Search results for: Hydrated sodium calcium aluminium silicate
316 Development of Green Cement, Based on Partial Replacement of Clinker with Limestone Powder
Authors: Yaniv Knop, Alva Peled
Abstract:
Over the past few years there has been a growing interest in the development of Portland Composite Cement, by partial replacement of the clinker with mineral additives. The motivations to reduce the clinker content are threefold: (1) Ecological - due to lower emission of CO2 to the atmosphere; (2) Economical - due to cost reduction; and (3) Scientific\Technology – improvement of performances. Among the mineral additives being used and investigated, limestone is one of the most attractive, as it is considered natural, available, and with low cost. The goal of the research is to develop green cement, by partial replacement of the clinker with limestone powder while improving the performances of the cement paste. This work studied blended cements with three limestone powder particle diameters: smaller than, larger than, and similarly sized to the clinker particle. Blended cement with limestone consisting of one particle size distribution and limestone consisting of a combination of several particle sizes were studied and compared in terms of hydration rate, hydration degree, and water demand to achieve normal consistency. The performances of these systems were also compared with that of the original cement (without added limestone). It was found that the ability to replace an active material with an inert additive, while achieving improved performances, can be obtained by increasing the packing density of the cement-based particles. This may be achieved by replacing the clinker with limestone powders having a combination of several different particle size distributions. Mathematical and physical models were developed to simulate the setting history from initial to final setting time and to predict the packing density of blended cement with limestone having different sizes and various contents. Besides the effect of limestone, as inert additive, on the packing density of the blended cement, the influence of the limestone particle size on three different chemical reactions were studied; hydration of the cement, carbonation of the calcium hydroxide and the reactivity of the limestone with the hydration reaction products. The main results and developments will be presented.Keywords: packing density, hydration degree, limestone, blended cement
Procedia PDF Downloads 286315 Effect of Pretreatment and Drying Method on Selected Quality Parameters of Dried Bell Pepper
Authors: Toyosi Yewande Tunde-Akintunde, Grace Oluwatoyin Ogunlakin, Bosede Folake Olanipekun
Abstract:
Peppers are excellent sources of nutrients but its high moisture content makes it susceptible to spoilage. Drying, a common processing method, results in a reduction of these nutrients in the final product. Pre-treatment of pepper before drying can be used to reduce the level of degradation of nutrients. Thus this study investigated the effect of pre-treatment (hot water blanching and soaking in brine-sodium chloride) and drying methods (oven, microwave and sun) on selected quality parameters (proximate composition, capsaicin, reducing sugar and phenolic content, pH, total solid (TS), Titratable acidity (TA), water absorption capacity (WAC) and colour) of pepper. The protein and moisture content value ranged from 9.09 to 10.23% and 5.63 to 8.48% respectively. Sun dried samples had the highest value while oven dried samples had the lowest. Brine treated samples had higher protein but lower moisture content than blanched samples. Capsaicin, reducing sugar and phenolic content values ranged from 0.68 to 0.87 mg/dm3; 3.18 to 3.79 µg/ml; and 40.67 to 84.01 mg GAE/100 g d.m respectively. The sun dried samples had higher values while the lowest values were from microwave dried samples. The brine treated samples had higher values in capsaicin while the blanched samples had higher reducing sugar and phenolic contents. The values of L, a* and b* for the dried pepper varied from 58.76 to 63.13; 7.09 to 7.34; and 11.79 to 12.36 respectively. Oven dried samples had the lowest values for a*, while its L values were the highest. The L and a* values for brine treated samples were higher than blanched samples. The pre-treatment and drying method considered resulted in different values of the quality parameters considered which indicates that drying and pre-treatment has an effect on the quality of the final dried pepper samples.Keywords: Bell pepper, microwave drying, oven drying, quality, sun drying
Procedia PDF Downloads 347314 Methylation Analysis of PHF20L1 and DACT2 Gene Promoters in Women with Breast Cancer
Authors: Marta E. Hernandez-Caballero, Veronica Borgonio-Cuadra, Antonio Miranda-Duarte, Xochitl Rojas-Toledo, Normand Garcia-Hernandez, Maura Cardenas-Garcia, Teresa Abad-Camacho
Abstract:
Breast cancer (BC) is the most common tumor in women over the world. DNA methylation is an epigenetic modification critical in CpG sites, aberrant methylation of CpG islands in promoters is a hallmark of cancer. So, gene expression can be regulated by alterations in DNA methylation. In cell lines DACT2 gene reduces the growth and migration of tumor cells by its participation in the suppression of TGFb/SMAD2/3. PHF20L1 is involved in histone acetylation therefore, it regulates transcription. Our aim was to analyze the methylation status of the DACT2 and PHF20L1 promoter regions in tumoral and healthy mammary tissue from women with BC in different progression states. The study included 77 patients from Centro Medico Nacional La Raza in Mexico City. After identifying a CpG island in DACT2 and PHF20L1 promoters, DNA methylation status was analyzed through sodium bisulfite with subsequent amplification using methylation-specific PCR. Results revealed no changes in methylation status of PHF20L1 and cancer stages (II y III) or in comparison to healthy tissues, it was demethylated. DACT2 promoter methylation was no significant between tumoral stages (II, P = 0.37; III, P = 0.17) or with healthy tissue. Previous data reported DACT2 methylated in nasopharyngeal carcinoma but in this study promoter methylation was not observed. PHF20L1 protein contains N-terminal Tudor and C-terminal plant homeodomain domains, it has been suggested that can stabilize DNMT1 regulating DNA methylation, therefore, was associated with poor prognostic in BC. We found no evidence of methylation in patients and controls in PHF20L1 promoter, so its association with BC may have no direct relation with promoter methylation. More studies including other methylation sites in these genes in BC are necessary.Keywords: bisulfite conversion, breast cancer, DACT2, DNA methylation, PHF20L1, tumoral status
Procedia PDF Downloads 301313 Studies on Climatic and Soil Site Suitability of Major Grapes-Growing Soils of Eastern and Southern Dry Zones of Karnataka
Authors: Harsha B. R., Anil Kumar K. S.
Abstract:
Climate and soils are the two most dynamic entities among the factors affecting growth and grapes productivity. Studying of prevailing climate over the years in a region provides sufficient information related to management practices to be carried out in vineyards. Evaluating the suitability of vineyard soils under different climatic conditions serves as the yardstick to analyse the performance of grapevines. This study was formulated to study the climate and evaluate the site-suitability of soils in vineyards of southern Karnataka, which has registered its superiority in the quality production of wine. Ten soil profiles were excavated for suitability evaluation of soils, and six taluks were studied for climatic analysis. In almost all the regions studied, recharge starts at the end of the May or June months, peaking in either September or October months. Soil Starts drying from mid of December months in the taluks studied. Bangalore North (Rajanukunte) soils were highly suited for grapes cultivation with no or slight limitations. Bangalore North (GKVK Farm) was moderately suited with slight to moderate limitations of slope and available nitrogen content. Moderate suitability was observed in the rest of the profiles studied in Eastern dry zone soils with the slight to moderate limitations of either organic carbon or available nitrogen or both in the Eastern dry zone. Magadi (Southern dry zone) soils were moderately suitable with slight to moderate limitations of graveliness, available nitrogen, organic carbon, and exchangeable sodium percentage. Sustainable performance of vineyards in terms of yield can be achieved in these taluks by managing the constraints existing in soils.Keywords: climatic analysis, dry zone, water recharge, growing period, suitability, sustainability
Procedia PDF Downloads 124312 Ultrasound Therapy: Amplitude Modulation Technique for Tissue Ablation by Acoustic Cavitation
Authors: Fares A. Mayia, Mahmoud A. Yamany, Mushabbab A. Asiri
Abstract:
In recent years, non-invasive Focused Ultrasound (FU) has been utilized for generating bubbles (cavities) to ablate target tissue by mechanical fractionation. Intensities >10 kW/cm² are required to generate the inertial cavities. The generation, rapid growth, and collapse of these inertial cavities cause tissue fractionation and the process is called Histotripsy. The ability to fractionate tissue from outside the body has many clinical applications including the destruction of the tumor mass. The process of tissue fractionation leaves a void at the treated site, where all the affected tissue is liquefied to particles at sub-micron size. The liquefied tissue will eventually be absorbed by the body. Histotripsy is a promising non-invasive treatment modality. This paper presents a technique for generating inertial cavities at lower intensities (< 1 kW/cm²). The technique (patent pending) is based on amplitude modulation (AM), whereby a low frequency signal modulates the amplitude of a higher frequency FU wave. Cavitation threshold is lower at low frequencies; the intensity required to generate cavitation in water at 10 kHz is two orders of magnitude lower than the intensity at 1 MHz. The Amplitude Modulation technique can operate in both continuous wave (CW) and pulse wave (PW) modes, and the percentage modulation (modulation index) can be varied from 0 % (thermal effect) to 100 % (cavitation effect), thus allowing a range of ablating effects from Hyperthermia to Histotripsy. Furthermore, changing the frequency of the modulating signal allows controlling the size of the generated cavities. Results from in vitro work demonstrate the efficacy of the new technique in fractionating soft tissue and solid calcium carbonate (Chalk) material. The technique, when combined with MR or Ultrasound imaging, will present a precise treatment modality for ablating diseased tissue without affecting the surrounding healthy tissue.Keywords: focused ultrasound therapy, histotripsy, inertial cavitation, mechanical tissue ablation
Procedia PDF Downloads 322311 Fly-Ash/Borosilicate Glass Based Geopolymers: A Mechanical and Microstructural Investigation
Authors: Gianmarco Taveri, Ivo Dlouhy
Abstract:
Geopolymers are well-suited materials to abate CO2 emission coming from the Portland cement production, and then replace them, in the near future, in building and other applications. The cost of production of geopolymers may be seen the only weakness, but the use of wastes as raw materials could provide a valid solution to this problem, as demonstrated by the successful incorporation of fly-ash, a by-product of thermal power plants, and waste glasses. Recycled glass in waste-derived geopolymers was lately employed as a further silica source. In this work we present, for the first time, the introduction of recycled borosilicate glass (BSG). BSG is actually a waste glass, since it derives from dismantled pharmaceutical vials and cannot be reused in the manufacturing of the original articles. Owing to the specific chemical composition (BSG is an ‘alumino-boro-silicate’), it was conceived to provide the key components of zeolitic networks, such as amorphous silica and alumina, as well as boria (B2O3), which may replace Al2O3 and contribute to the polycondensation process. The solid–state MAS NMR spectroscopy was used to assess the extent of boron oxide incorporation in the structure of geopolymers, and to define the degree of networking. FTIR spectroscopy was utilized to define the degree of polymerization and to detect boron bond vibration into the structure. Mechanical performance was tested by means of 3 point bending (flexural strength), chevron notch test (fracture toughness), compression test (compressive strength), micro-indentation test (Vicker’s hardness). Spectroscopy (SEM and Confocal spectroscopy) was performed on the specimens conducted to failure. FTIR showed a characteristic absorption band attributed to the stretching modes of tetrahedral boron ions, whose tetrahedral configuration is compatible to the reaction product of geopolymerization. 27Al NMR and 29Si NMR spectra were instrumental in understanding the extent of the reaction. 11B NMR spectroscopies evidenced a change of the trigonal boron (BO3) inside the BSG in favor of a quasi-total tetrahedral boron configuration (BO4). Thanks to these results, it was inferred that boron is part of the geopolymeric structure, replacing the Si in the network, similarly to the aluminum, and therefore improving the quality of the microstructure, in favor of a more cross-linked network. As expected, the material gained as much as 25% in compressive strength (45 MPa) compared to the literature, whereas no improvements were detected in flexural strength (~ 5 MPa) and superficial hardness (~ 78 HV). The material also exhibited a low fracture toughness (0.35 MPa*m1/2), with a tangible brittleness. SEM micrographies corroborated this behavior, showing a ragged surface, along with several cracks, due to the high presence of porosity and impurities, acting as preferential points for crack initiation. The 3D pattern of the surface fracture, following the confocal spectroscopy, evidenced an irregular crack propagation, whose proclivity was mainly, but not always, to follow the porosity. Hence, the crack initiation and propagation are largely unpredictable.Keywords: borosilicate glass, characterization, fly-ash, geopolymerization
Procedia PDF Downloads 211310 The Assessment Groundwater Geochemistry of Some Wells in Rafsanjan Plain, Southeast of Iran
Authors: Milad Mirzaei Aminiyan, Abdolreza Akhgar, Farzad Mirzaei Aminiyan
Abstract:
Water quality is the critical factor that influence on human health and quantity and quality of grain production in semi-humid and semi-arid area. Pistachio is a main crop that accounts for a considerable portion of Iranian agricultural exports. Give that pistachio tree is a tolerant type of tree to saline and alkaline soil and water conditions, but groundwater and irrigation water quality play important roles in main production this crop. For this purpose, 94 well water samples were taken from 25 wells and samples were analyzed. The results showed give that region’s geological, climatic characteristics, statistical analysis, and based on dominant cations and anions in well water samples (piper diagram); four main types of water were found: Na-Cl, K-Cl, Na-SO4, and K-SO4. It seems that most wells in terms of water quality (salinity and alkalinity) and based on Wilcox diagram have critical status. The analysis suggested that more than eighty-seven percentage of the well water samples have high values of EC that these values are higher than into critical limit EC value for irrigation water, which may be due to the sandy soils in this area. Most groundwater were relatively unsuitable for irrigation but it could be used by application of correct management such as removing and reducing the ion concentrations of Cl‾, SO42‾, Na+ and total hardness in groundwater and also the concentrated deep groundwater was required treatment to reduce the salinity and sodium hazard. Given that irrigation water quality in this area was relatively unsuitable for most agriculture production but pistachio tree was adapted to this area conditions. The integrated management of groundwater for irrigation is the way to solve water quality issues not only in Rafsanjan area, but also in other arid and semi-arid areas.Keywords: groundwater quality, irrigation water quality, salinity, alkalinity, Rafsanjan plain, pistachio
Procedia PDF Downloads 419309 Study Properties of Bamboo Composite after Treatment Surface by Chemical Method
Authors: Kiatnarong Supapanmanee, Ekkarin Phongphinittana, Pongsak Nimdum
Abstract:
Natural fibers are readily available raw materials that are widely used as composite materials. The most common problem facing many researchers with composites made from this fiber is the adhesion between the natural fiber contact surface and the matrix material. Part of the problem is due to the hydrophilic properties of natural fibers and the hydrophobic properties of the matrix material. Based on the aforementioned problems, this research selected bamboo fiber, which is a strong natural fiber in the research study. The first step was to study the effect of the mechanical properties of the pure bamboo strip by testing the tensile strength of different measurement lengths. The bamboo strip was modified surface with sodium hydroxide (NaOH) at 6wt% concentrations for different soaking periods. After surface modification, the physical and mechanical properties of the pure bamboo strip fibers were studied. The modified and unmodified bamboo strips were molded into a composite material using epoxy as a matrix to compare the mechanical properties and adhesion between the fiber surface and the material with tensile and bending tests. In addition, the results of these tests were compared with the finite element method (FEM). The results showed that the length of the bamboo strip affects the strength of the fibers, with shorter fibers causing higher tensile stress. Effects of surface modification of bamboo strip with NaOH, this chemical eliminates lignin and hemicellulose, resulting in the smaller dimension of the bamboo strip and increased density. From the pretreatment results above, it was found that the treated bamboo strip and composite material had better Ultimate tensile stress and Young's modulus. Moreover, that results in better adhesion between bamboo fiber and matrix material.Keywords: bamboo fiber, bamboo strip, composite material, bamboo composite, pure bamboo, surface modification, mechanical properties of bamboo, bamboo finite element method
Procedia PDF Downloads 94308 Nitrate-Induced Biochemical and Histopathological Changes in the Kidney of Rats: Attenuation by Hyparrhenia hirta
Authors: Hanen Bouaziz, Moez Rafrafi, Ghada Ben Salah, Kamel Jamoussi, Tahia Boudawara, Najiba Zeghal
Abstract:
The present study investigated the protective role of Hyparrhenia hirta against sodium nitrate (NaNO3)-induced nephrotoxicity. A high-performance liquid chromatography coupled with a mass spectrometer (HPLC-MS) method was developed to separate and identify flavonoids in Hyparrhenia hirta. Seven flavonoids were identified as 3-O-methylquercetin, luteolin-7-O-glucoside, luteolin, apigenin-7-O-glucoside, apigenin-8-C-glucoside, luteolin-8-C-glucoside and luteolin-6-C-glucoside. Wistar rats were randomly divided into three groups: a control group and two treated groups during 50 days with NaNO3 administered either alone in drinking water or co-administered with Hyparrhenia hirta. NaNO3 treatment induced a significant increase in plasma levels of creatinine, urea and uric while urinary level decreased significantly. Nephrotoxicity induced by NaNO3 was characterized by significant increase in creatinine clearance. In parallel, a significant increase in malondialdehyde level along with a concomitant decrease in total glutathione content and superoxide dismutase, catalase and glutathione peroxidase activities were observed in the kidney after NaNO3 treatment. The histopathological changes in kidney after NaNO3 administration were shrunken. There were renal tubule cell degeneration and infiltration of mononuclear cells. Most glomeruli revealed shrinkage, a wide capsular space and a peri-glomerular mononuclear cells infiltration. Hyparrhenia hirta supplementation showed a remarkable amelioration of the abnormalities cited above. The results concluded that the treatment with Hyparrhenia hirta had a significant role in protecting the animals from nitrate-induced kidney dysfunction.Keywords: flavonoids, hyparrhenia hirta, kidney, nitrate toxicity, oxidative stress, rat
Procedia PDF Downloads 445307 Superlyophobic Surfaces for Increased Heat Transfer during Condensation of CO₂
Authors: Ingrid Snustad, Asmund Ervik, Anders Austegard, Amy Brunsvold, Jianying He, Zhiliang Zhang
Abstract:
CO₂ capture, transport and storage (CCS) is essential to mitigate global anthropogenic CO₂ emissions. To make CCS a widely implemented technology in, e.g. the power sector, the reduction of costs is crucial. For a large cost reduction, every part of the CCS chain must contribute. By increasing the heat transfer efficiency during liquefaction of CO₂, which is a necessary step, e.g. ship transportation, the costs associated with the process are reduced. Heat transfer rates during dropwise condensation are up to one order of magnitude higher than during filmwise condensation. Dropwise condensation usually occurs on a non-wetting surface (Superlyophobic surface). The vapour condenses in discrete droplets, and the non-wetting nature of the surface reduces the adhesion forces and results in shedding of condensed droplets. This, again, results in fresh nucleation sites for further droplet condensation, effectively increasing the liquefaction efficiency. In addition, the droplets in themselves have a smaller heat transfer resistance than a liquid film, resulting in increased heat transfer rates from vapour to solid. Surface tension is a crucial parameter for dropwise condensation, due to its impact on the solid-liquid contact angle. A low surface tension usually results in a low contact angle, and again to spreading of the condensed liquid on the surface. CO₂ has very low surface tension compared to water. However, at relevant temperatures and pressures for CO₂ condensation, the surface tension is comparable to organic compounds such as pentane, a dropwise condensation of CO₂ is a completely new field of research. Therefore, knowledge of several important parameters such as contact angle and drop size distribution must be gained in order to understand the nature of the condensation. A new setup has been built to measure these relevant parameters. The main parts of the experimental setup is a pressure chamber in which the condensation occurs, and a high- speed camera. The process of CO₂ condensation is visually monitored, and one can determine the contact angle, contact angle hysteresis and hence, the surface adhesion of the liquid. CO₂ condensation on different surfaces can be analysed, e.g. copper, aluminium and stainless steel. The experimental setup is built for accurate measurements of the temperature difference between the surface and the condensing vapour and accurate pressure measurements in the vapour. The temperature will be measured directly underneath the condensing surface. The next step of the project will be to fabricate nanostructured surfaces for inducing superlyophobicity. Roughness is a key feature to achieve contact angles above 150° (limit for superlyophobicity) and controlled, and periodical roughness on the nanoscale is beneficial. Surfaces that are non- wetting towards organic non-polar liquids are candidates surface structures for dropwise condensation of CO₂.Keywords: CCS, dropwise condensation, low surface tension liquid, superlyophobic surfaces
Procedia PDF Downloads 278306 Effect of Z-VAD-FMK on in Vitro Viability of Dog Follicles
Authors: Leda Maria Costa Pereira, Maria Denise Lopes, Nucharin Songsasen
Abstract:
Mammalian ovaries contain thousands of follicles that eventually degenerate or die after culture in vitro. Caspase-3 is a key enzyme that regulating cell death. Our objective was to examine the influence of anti-apoptotic drug Z-VAD-FMK (pan-caspase inhibitor) on in vitro viability of dog follicles within the ovarian cortex. Ovaries were obtained from prepubertal (age, 2.5–6 months) and adult (age, 8 months to 2 years) bitches and ovarian cortical fragments were recovered. The cortices were then incubated on 1.5% (w/v) agarose gel blocks within a 24-wells culture plate (three cortical pieces/well) containing Minimum Essential Medium Eagle - Alpha Modification (Alpha MEM) supplemented with 4.2 µg/ml insulin, 3.8 µg/ml transferrin, 5 ng/ml selenium, 2 mM L-glutamine, 100 µg/mL of penicillin G sodium, 100 µg/mL of streptomycin sulfate, 0.05 mM ascorbic acid, 10 ng/mL of FSH and 0.1% (w/v) polyvinyl alcohol in humidified atmosphere of 5% CO2 and 5% O2. The cortices were divided in six treatment groups: 1) 10 ng/mL EGF (EGF V0); 2) 10 ng/mL of EGF plus 1 mM Z-VAD-FMK (EGF V1); 3) 10 ng/mL of EGF and 10 mM Z-VAD-FMK (EGF V10); 4) 1 mM Z-VAD-FMK; 5) 10 mM Z-VAD-FMK and (6) no EGF and Z-VAD-FMK supplementation. Ovarian follicles within the tissues were processed for histology and assessed for follicle density, viability (based on morphology) and diameter immediately after collection (Control) or after 3 or 7 days of in vitro incubation. Comparison among fresh and culture treatment group was performed using ANOVA test. There were no differences (P > 0.05) in follicle density and viability among different culture treatments. However, there were differences in this parameter between culture days. Specifically, culturing tissue for 7 days resulted in significant reduction in follicle viability and density, regardless of treatments. We found a difference in size between culture days when these follicles were cultured using 10 mM Z-VAD-FMK or 10 ng/mL EGF (EGF V0). In sum, the finding demonstrated that Z-VAD-FMK at the dosage used in the present study does not provide the protective effect to ovarian tissue during in vitro culture. Future studies should explore different Z-VAD-FMK dosages or other anti-apoptotic agent, such as surviving in protecting ovarian follicles against cell death.Keywords: anti apoptotic drug, bitches, follicles, Z-VAD-FMK
Procedia PDF Downloads 362305 Cadmium and Lead Extraction from Environmental Samples with Complexes Matrix by Nanomagnetite Solid-Phase and Determine Their Trace Amounts
Authors: Hossein Tavallali, Mohammad Ali Karimi, Gohar Deilamy-Rad
Abstract:
In this study, a new type of alumina-coated magnetite nanoparticles (Fe3O4/Al2O3 NPs) with sodium dodecyl sulfate- 1-(2-pyridylazo)-2-naphthol (SDS-PAN) as a new sorbent solid phase extraction (SPE) has been successfully synthesized and applied for preconcentration and separation of Cd and Pb in environmental samples. Compared with conventional SPE methods, the advantages of this new magnetic Mixed Hemimicelles Solid-Phase Extraction Procedure (MMHSPE) still include easy preparation and regeneration of sorbents, short times of sample pretreatment, high extraction yields, and high breakthrough volumes. It shows great analytical potential in preconcentration of Cd and Pb compounds from large volume water samples. Due to the high surface area of these new sorbents and the excellent adsorption capacity after surface modification by SDS-PAN, satisfactory concentration factor and extraction recoveries can be produced with only 0.05 g Fe3O4/Al2O3 NPs. The metals were eluted with 3mL HNO3 2 mol L-1 directly and detected with the detection system Flame Atomic Absorption Spectrometry (FAAS). Various influencing parameters on the separation and preconcentration of trace metals, such as the amount of PAN, pH value, sample volume, standing time, desorption solvent and maximal extraction volume, amount of sorbent and concentration of eluent, were studied. The detection limits of this method for Cd and Pb were 0.3 and 0.7 ng mL−1 and the R.S.D.s were 3.4 and 2.8% (C = 28.00 ng mL-1, n = 6), respectively. The preconcentration factor of the modified nanoparticles was 166.6. The proposed method has been applied to the determination of these metal ions at trace levels in soil, river, tap, mineral, spring and wastewater samples with satisfactory results.Keywords: Alumina-coated magnetite nanoparticles, Magnetic Mixed Hemimicell Solid-Phase Extraction, Cd and Pb, soil sample
Procedia PDF Downloads 318304 Amsan Syndrome in Emergency Department
Authors: Okan Cakir, Okan Tatli
Abstract:
Acute motor and sensory axonal neuropathy (AMSAN) syndrome usually occurs following a postviral infection in two to four weeks and is a polyneuropathy characterized by axonal and sensorial degeneration as a rare variant of Gullian-Barre syndrome. In our case, we wanted to mention that a rare case of AMSAN Syndrome due to prior surgery. A 61-year-old male case admitted to emergency department with complaints of weakness in feet, numbness and incapability to walk. In his history, it was learned that endovascular aneurysm repair (EVAR) had applied for abdominal aort aneurysm two weeks ago before admission, his complaints had been for a couple of days increasingly and bilaterally, and there had been no infection disease history for four weeks. In physical examination, general status was good, vital signs were stable, and there was a mild paresis in dorsal flexion of feet in bilaterally lower extremities. No nuchal rigidity was determined. Other system examinations were normal. Urea:52 mg/dL (normal range: 15-44 mg/dL), creatinine: 1,05 mg/dL (normal range: 0,81-1,4 mg/dL), potassium: 3,68 mmol/L (normal range: 3,5-5,5 mmol/L), glycaemia: 142 mg/dL, calcium: 9,71 mg/dL (normal range: 8,5-10,5 mg/dL), erythrocyte sedimentation rate (ESR): 74 mm/h (normal range: 0-15 mm/h) were determined in biochemical tests. The case was consulted to neurology department and hospitalized. In performing electromyography, it was reported as a bilateral significant axonal degeneration with sensory-motor polyneuropathy. Normal ranges of glycaemia and protein levels were detected in lumbal punction. Viral markers and bucella, toxoplasma, and rubella markers were in normal range. Intravenous immunoglobulin (IVIG) was applied as a treatment, physical treatment programme was planned and the case discharged from neurology department. In our case, we mentioned that it should be considered polyneuropathy as an alternative diagnosis in cases admitting symptoms like weakness and numbness had a history of prior surgery.Keywords: AMSAN Syndrome, emergency department, prior surgery, weakness
Procedia PDF Downloads 341303 Iranian Processed Cheese under Effect of Emulsifier Salts and Cooking Time in Process
Authors: M. Dezyani, R. Ezzati bbelvirdi, M. Shakerian, H. Mirzaei
Abstract:
Sodium Hexametaphosphate (SHMP) is commonly used as an Emulsifying Salt (ES) in process cheese, although rarely as the sole ES. It appears that no published studies exist on the effect of SHMP concentration on the properties of process cheese when pH is kept constant; pH is well known to affect process cheese functionality. The detailed interactions between the added phosphate, Casein (CN), and indigenous Ca phosphate are poorly understood. We studied the effect of the concentration of SHMP (0.25-2.75%) and holding time (0-20 min) on the textural and Rheological properties of pasteurized process Cheddar cheese using a central composite rotatable design. All cheeses were adjusted to pH 5.6. The meltability of process cheese (as indicated by the decrease in loss tangent parameter from small amplitude oscillatory rheology, degree of flow, and melt area from the Schreiber test) decreased with an increase in the concentration of SHMP. Holding time also led to a slight reduction in meltability. Hardness of process cheese increased as the concentration of SHMP increased. Acid-base titration curves indicated that the buffering peak at pH 4.8, which is attributable to residual colloidal Ca phosphate, was shifted to lower pH values with increasing concentration of SHMP. The insoluble Ca and total and insoluble P contents increased as concentration of SHMP increased. The proportion of insoluble P as a percentage of total (indigenous and added) P decreased with an increase in ES concentration because of some of the (added) SHMP formed soluble salts. The results of this study suggest that SHMP chelated the residual colloidal Ca phosphate content and dispersed CN; the newly formed Ca-phosphate complex remained trapped within the process cheese matrix, probably by cross-linking CN. Increasing the concentration of SHMP helped to improve fat emulsification and CN dispersion during cooking, both of which probably helped to reinforce the structure of process cheese.Keywords: Iranian processed cheese, emulsifying salt, rheology, texture
Procedia PDF Downloads 433302 Prospects of Milk Protein as a Potential Alternative of Natural Antibiotic
Authors: Syeda Fahria Hoque Mimmi
Abstract:
Many new and promising treatments for reducing or diminishing the adverse effects of microorganisms are being discovered day by day. On the other hand, the dairy industry is accelerating the economic wheel of Bangladesh. Considering all these facts, new thoughts were developed to isolate milk proteins by the present experiment for opening up a new era of developing natural antibiotics from milk. Lactoferrin, an iron-binding glycoprotein with multifunctional properties, is crucial to strengthening the immune system and also useful for commercial applications. The protein’s iron-binding capacity makes it undoubtedly advantageous to immune system modulation and different bacterial strains. For fulfilling the purpose, 4 of raw and 17 of commercially available milk samples were collected from different farms and stores in Bangladesh (Dhaka, Chittagong, and Cox’s Bazar). Protein quantification by nanodrop technology has confirmed that raw milk samples have better quantities of protein than the commercial ones. All the samples were tested for their antimicrobial activity against 18 pathogens, where raw milk samples showed a higher percentage of antibacterial activity. In addition to this, SDS-PAGE (Sodium Dodecyl Sulfate–Polyacrylamide Gel Electrophoresis) was performed to identify lactoferrin in the milk samples. Lactoferrin was detected in 9 samples from which 4 were raw milk samples. Interestingly, Streptococcus pyogenes, Klebsiella pneumoniae, Bacillus cereus, Pseudomonas aeruginosa, Vibrio cholera, Staphylococcus aureus, and enterotoxigenic E. coli significantly displayed sensitivity against lactoferrin collected from raw milk. Only Bacillus cereus, Pseudomonas aeruginosa, Streptococcus pneumonia, Enterococcus faecalis, and ETEC (Enterotoxigenic Escherichia coli) were susceptible to lactoferrin obtained from a commercial one. This study suggested that lactoferrin might be used as the potential alternative of antibiotics for many diseases and also can be used to reduce microbial deterioration in the food and feed industry.Keywords: alternative of antibiotics, commercially available milk, lactoferrin, nanodrop technology, pathogens, raw milk
Procedia PDF Downloads 183301 Synthesis and Biological Activities of Novel -1,2,3-Triazoles Derivatives
Authors: Zahra Dehghani, Hoda Dehghani, Elham Zarenezhad
Abstract:
1,2,3-Triazole derivatives are important compounds in medicinal chemistry owing to their wide applications in drug discovery. They can readily associate with biologically targets through the hydrogen bonding and dipole interactions. The 1,2,3-triazole core is a key structural motif in many bioactive compounds, exhibiting a broad spectrum of biological activities, such as antiviral, anticancer, anti-HIV, antibiotic, antibacterial, and antimicrobial. Additionally, they have found significant industrial applications as dyes, agrochemicals, corrosion inhibitors, photo stabilizers, and photographic materials. we disclose the synthesis and characterization of 1-azido-3-(aryl-2-yloxy)propan-2-ol drivatives. The chemistry works well with various ß-azido alcohols involving aryloxy, alkoxy and alkyl residues, and also tolerates a wide spectrum of electron-donating and electron-withdrawing functional groups in both alkyne and azide molecules. Most of ß-azidoalcohols used in these experiments were pre-synthesized by the regioselective ring opening reaction of corresponded epoxides with sodium azide, whereas the majority of terminal alkynes were prepared via SN2-type reaction of propargyl bromide and corresponded nucleophiles. To evaluate the bioactivity of title compounds, the in vitro antifungal activity of all compound was investigated against several pathogenic fungi including Candida albicans, Candida krusei, Aspergillus niger, and Trichophyton rubrum , clotrimazole and fluconazole was used as standard antifungal drugs, also To understand the antibacterial activity of synthesized compounds, they were in vitro screened against E. coli and S. aureus as Gram-negative and Gram-positive bacteria, respectively. The in vitro tests have shown the promising antifungal but marginal antibacterial activity against tested fungi and bacteria.Keywords: biological activities, antibacterial, antifungal, 1, 2, 3-Triazole
Procedia PDF Downloads 431300 Synthesis of Na-LSX Zeolite and Hydrosodalite from Polish Fly Ashes
Authors: Barbara Bialecka, Zdzislaw Adamczyk, Magdalena Cempa
Abstract:
In the work, the results of investigations into the hydrothermal zeolitization of fly ash from hard coal combustion in one of Polish Power Station have been presented. The chemical composition of the ash was determined by the method of X-ray fluorescence (XRF), whereas the phases of both fly ash and the products after synthesis were identified using microscopic observations, X-ray diffraction analysis (XRD) as well as electron scanning microscopy with measurements of the chemical compositions in micro areas (SEM/EDS). The synthesis was carried out with various concentrations of NaOH solution (3M, 4M and 6M) in the following conditions: synthesis temperature – 80ᵒC, synthesis time – 16 hours, volume of NaOH solution – 350ml, fly ash mass – 14g. The main chemical components of fly ash were SiO₂ and Al₂O₃, the contents of which reached 51.62 and 28.14%mas., respectively. The input ash contained mainly such phases as mullite, quarz, magnetite, and glass. The research results indicate that the phase composition of products after zeolitization was differentiated. The material after synthesis in 3M NaOH solution was found to contain mullite, quarz, magnetite, and Na-LSX zeolite. The products of synthesis in 4M NaOH solution were very similar to those in 3M solution (mullite, quarz, magnetite, Na-LSX zeolite), but they additionally contained hydrosodalite. The material after synthesis in 6M NaOH solution contains mullite, quarz, magnetite (similarly to synthesis in 3M and 4M NaOH solition) and additionally hydrosodalite. Therefore, the products of synthesis contain relic components from the fly ash input sample in the form of mullite, quarz, and magnetite, as well as new phases, which are Na-LSX zeolite and hydrosodalite. It should be noted that the products of synthesis in the case of 4M NaOH solution contained both new phases (Na-LSX zeolite and hydrosodalite), while the products from the extreme concentration of NaOH solutions (3M and 6M) contained only one of them. Observations in the scanning electron microscope revealed the new phases’ morphology. It was found that Na-LSX zeolite formed cubic crystals, whereas hydrosodalite formed characteristic aggregations. The results of investigations into the chemical composition in the micro area of phase grains in the products after synthesis reveal some dependencies, among others a characteristic increase in the content of sodium, related to the increased concentration of NaOH solution.Keywords: Na-LSX, fly ash, hydrosodalite, zeolite
Procedia PDF Downloads 174299 Response of Post-harvest Treatments on Shelf Life, Biochemical and Microbial Quality of Banana Variety Red Banana
Authors: Karishma Sebastian, Pavethra A., Manjula B. S., K. N. Satheeshan, Jenita Thinakaran
Abstract:
Red Banana is a popular variety of banana with strong market demand. Its ripe fruits are less resistant to transportation, complicating logistics. Moreover, as it is a climacteric fruit, its post-harvest shelf life is limited. The current study aimed to increase the postharvest shelf life of Red Banana fruits by adopting different postharvest treatments. Fruit bunches of Red Banana were harvested at the mature green stage, separated into hands, precooled, subjected to 12 treatments, and stored in Corrugated Fibre Board boxes till the end of shelf life under ambient conditions. Fruits coated with 10% bee wax + 0.5% clove oil (T₄), fruits subjected to coating with 10% bee wax and packaging with potassium permanganate (T₉), and fruits dipped in hot water at 50°C for 10 minutes and packaging with potassium permanganate (T₁₁) registered the highest shelf life of 18.67 days. The highest TSS of 26.33°Brix was noticed in fruits stored with potassium permanganate (T₈) after 12.67 days of storage, and lowest titratable acidity of 0.19%, and the highest sugar-acid ratio of 79.76 was noticed in control (T₁₂) after 11.33 days of storage. Moreover, the highest vitamin C content (7.74 mg 100 g⁻¹), total sugar content (18.47%), reducing sugar content (15.49%), total carotenoid content (24.13 µg 100 g-¹) was noticed in treatments T₇ (hot water dipping at 50 °C for 10 minutes) after 17.67 days, T₁₀ (coating with 40% aloe vera extract and packaged with potassium permanganate) after 13.33 days, T₄ (coating with 10% bee wax + 0.5% clove oil) after 18.67 days and T₉ (coating with 10% bee wax + potassium permanganate) after 18.67 days of storage respectively. Furthermore, the lowest fungal and bacterial counts were observed in treatments T₂ (dipping in 30ppm sodium hypochlorite solution), T₇ (hot water dipping at 50 °C for 10 minutes), T₉ (coating with 10% bee wax + potassium permanganate), and T₁₀ (coating with 40% aloe vera extract + potassium permanganate).Keywords: bee wax, post-harvest treatments, potassium permanganate, Red Banana, shelf life
Procedia PDF Downloads 49298 Correlation Studies in Nutritional Intake, Health Status and Clinical Examination of Young Adult Girls
Authors: Sonal Tuljaram Kame
Abstract:
Growth and development is based on proper diet. A balanced diet contains all the nutrients in required quantum. Although physical growth is completed by young adulthood, the body tissues remain in a dynamic state with catabolism slightly exceeding anabolism, resulting in a net decrease in the number of cells. After the years of adolescence which cause upheavals in the life of the person, the individual struggle to emerge as an adult who know who he is and what his goals are. During this period nutrients are needed for maintaining the health and energy is required for physical functions and physical activities. The nutritional requirement in young adulthood differs from other periods of life. Iron is needed for haemoglobin synthesis and necessitates by the considerable examination of blood volume. Young adult girls need to ensure adequate intake of iron as they loose 0.5 mg/day by way of menstruation. This is complete awareness about nutritional and health on the other side there is widespread ignorance about nutrition and health among young adult girls. The young adult girls who are aware about nutrition and health seem to be very conscious about nutritional intake and health. Figure consciousness and fear of obesity leads to self imposed intake of nutrients. It may result in various health problems. The study was planned to investigate nutrient intake, find relation between nutritional intake, clinical examination score and health status of young adult girls. The present study is based on the data collected from 120 young adult girls studying in four different competitive exams coaching academies in Akola city of Maharashtra. It was found that nutritional intake of these young adult girls was below the recommended level, nutritional knowledge level and nutritional intake are associated attributes, calories, calcium and protein intake is positively correlated with clinical examination and health status. It was concluded that well planned nutritional counseling for the young adult girls can help prevent nutritional deficiency diseases and disorders which may lead to anaemic condition in young adult girls. Girls need to be educated on intake of iron and vitamin B12.Keywords: nutritional intake, health status, young adult girls, correlation studies
Procedia PDF Downloads 370297 Osteoprotegerin and Osteoprotegerin/TRAIL Ratio are Associated with Cardiovascular Dysfunction and Mortality among Patients with Renal Failure
Authors: Marek Kuźniewski, Magdalena B. Kaziuk , Danuta Fedak, Paulina Dumnicka, Ewa Stępień, Beata Kuśnierz-Cabala, Władysław Sułowicz
Abstract:
Background: The high prevalence of cardiovascular morbidity and mortality among patients with chronic kidney disease (CKD) is observed especially in those undergoing dialysis. Osteoprotegerin (OPG) and its ligands, receptor activator of nuclear factor kappa-B ligand (RANKL) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) have been associated with cardiovascular complications. Our aim was to study their role as cardiovascular risk factors in stage 5 CKD patients. Methods: OPG, RANKL and TRAIL concentrations were measured in 69 hemodialyzed CKD patients and 35 healthy volunteers. In CKD patients, cardiovascular dysfunction was assessed with aortic pulse wave velocity (AoPWV), carotid artery intima-media thickness (CCA-IMT), coronary artery calcium score (CaSc) and N-terminal pro-B-type natriuretic peptide (NT-proBNP) serum concentration. Cardiovascular and overall mortality data were collected during a 7-years follow-up. Results: OPG plasma concentrations were higher in CKD patients comparing to controls. Total soluble RANKL was lower and OPG/RANKL ratio higher in patients. Soluble TRAIL concentrations did not differ between the groups and OPG/TRAIL ratio was higher in CKD patients. OPG and OPG/TRAIL positively predicted long-term mortality (all-cause and cardiovascular) in CKD patients. OPG positively correlated with AoPWV, CCA-IMT and NT-proBNP whereas OPG/TRAIL with AoPWV and NT-proBNP. Described relationships were independent of classical and non-classical cardiovascular risk factors, with exception of age. Conclusions: Our study confirmed the role of OPG as a biomarker of cardiovascular dysfunction and a predictor of mortality in stage 5 CKD. OPG/TRAIL ratio can be proposed as a predictor of cardiovascular dysfunction and mortality.Keywords: osteoprotegerin, tumor necrosis factor-related apoptosis-inducing ligand, receptor activator of nuclear factor kappa-B ligand, hemodialysis, chronic kidney disease, cardiovascular disease
Procedia PDF Downloads 336296 Bayesian Structural Identification with Systematic Uncertainty Using Multiple Responses
Authors: André Jesus, Yanjie Zhu, Irwanda Laory
Abstract:
Structural health monitoring is one of the most promising technologies concerning aversion of structural risk and economic savings. Analysts often have to deal with a considerable variety of uncertainties that arise during a monitoring process. Namely the widespread application of numerical models (model-based) is accompanied by a widespread concern about quantifying the uncertainties prevailing in their use. Some of these uncertainties are related with the deterministic nature of the model (code uncertainty) others with the variability of its inputs (parameter uncertainty) and the discrepancy between a model/experiment (systematic uncertainty). The actual process always exhibits a random behaviour (observation error) even when conditions are set identically (residual variation). Bayesian inference assumes that parameters of a model are random variables with an associated PDF, which can be inferred from experimental data. However in many Bayesian methods the determination of systematic uncertainty can be problematic. In this work systematic uncertainty is associated with a discrepancy function. The numerical model and discrepancy function are approximated by Gaussian processes (surrogate model). Finally, to avoid the computational burden of a fully Bayesian approach the parameters that characterise the Gaussian processes were estimated in a four stage process (modular Bayesian approach). The proposed methodology has been successfully applied on fields such as geoscience, biomedics, particle physics but never on the SHM context. This approach considerably reduces the computational burden; although the extent of the considered uncertainties is lower (second order effects are neglected). To successfully identify the considered uncertainties this formulation was extended to consider multiple responses. The efficiency of the algorithm has been tested on a small scale aluminium bridge structure, subjected to a thermal expansion due to infrared heaters. Comparison of its performance with responses measured at different points of the structure and associated degrees of identifiability is also carried out. A numerical FEM model of the structure was developed and the stiffness from its supports is considered as a parameter to calibrate. Results show that the modular Bayesian approach performed best when responses of the same type had the lowest spatial correlation. Based on previous literature, using different types of responses (strain, acceleration, and displacement) should also improve the identifiability problem. Uncertainties due to parametric variability, observation error, residual variability, code variability and systematic uncertainty were all recovered. For this example the algorithm performance was stable and considerably quicker than Bayesian methods that account for the full extent of uncertainties. Future research with real-life examples is required to fully access the advantages and limitations of the proposed methodology.Keywords: bayesian, calibration, numerical model, system identification, systematic uncertainty, Gaussian process
Procedia PDF Downloads 327295 Modulation of Fish Allergenicity towards the Production of a Low Allergen Farmed Fish
Authors: Denise Schrama, Claudia Raposo, Pedro Rodrigues
Abstract:
Background: Food allergies are conducted by a hypersensitive response of the immune system. These allergies are a global concern for the public health. Consumption of fish is increasing worldwide as it is a healthy meat with high nutritional value. Unfortunately, fish can cause adverse immune-mediate reactions, affecting part of the population with higher incidence in children. β-parvalbumin, a small, highly conserved stable, calcium or magnesium binding muscle protein is the main fish allergen. In fish-allergic patients, cross-reactivity between different fish species exist due to recognition of highly identical protein regions. Enolases, aldolases, or fish gelatin are other identified fish allergens in some fish species. With no available cure for fish allergies, clinical management is only based on an avoidance diet aiming at the total exclusion of offending food. Methods: Mediterranean fish (S. aurata and D. labrax) were fed specifically designed diets, enriched in components that target the expression or inactivation of parvalbumin (creatine and EDTA, respectively). After 90 days fish were sampled and biological tissues were excised. Proteomics was used to access fish allergens characterization and expression in muscle while IgE assays to confirm the lower allergenic potential are conducted in patients with history of fish allergies. Fish welfare and quality of flesh were established with biochemical, texture and sensorial analysis. Results: Fish welfare shows no major impact between diets. In case of creatine supplementation in D. labrax proteomic analysis show a slight decrease in parvalbumin expression. No accumulation of this compound was found in muscle. For EDTA supplementation in S. aurata IgE assay show a slight decrease in allergenicity when using sera of fish allergic patients. Conclusion: Supplementation with these two compounds seems to change slightly the allergenicity of the two mean Mediterranean species.Keywords: fish allergies, fish nutrition, proteomics, aquaculture
Procedia PDF Downloads 157294 Influence of Glass Plates Different Boundary Conditions on Human Impact Resistance
Authors: Alberto Sanchidrián, José A. Parra, Jesús Alonso, Julián Pecharromán, Antonia Pacios, Consuelo Huerta
Abstract:
Glass is a commonly used material in building; there is not a unique design solution as plates with a different number of layers and interlayers may be used. In most façades, a security glazing have to be used according to its performance in the impact pendulum. The European Standard EN 12600 establishes an impact test procedure for classification under the point of view of the human security, of flat plates with different thickness, using a pendulum of two tires and 50 kg mass that impacts against the plate from different heights. However, this test does not replicate the actual dimensions and border conditions used in building configurations and so the real stress distribution is not determined with this test. The influence of different boundary conditions, as the ones employed in construction sites, is not well taking into account when testing the behaviour of safety glazing and there is not a detailed procedure and criteria to determinate the glass resistance against human impact. To reproduce the actual boundary conditions on site, when needed, the pendulum test is arranged to be used "in situ", with no account for load control, stiffness, and without a standard procedure. Fracture stress of small and large glass plates fit a Weibull distribution with quite a big dispersion so conservative values are adopted for admissible fracture stress under static loads. In fact, test performed for human impact gives a fracture strength two or three times higher, and many times without a total fracture of the glass plate. Newest standards, as for example DIN 18008-4, states for an admissible fracture stress 2.5 times higher than the ones used for static and wing loads. Now two working areas are open: a) to define a standard for the ‘in situ’ test; b) to prepare a laboratory procedure that allows testing with more real stress distribution. To work on both research lines a laboratory that allows to test medium size specimens with different border conditions, has been developed. A special steel frame allows reproducing the stiffness of the glass support substructure, including a rigid condition used as reference. The dynamic behaviour of the glass plate and its support substructure have been characterized with finite elements models updated with modal tests results. In addition, a new portable impact machine is being used to get enough force and direction control during the impact test. Impact based on 100 J is used. To avoid problems with broken glass plates, the test have been done using an aluminium plate of 1000 mm x 700 mm size and 10 mm thickness supported on four sides; three different substructure stiffness conditions are used. A detailed control of the dynamic stiffness and the behaviour of the plate is done with modal tests. Repeatability of the test and reproducibility of results prove that procedure to control both, stiffness of the plate and the impact level, is necessary.Keywords: glass plates, human impact test, modal test, plate boundary conditions
Procedia PDF Downloads 308293 Rejuvenation of Aged Kraft-Cellulose Insulating Paper Used in Transformers
Authors: Y. Jeon, A. Bissessur, J. Lin, P. Ndungu
Abstract:
Most transformers employ the usage of cellulose paper, which has been chemically modified through the Kraft process that acts as an effective insulator. Cellulose ageing and oil degradation are directly linked to fouling of the transformer and accumulation of large quantities of waste insulating paper. In addition to technical difficulties, this proves costly for power utilities to deal with. Currently there are no cost effective method for the rejuvenation of cellulose paper that has been documented nor proposed, since renewal of used insulating paper is implemented as the best option. This study proposes and contrasts different rejuvenation methods of accelerated aged cellulose insulating paper by chemical and bio-bleaching processes. Of the three bleaching methods investigated, two are, conventional chlorine-based sodium hypochlorite (m/v), and chlorine-free hydrogen peroxide (v/v), whilst the third is a bio-bleaching technique that uses a bacterium isolate, Acinetobacter strain V2. Through chemical bleaching, varying the strengths of the bleaching reagents at 0.3 %, 0.6 %, 0.9 %, 1.2 %, 1.5 % and 1.8 % over 4 hrs. were analyzed. Bio-bleaching implemented a bacterium isolate, Acinetobacter strain V2, to bleach the aged Kraft paper over 4 hrs. The determination of the amount of alpha cellulose, degree of polymerization and viscosity carried out on Kraft-cellulose insulating paper before and after bleaching. Overall the investigated techniques of chemical and bio-bleaching were successful and effective in treating degraded and accelerated aged Kraft-cellulose insulating paper, however, to varying extents. Optimum conditions for chemical bleaching were attained at bleaching strengths of 1.2 % (m/v) NaOCl and 1.5 % (v/v) H2O2 yielding alpha cellulose contents of 82.4 % and 80.7 % and degree of polymerizations of 613 and 616 respectively. Bio-bleaching using Acinetobacter strain V2 proved to be the superior technique with alpha cellulose levels of 89.0 % and a degree of polymerization of 620. Chemical bleaching techniques require careful and controlled clean-up treatments as it is chlorine and hydrogen peroxide based while bio-bleaching is an extremely eco-friendly technique.Keywords: alpha cellulose, bio-bleaching, degree of polymerization, Kraft-cellulose insulating paper, transformer, viscosity
Procedia PDF Downloads 271292 Effect of Distillery Spentwash Application on Soil Properties and Yield of Maize (Zea mays L.) and Finger Millet (Eleusine coracana (L.) G)
Authors: N. N. Lingaraju, A. Sathish, K. N. Geetha, C. A. Srinivasamurthy, S. Bhaskar
Abstract:
Studies on spent wash utilization as a nutrient source through 'Effect of distillery spentwash application on soil properties and yield of maize (Zea may L.) and finger millet (Eleusine coracana (L.) G)' was carried out in Malavalli Taluk, Mandya District, Karnataka State, India. The study was conducted in fourteen different locations of Malavalli (12) and Maddur taluk (2) involving maize and finger millet as a test crop. The spentwash was characterized for various parameters like pH, EC, total NPK, Na, Ca, Mg, SO₄, Fe, Zn, Cu, Mn and Cl content. It was observed from the results that the pH was slightly alkaline (7.45), EC was excess (23.3 dS m⁻¹), total NPK was 0.12, 0.02, and 1.31 percent respectively, Na, Ca, Mg and SO₄ concentration was 664, 1305, 745 and 618 (mg L⁻¹) respectively, total solid content was quite high (6.7%), Fe, Zn, Cu, Mn, values were 23.5, 5.70, 3.64, 4.0 mg L⁻¹, respectively. The crops were grown by adopting different crop management practices after application of spentwash at 100 m³ ha⁻¹ to the identified farmer fields. Soil samples were drawn at three stages i.e., before sowing of crop, during crop growth stage and after harvest of the crop at 2 depths (0-30 and 30-60 cm) and analyzed for pH, EC, available K and Na parameters by adopting standard procedures. The soil analysis showed slightly acidic reaction (5.93), normal EC (0.43 dS m⁻¹), medium available potassium (267 kg ha⁻¹) before application of spentwash. Application of spentwash has enhanced pH level of soil towards neutral (6.97), EC 0.25 dS m⁻¹, available K2O to 376 kg ha⁻¹ and sodium content of 0.73 C mol (P+) kg⁻¹ during the crop growth stage. After harvest of the crops soil analysis data indicated a decrease in pH to 6.28, EC of 0.22 dS m⁻¹, available K₂O to 316 kg ha⁻¹ and Na 0.52 C mol (P⁺) kg⁻¹ compared with crop growth stage. The study showed that, there will be enhancement of potassium levels if the spentwash is applied once to dryland. The yields of both the crops were quantified and found to be in the range of 35.65 to 65.55 q ha⁻¹ and increased yield to the extent of 13.36-22.36 percent as compared to control field (11.36-22.33 q ha⁻¹) in maize crop. Also, finger millet yield was increased with the spentwash application to the extent of 14.21-20.49 percent (9.5-17.73 q ha⁻¹) higher over farmers practice (8.15-14.15 q ha⁻¹).Keywords: distillery spentwash, finger millet, maize, waste water
Procedia PDF Downloads 364291 Experimental Investigations on Setting Behavior and Compreesive Strength of Flyash Based Geopolymer
Authors: Ishan Tank, Ashmita Rupal, Sanjay Kumar Sharma
Abstract:
Concrete, a widely used building material, has cement as its main constituent. An excessive amount of emissions are released into the atmosphere during the manufacture of cement, which is detrimental to the environment. To minimize this problem, innovative materials like geopolymer mortar (GPM) seem to be a better alternative. By using fly ash-based geopolymer instead of standard cement mortar as a binding ingredient, this concept has been successfully applied to the building sector. The advancement of this technology significantly reduces greenhouse gas emissions and helps in source reduction, thereby minimizing pollution of the environment. In order to produce mortar and use this geopolymer mortar in the development of building materials, the current investigation is properly introducing this geopolymeric material, namely fly ash, as a binder in place of standard cement. In the domain of the building material industry, fly ash based geopolymer is a new and optimistic replacement for traditional binding materials because it is both environmentally sustainable and has good durability. The setting behaviour and strength characteristics of fly ash, when mixed with alkaline activator solution with varied concentration of sodium hydroxide solution, alkaline liquids mix ratio, and curing temperature, must be investigated, though, in order to determine its suitability and application in comparison with the traditional binding material, by activating the raw materials, which include various elements of silica and alumina, finer material known as geopolymer mortar is created. The concentration of the activator solution has an impact on the compressive strength of the geopolymer concrete formed. An experimental examination of compressive strength after 7, 14, and 28 days of fly ash-based geopolymer concrete is presented in this paper. Furthermore, the process of geopolymerization largely relies on the curing temperature. So, the setting time of Geopolymer mortar due to different curing temperatures has been studied and discussed in this paper.Keywords: geopolymer mortar, setting time, flyash, compressive strength, binder material
Procedia PDF Downloads 72290 Thulium Laser Design and Experimental Verification for NIR and MIR Nonlinear Applications in Specialty Optical Fibers
Authors: Matej Komanec, Tomas Nemecek, Dmytro Suslov, Petr Chvojka, Stanislav Zvanovec
Abstract:
Nonlinear phenomena in the near- and mid-infrared region are attracting scientific attention mainly due to the supercontinuum generation possibilities and subsequent utilizations for ultra-wideband applications like e.g. absorption spectroscopy or optical coherence tomography. Thulium-based fiber lasers provide access to high-power ultrashort pump pulses in the vicinity of 2000 nm, which can be easily exploited for various nonlinear applications. The paper presents a simulation and experimental study of a pulsed thulium laser based for near-infrared (NIR) and mid-infrared (MIR) nonlinear applications in specialty optical fibers. In the first part of the paper the thulium laser is discussed. The thulium laser is based on a gain-switched seed-laser and a series of amplification stages for obtaining output peak powers in the order of kilowatts for pulses shorter than 200 ps in full-width at half-maximum. The pulsed thulium laser is first studied in a simulation software, focusing on seed-laser properties. Afterward, a pre-amplification thulium-based stage is discussed, with the focus of low-noise signal amplification, high signal gain and eliminating pulse distortions during pulse propagation in the gain medium. Following the pre-amplification stage a second gain stage is evaluated with incorporating a thulium-fiber of shorter length with increased rare-earth dopant ratio. Last a power-booster stage is analyzed, where the peak power of kilowatts should be achieved. Examples of analytical study are further validated by the experimental campaign. The simulation model is further corrected based on real components – parameters such as real insertion-losses, cross-talks, polarization dependencies, etc. are included. The second part of the paper evaluates the utilization of nonlinear phenomena, their specific features at the vicinity of 2000 nm, compared to e.g. 1550 nm, and presents supercontinuum modelling, based on the thulium laser pulsed output. Supercontinuum generation simulation is performed and provides reasonably accurate results, once fiber dispersion profile is precisely defined and fiber nonlinearity is known, furthermore input pulse shape and peak power must be known, which is assured thanks to the experimental measurement of the studied thulium pulsed laser. The supercontinuum simulation model is put in relation to designed and characterized specialty optical fibers, which are discussed in the third part of the paper. The focus is placed on silica and mainly on non-silica fibers (fluoride, chalcogenide, lead-silicate) in their conventional, microstructured or tapered variants. Parameters such as dispersion profile and nonlinearity of exploited fibers were characterized either with an accurate model, developed in COMSOL software or by direct experimental measurement to achieve even higher precision. The paper then combines all three studied topics and presents a possible application of such a thulium pulsed laser system working with specialty optical fibers.Keywords: nonlinear phenomena, specialty optical fibers, supercontinuum generation, thulium laser
Procedia PDF Downloads 322289 Vitamin D Supplementation Potentiates the Clinical Benefits of Metformin and Pioglitazone in Indian Women with Polycystic Ovary Syndrome
Authors: Mohd Asharf Ganie, Aafia Rashid, Mohd Afzal Zargar, Showkat Ali Zargar, Syed Mudasar, Tabasum Parvaiz, Zafar Amin Shah
Abstract:
Accumulating evidence suggests that Vitamin D deficiency (VDD) might at least contribute to the metabolic co-morbidities in PCOS. Hence, we aimed to study the effect of vitamin D supplementation in co-prescription with insulin sensitizers like metformin and pioglitazone on clinical, hormonal and metabolic parameters in women with PCOS. In this open label randomized, controlled trial a total of 120 women with PCOS diagnosis (AE-PCOS 2009 Criteria) were assigned to four treatment groups (n= 30 in each): group I (metformin 1 gm/day in combination with cholecalciferol 4000 IU/day), group II (pioglitazone 30 mg/day in combination with cholecalciferol 4000 IU/day), group III (metformin 1 gm /day) and group IV (pioglitazone 30 mg/day). Vitamin D supplementation was given as 60,000 units every two weeks for 24 weeks. All the subjects were routinely evaluated for clinical, biochemical, hormonal and insulin sensitivity parameters in addition to various safety parameters especially serum calcium levels at baseline and after 24 weeks of the treatment. Our results indicate that 95.5% of PCOS women were vitamin D deficient at baseline. Serum 25 (OH) D levels increased significantly (p < 0.001) in groups I and II without any adverse effects after 24 weeks of oral administration of 4000 IU cholecalciferol daily. However, serum 25 (OH) D levels remained unchanged in group III and IV. By six months, number of menstrual cycles per year increased whereas Ferriman-Gallwey score, serum total testosterone and HOMA-IR decreased significantly (P < 0.001) in the treatment groups supplemented with cholecalciferol as compared to those treated either drug alone. No significant beneficial changes were observed on weight, BMI, blood pressure, glucose tolerance and serum lipids in any of the groups supplemented with cholecalciferol. We conclude that daily dose of 4000 IU cholecalciferol might be a useful adjunct in complex treatment of PCOS with fewer adverse events. Furthermore, pioglitazone and cholecalciferol combination seems to be marginally better although there was no statistical significance.Keywords: PCOS, vitamin D supplementation, insulin resistance, spironolactone, metformin, pioglitazone
Procedia PDF Downloads 382288 Assessment of Trace Metals Contamination in Surficial and Core Sediments from Ghannouch- Gabes Coastline, Impact of Phosphogypsum Discharge, Southeastern of Tunisia, Mediterranean Sea: Geochemical and Mineralogical Approaches
Authors: Rim Ben Amor, Myriam Abidi, Moncef Gueddari
Abstract:
The purpose of the present study is to assess the level and the distribution of CaO, SO3, Cd, Cu, Pb and Zn incore sediments of Ghannouch-Gabes coast, Gulf of Gabes, Tunisian Mediterranean coast. The XRD analyses indicate that the sediments of Ghannouch-Gabes coast are mainly composed of quartz, calcite, gypsum and fluorine reflecting the impact of the phosphate fertilizer industrial waste. The vertical distribution of surface sediments shows for all the elements analyzed, that the area located between the commercial and the fishing port of Gabes, is the most polluted zone, where the two harbors acted as barriers and limited the dispersion of phosphogypsum discharge. The abundance order of metals was found to be Zn > Cd > Cu >Pb and that the highest levels of heavy metals were found in the uppermost segment of the sediment core compared to lower depth subsurface due to a continuous input of PG release and showed that the area between the two harbor suffered from several types of pollutants compared to reference core C1, collected from non-industrialized area. The level of pollution was evaluated using contamination factor (Cf), pollution load index (PLI) and the geoaccumulation index (Igeo). The obtained results of Igeo allowed us to distinguish that the area between the commercial harbor of Ghannouch and the fishing harbor of Gabes is the most polluted where sediments are strongly contaminated for Pb, Cu and Cd. The pollution load index (PLI) of all sediments collected classified them as "polluted". According to contamination factor (Cf), the sediments can be considered as ‘considerable’ to ‘very high’ contaminated for Pb, ‘very high to moderate’ for Cd, ‘ moderate’ for Zn, between ‘moderate’ and ‘considerable’ for Cu. Statistical analyses show that heavy metals, fluoride, calcium and sulphate are resulting from the same anthropogenic origin. The metallic pollution status of sediments of Ghanouch -Gabes coast is worrying and requires a serious intervention.Keywords: trace metals, phosphogypsum, core sediments, accumulation factor, contamination factor
Procedia PDF Downloads 142287 Physical and Mechanical Behavior of Compressed Earth Blocks Stabilized with Ca(OH)2 on Sub-Humid Warm Weather
Authors: D. Castillo T., Luis F. Jimenez
Abstract:
The compressed earth blocks (CEBs) constitute an alternative as a constructive element for building homes in regions with high levels of poverty and marginalization. Such is the case of Southeastern Mexico, where the population, predominantly indigene, build their houses with feeble materials like wood and palm, vulnerable to extreme weather in the area, because they do not have the financial resources to acquire concrete blocks. There are several advantages that can provide BTCs compared to traditional vibro-compressed concrete blocks, such as the availability of materials, low manufacturing cost and reduced CO2 emissions to the atmosphere for not be subjected to a burning process. However, to improve its mechanical properties and resistance to adverse weather conditions in terms of humidity and temperature of the sub-humid climate zones, it requires the use of a chemical stabilizer; in this case we chose Ca(OH)2. The stabilization method Eades-Grim was employed, according to ASTM C977-03. This method measures the optimum amount of lime required to stabilize the soil, increasing the pH to 12.4 or higher. The minimum amount of lime required in this experiment was 1% and the maximum was 10%. The employed material was clay unconsolidated low to medium plasticity (CL type according to the Unified Soil Classification System). Based on these results, the CEBs manufacturing process was determined. The obtained blocks were from 10x15x30 cm using a mixture of soil, water and lime in different proportions. Later these blocks were put to dry outdoors and subjected to several physical and mechanical tests, such as compressive strength, absorption and drying shrinkage. The results were compared with the limits established by the Mexican Standard NMX-C-404-ONNCCE-2005 for the construction of housing walls. In this manner an alternative and sustainable material was obtained for the construction of rural households in the region, with better security conditions, comfort and cost.Keywords: calcium hydroxide, chemical stabilization, compressed earth blocks, sub-humid warm weather
Procedia PDF Downloads 402