very different from each other. For instance, the size, color, and pattern of the paper are different. With the development of modern banking services, automatic methods for paper currency recognition become important in many applications like vending machines. One of the currency recognition architecture’s phases is Feature detection and description. There are many algorithms that are used for this phase, but they still have some disadvantages. This paper proposes a feature detection algorithm, which merges the advantages given in the current SIFT and SURF algorithms, which we call, Speeded up Robust Scale-Invariant Feature Transform (SR-SIFT) algorithm. Our proposed SR-SIFT algorithm overcomes the problems of both the SIFT and SURF algorithms. The proposed algorithm aims to speed up the SIFT feature detection algorithm and keep it robust. Simulation results demonstrate that the proposed SR-SIFT algorithm decreases the average response time, especially in small and minimum number of best key points, increases the distribution of the number of best key points on the surface of the currency. Furthermore, the proposed algorithm increases the accuracy of the true best point distribution inside the currency edge than the other two algorithms.Keywords: currency recognition, feature detection and description, SIFT algorithm, SURF algorithm, speeded up and robust features
Procedia PDF Downloads 2381940 Scalable Learning of Tree-Based Models on Sparsely Representable Data
Authors: Fares Hedayatit, Arnauld Joly, Panagiotis Papadimitriou
Abstract:
Many machine learning tasks such as text annotation usually require training over very big datasets, e.g., millions of web documents, that can be represented in a sparse input space. State-of the-art tree-based ensemble algorithms cannot scale to such datasets, since they include operations whose running time is a function of the input space size rather than a function of the non-zero input elements. In this paper, we propose an efficient splitting algorithm to leverage input sparsity within decision tree methods. Our algorithm improves training time over sparse datasets by more than two orders of magnitude and it has been incorporated in the current version of scikit-learn.org, the most popular open source Python machine learning library.Keywords: big data, sparsely representable data, tree-based models, scalable learning
Procedia PDF Downloads 2701939 A Fresh Look at Tense System of Qashqaie Dialect of Turkish Language
Authors: Mohammad Sharifi Bohlouli
Abstract:
Turkish language with many dialects is native or official language of great number of people all around the world. The Qashqaie dialect of Turkish language is spoken by the Qashqaie tribe mostly scattered in the southern part of Iran. This paper aims at analyzing the tense system of this dialect to detect the type and number of tense and aspects available to its speakers. To collect a reliable data, a group of 50 old native speakers were randomly chosen as the informants and different techniques such as; Shuy et al interviews, selective listening ,and eavesdropping were used. The results of data analysis showed that the tense system in the Qashqaie dialect of Turkish language includes 3 absolute tenses , 6 aspectual , and 2 subjunctive ones. The interesting part of the study is that Qashqaie dialect enables its speakers to make a kind of aspectual opposition through verb structure which seems to be almost impossible through verb forms in any other nonturkish languages. For example in the following examples sentences 1 &2 and 3&4 have the same translation In English although they are different in both meaning and structure. 1. Ali ensha yazirdi. 2. Ali ensha yazirmush. (Ali was writing a composition.) 3. Ali yadmishdi. 4. Ali yadmishimish. ( Ali had slept.) The changes in the verb structure in Qashqaie dialect enables its speakers to say that whether the doer of the action remembers the process of doing the action or not. So, it presents a new aspectual opposition as Observed /nonobserved. The research findings reveal many other regularities and linguistic features that can be useful for linguists interested in Turkish in general and for those interested in tense and aspect and also they can be helpful for different pedagogical purposes including teaching and translating.Keywords: qashqaie dialect, tense, aspect, linguistics, Turkish Language
Procedia PDF Downloads 3641938 Compared Psychophysiological Responses under Stress in Patients of Chronic Fatigue Syndrome and Depressive Disorder
Authors: Fu-Chien Hung, Chi‐Wen Liang
Abstract:
Background: People who suffer from chronic fatigue syndrome (CFS) frequently complain about continuous tiredness, weakness or lack of strength, but without apparent organic etiology. The prevalence rate of the CFS is nearly from 3% to 20%, yet more than 80% go undiagnosed or misdiagnosed as depression. The biopsychosocial model has suggested the associations among the CFS, depressive syndrome, and stress. This study aimed to investigate the difference between individuals with the CFS and with the depressive syndrome on psychophysiological responses under stress. Method: There were 23 participants in the CFS group, 14 participants in the depression group, and 23 participants in the healthy control group. All of the participants first completed the measures of demographic data, CFS-related symptoms, daily life functioning, and depressive symptoms. The participants were then asked to perform a stressful cognitive task. The participants’ psychophysiological responses including the HR, BVP and SC were measured during the task. These indexes were used to assess the reactivity and recovery rates of the automatic nervous system. Results: The stress reactivity of the CFS and depression groups was not different from that of the healthy control group. However, the stress recovery rate of the CFS group was worse than that of the healthy control group. Conclusion: The results from this study suggest that the CFS is a syndrome which can be independent from the depressive syndrome, although the depressive syndrome may include fatigue syndrome.Keywords: chronic fatigue syndrome, depression, stress response, misdiagnosis
Procedia PDF Downloads 4611937 COSMO-RS Prediction for Choline Chloride/Urea Based Deep Eutectic Solvent: Chemical Structure and Application as Agent for Natural Gas Dehydration
Authors: Tayeb Aissaoui, Inas M. AlNashef
Abstract:
In recent years, green solvents named deep eutectic solvents (DESs) have been found to possess significant properties and to be applicable in several technologies. Choline chloride (ChCl) mixed with urea at a ratio of 1:2 and 80 °C was the first discovered DES. In this article, chemical structure and combination mechanism of ChCl: urea based DES were investigated. Moreover, the implementation of this DES in water removal from natural gas was reported. Dehydration of natural gas by ChCl:urea shows significant absorption efficiency compared to triethylene glycol. All above operations were retrieved from COSMOthermX software. This article confirms the potential application of DESs in gas industry.Keywords: COSMO-RS, deep eutectic solvents, dehydration, natural gas, structure, organic salt
Procedia PDF Downloads 2961936 The Invisible Asset Influence on Corporate Performance: A Case Study
Authors: Hassan Medaghri Alaoui
Abstract:
The accounting and financial reporting system in use today is over 500 years old and has failed to capture the new knowledge and innovation economy in which intangible assets are becoming increasingly valuable. Yet, there has been a growing acknowledgment among the research community as to the relevance of intellectual capital as a major enhancer of an organization’s well-being. Much of the research provides great support for how the IC is instrumental in determining financial and stock performances. As far as we know, this article is one of the earliest exploratory attempts to examine the intellectual capital impact on the corporate performance of the IT sector in Morocco. The purpose of this study is to verify empirically the influence of intellectual capital on firm performance. We have undertaken, over a fifteen-year period, a longitudinal (2005–2019) case study of a prominent payment-solutions company based in a developing economy with global operations.Keywords: intellectual capital, IT sector, measuring intellectual capital, modified value added intellectual capital coefficient, Morocco
Procedia PDF Downloads 1301935 A Novel Breast Cancer Detection Algorithm Using Point Region Growing Segmentation and Pseudo-Zernike Moments
Authors: Aileen F. Wang
Abstract:
Mammography has been one of the most reliable methods for early detection and diagnosis of breast cancer. However, mammography misses about 17% and up to 30% of breast cancers due to the subtle and unstable appearances of breast cancer in their early stages. Recent computer-aided diagnosis (CADx) technology using Zernike moments has improved detection accuracy. However, it has several drawbacks: it uses manual segmentation, Zernike moments are not robust, and it still has a relatively high false negative rate (FNR)–17.6%. This project will focus on the development of a novel breast cancer detection algorithm to automatically segment the breast mass and further reduce FNR. The algorithm consists of automatic segmentation of a single breast mass using Point Region Growing Segmentation, reconstruction of the segmented breast mass using Pseudo-Zernike moments, and classification of the breast mass using the root mean square (RMS). A comparative study among the various algorithms on the segmentation and reconstruction of breast masses was performed on randomly selected mammographic images. The results demonstrated that the newly developed algorithm is the best in terms of accuracy and cost effectiveness. More importantly, the new classifier RMS has the lowest FNR–6%.Keywords: computer aided diagnosis, mammography, point region growing segmentation, pseudo-zernike moments, root mean square
Procedia PDF Downloads 4571934 Microfluidic Construction of Responsive Photonic Microcapsules for Microsensors
Authors: Lingling Shui, Shuting Xie
Abstract:
As alternatives to electronic devices, optically active structures from responsive nanomaterials offer great opportunity buildup smart functional sensors. Hereby, we report on droplet microfluidics enabled construction and application of photonic microcapsules (PMCs) for colorimetric temperature microsensors, enabling miniaturization for injectable local micro-area sensing and integration for large-area sensing. Monodispersed PMCs are produced by in-situ photopolymerization of hydrogel shells of cholesteric liquid crystal (CLC)-in-water-in-oil double emulsion droplets prepared using microfluidic devices, with controllable physical structures and chemical compositions. Constructed PMCs exhibit thermal responsive structural color according to the selective Bragg reflection of CLC’s periodical helical structures within the microdroplet’s spherical confinement. Constructed PMCs with tunable size and composition have been successfully applied for monitoring the living cell extracellular temperature via co-incubation with cell suspension, and for detecting human body temperature via a flexible device from assembled PMCs. These PMCs could be flexibly applied in either micro-environment or large-area surface, enabling wide applications for precision temperature monitoring biological activities (e.g. cells or organs), optoelectronic devices working conditions (e.g. temperature indicators under extreme conditions), and etc.Keywords: droplet, microfluidics, assembly, soft materials, microsensor
Procedia PDF Downloads 841933 Automatic Tagging and Accuracy in Assamese Text Data
Authors: Chayanika Hazarika Bordoloi
Abstract:
This paper is an attempt to work on a highly inflectional language called Assamese. This is also one of the national languages of India and very little has been achieved in terms of computational research. Building a language processing tool for a natural language is not very smooth as the standard and language representation change at various levels. This paper presents inflectional suffixes of Assamese verbs and how the statistical tools, along with linguistic features, can improve the tagging accuracy. Conditional random fields (CRF tool) was used to automatically tag and train the text data; however, accuracy was improved after linguistic featured were fed into the training data. Assamese is a highly inflectional language; hence, it is challenging to standardizing its morphology. Inflectional suffixes are used as a feature of the text data. In order to analyze the inflections of Assamese word forms, a list of suffixes is prepared. This list comprises suffixes, comprising of all possible suffixes that various categories can take is prepared. Assamese words can be classified into inflected classes (noun, pronoun, adjective and verb) and un-inflected classes (adverb and particle). The corpus used for this morphological analysis has huge tokens. The corpus is a mixed corpus and it has given satisfactory accuracy. The accuracy rate of the tagger has gradually improved with the modified training data.Keywords: CRF, morphology, tagging, tagset
Procedia PDF Downloads 1981932 Real-Time Measurement Approach for Tracking the ΔV10 Estimate Value of DC EAF
Authors: Jin-Lung Guan, Jyh-Cherng Gu, Chun-Wei Huang, Hsin-Hung Chang
Abstract:
This investigation develops a revisable method for estimating the estimate value of equivalent 10 Hz voltage flicker (DV10) of a DC Electric Arc Furnace (EAF). This study also discusses three 161kV DC EAFs by field measurement, with those results indicating that the estimated DV10 value is significantly smaller than the survey value. The key point is that the conventional means of estimating DV10 is inappropriate. There is a main cause as the assumed Qmax is too small. Although DC EAF is regularly operated in a constant MVA mode, the reactive power variation in the Main Transformer (MT) is more significant than that in the Furnace Transformer (FT). A substantial difference exists between estimated maximum reactive power fluctuation (DQmax) and the survey value from actual DC EAF operations. However, this study proposes a revisable method that can obtain a more accurate DV10 estimate than the conventional method.Keywords: voltage flicker, dc EAF, estimate value, DV10
Procedia PDF Downloads 4531931 An Improvement Study for Mattress Manufacturing Line with a Simulation Model
Authors: Murat Sarı, Emin Gundogar, Mumtaz Ipek
Abstract:
Nowadays, in a furniture sector, competition of market share (portion) and production variety and changeability enforce the firm to reengineer operations on manufacturing line to increase the productivity. In this study, spring mattress manufacturing line of the furniture manufacturing firm is analyzed analytically. It’s intended to search and find the bottlenecks of production to balance the semi-finished material flow. There are four base points required to investigate in bottleneck elimination process. These are bottlenecks of Method, Material, Machine and Man (work force) resources, respectively. Mentioned bottlenecks are investigated and varied scenarios are created for recruitment of manufacturing system. Probable near optimal alternatives are determined by system models built in Arena simulation software.Keywords: bottleneck search, buffer stock, furniture sector, simulation
Procedia PDF Downloads 3591930 Personality of Military Professionals (Commanders) and Their Way of Leading and Commanding Today and in Historical Context
Authors: Petra Hurbišová, Monika Davidová
Abstract:
The article deals with the personality of military professionals (commanders) and their way of leading and commanding today and in historical context. The first part focuses on the leadership skills of Alexander the Great, who introduced strategic innovations and even from today's perspective he excelled in efficient work with people. This paper focuses on the way which he achieved his goals. Further attention is paid to approaches to commander´s personality by other great generals. The paper is also focused on personality traits of military professionals necessary for successful management and leadership in today's variable and challenging environment. Finally, attention is paid to the effective and ineffective ways of behavior of commanders and determined what styles of leadership is appropriate for a given situation, whether in peacetime or when commander is deployed in overseas operations or the state of war.Keywords: authority, commander, leader, leadership, military professional, personality
Procedia PDF Downloads 2881929 Influence of Environmental Temperature on Dairy Herd Performance and Behaviour
Authors: L. Krpalkova, N. O' Mahony, A. Carvalho, S. Campbell, S. Harapanahalli, J. Walsh
Abstract:
The objective of this study was to determine the effects of environmental stressors on the performance of lactating dairy cows and discuss some future trends. There exists a relationship between the meteorological data and milk yield prediction accuracy in pasture-based dairy systems. New precision technologies are available and are being developed to improve the sustainability of the dairy industry. Some of these technologies focus on welfare of individual animals on dairy farms. These technologies allow the automatic identification of animal behaviour and health events, greatly increasing overall herd health and yield while reducing animal health inspection demands and long-term animal healthcare costs. The data set consisted of records from 489 dairy cows at two dairy farms and temperature measured from the nearest meteorological weather station in 2018. The effects of temperature on milk production and behaviour of animals were analyzed. The statistical results indicate different effects of temperature on milk yield and behaviour. The “comfort zone” for animals is in the range 10 °C to 20 °C. Dairy cows out of this zone had to decrease or increase their metabolic heat production, and it affected their milk production and behaviour.Keywords: behavior, milk yield, temperature, precision technologies
Procedia PDF Downloads 1121928 Using Different Methods of Nanofabrication as a New Way to Activate Cement Replacement Materials in Concrete Industry
Authors: Azadeh Askarinejad, Parham Hayati, Reza Parchami, Parisa Hayati
Abstract:
One of the most important industries and building operations causing carbon dioxide emission is the cement and concrete related industries so that cement production (including direct fuel for mining and transporting raw material) consumes approximately 6 million Btus per metric-ton, and releases about 1 metric-ton of CO2. Reducing the consumption of cement with simultaneous utilizing waste materials as cement replacement is preferred for reasons of environmental protection. Blended cements consist of different supplementary cementitious materials (SCM), such as fly ash, silica fume, Ground Granulated Blast Furnace Slag (GGBFS), limestone, natural pozzolans, etc. these materials should be chemically activated to show effective cementitious properties. The present review article reports three different methods of nanofabrication that were used for activation of two types of SCMs.Keywords: nanofabrication, cement replacement materials, activation, concrete
Procedia PDF Downloads 6191927 Functionality Based Composition of Web Services to Attain Maximum Quality of Service
Authors: M. Mohemmed Sha Mohamed Kunju, Abdalla A. Al-Ameen Abdurahman, T. Manesh Thankappan, A. Mohamed Mustaq Ahmed Hameed
Abstract:
Web service composition is an effective approach to complete the web based tasks with desired quality. A single web service with limited functionality is inadequate to execute a specific task with series of action. So, it is very much required to combine multiple web services with different functionalities to reach the target. Also, it will become more and more challenging, when these services are from different providers with identical functionalities and varying QoS, so while composing the web services, the overall QoS is considered to be the major factor. Also, it is not true that the expected QoS is always attained when the task is completed. A single web service in the composed chain may affect the overall performance of the task. So care should be taken in different aspects such as functionality of the service, while composition. Dynamic and automatic service composition is one of the main option available. But to achieve the actual functionality of the task, quality of the individual web services are also important. Normally the QoS of the individual service can be evaluated by using the non-functional parameters such as response time, throughput, reliability, availability, etc. At the same time, the QoS is not needed to be at the same level for all the composed services. So this paper proposes a framework that allows composing the services in terms of QoS by setting the appropriate weight to the non-functional parameters of each individual web service involved in the task. Experimental results show that the importance given to the non-functional parameter while composition will definitely improve the performance of the web services.Keywords: composition, non-functional parameters, quality of service, web service
Procedia PDF Downloads 335