Search results for: numerical range
8164 Effect of Ultrasonic Assisted High Pressure Soaking of Soybean on Soymilk Properties
Authors: Rahul Kumar, Pavuluri Srinivasa Rao
Abstract:
This study investigates the effect of ultrasound-assisted high pressure (HP) treatment on the soaking characteristic of soybeans and extracted soy milk quality. The soybean (variety) was subjected to sonication (US) at ambient temperature for 15 and 30 min followed by HP treatment in the range of 200-400 MPa for dwell times 5-10 min. The bean samples were also compared with HPP samples (200-400 MPa; 5-10 mins), overnight soaked samples(12-15 h) and thermal treated samples (100°C/30 min) followed by overnight soaking for 12-15 h soaking. Rapid soaking within 40 min was achieved by the combined US-HPP treatment, and it reduced the soaking time by about 25 times in comparison to overnight soaking or thermal treatment followed by soaking. Reducing the soaking time of soybeans is expected to suppress the development of undesirable beany flavor of soy milk developed during normal soaking milk extraction. The optimum moisture uptake by the sonicated-pressure treated soybeans was 60-62% (w.b) similar to that obtained after overnight soaking for 12-15 h or thermal treatment followed by overnight soaking. pH of soy milk was not much affected by the different US-HPP treatments and overnight soaking which centered around the range of 6.6-6.7 much like the normal cow milk. For milk extracted from thermally treated soy samples, pH reduced to 6.2. Total soluble solids were found to be maximum for the normal overnight soaked soy samples, and it was in the range of 10.3-10.6. For the HPP treated soy milk, the TSS reduced to 7.4 while sonication further reduced it to 6.2. TSS was found to be getting reduced with increasing time of ultrasonication. Further reduction in TSS to 2.3 was observed in soy milk produced from thermally treated samples following overnight soaking. Our results conclude that thermally treated beans' milk is less stable and more acidic, soaking is very rapid compared to overnight soaking hence milk productivity can be enhanced with less development of undesirable beany flavor.Keywords: beany flavor, high pressure processing, high pressure, soybean, soaking, milk, ultrasound, wet basis
Procedia PDF Downloads 2568163 Parametric Study of Vertical Diffusion Stills for Water Desalination
Authors: A. Seleem, M. Mortada, M. El-Morsi, M. Younan
Abstract:
Diffusion stills have been effective in water desalination. The present work represents a model of the distillation process by using vertical single-effect diffusion stills. A semi-analytical model has been developed to model the process. A software computer code using Engineering Equation Solver EES software has been developed to solve the equations of the developed model. An experimental setup has been constructed, and used for the validation of the model. The model is also validated against former literature results. The results obtained from the present experimental test rig, and the data from the literature, have been compared with the results of the code to find its best range of validity. In addition, a parametric analysis of the system has been developed using the model to determine the effect of operating conditions on the system's performance. The dominant parameters that affect the productivity of the still are the hot plate temperature that ranges from (55-90 °C) and feed flow rate in range of (0.00694-0.0211 kg/m2-s).Keywords: analytical model, solar distillation, sustainable water systems, vertical diffusion still
Procedia PDF Downloads 4058162 Numerical Homogenization of Nacre
Authors: M. Arunachalam, M. Pandey
Abstract:
Nacre, a biological material that forms the inner-layer of sea shells can achieve high toughness and strength by way of staggered arrangement of strong tablets with soft and weak organic interface. Under applied loads the tablets slide over the adjacent tablets, thus generating inelastic deformation and toughness on macroscopic scale. A two dimensional finite element based homogenization methodology is adopted for obtaining the effective material properties of Nacre using a representative volume element (RVE) at finite deformations. In this work, the material behaviour for tablet and interface are assumed to be Isotropic elastic and Isotropic elastic-perfectly plastic with strain softening respectively. Numerical experiments such as uniaxial tension test along X, Y directions and simple shear test are performed on the RVE with uniform displacement and periodic constraints applied at the RVE boundaries to obtain the anisotropic homogenized response and maximum local stresses within each constituents of Nacre. Homogenized material model is then tested for macroscopic structure under three point bending condition and the results obtained are comparable with the results obtained for detailed microstructure based structure, thus homogenization provides a bridge between macroscopic scale and microscopic scale and homogenized material properties obtained from microstructural (RVE) analysis could be used in large scale structural analysis.Keywords: finite element, homogenization, inelastic deformation, staggered arrangement
Procedia PDF Downloads 3188161 Rapid Design Approach for Electric Long-Range Drones
Authors: Adrian Sauer, Lorenz Einberger, Florian Hilpert
Abstract:
The advancements and technical innovations in the field of electric unmanned aviation over the past years opened the third dimension in areas like surveillance, logistics, and mobility for a wide range of private and commercial users. Researchers and companies are faced with the task of integrating their technology into airborne platforms. Especially start-ups and researchers require unmanned aerial vehicles (UAV), which can be quickly developed for specific use cases without spending significant time and money. This paper shows a design approach for the rapid development of a lightweight automatic separate-lift-thrust (SLT) electric vertical take-off and landing (eVTOL) UAV prototype, which is able to fulfill basic transportation as well as surveillance missions. The design approach does not require expensive or time-consuming design loop software. Thereby developers can easily understand, adapt, and adjust the presented method for their own project. The approach is mainly focused on crucial design aspects such as aerofoil, tuning, and powertrain.Keywords: aerofoil, drones, rapid prototyping, powertrain
Procedia PDF Downloads 718160 Variation of Quality of Roller-Compacted Concrete Based on Consistency
Authors: C. Chhorn, S. H. Han, S. W. Lee
Abstract:
Roller-compacted concrete (RCC) has been used for decades in many pavement applications due to its economic cost and high construction speed. However, due to the lack of deep researches and experiences, this material has not been widely employed. An RCC mixture with appropriate consistency can induce high compacted density, while high density can induce good aggregate interlock and high strength. Consistency of RCC is mainly known to define its constructability. However, it was not well specified how this property may affect other properties of a constructed RCC pavement (RCCP). This study suggested the possibility of an ideal range of consistency that may provide adequate quality of RCCP. In this research, five sections of RCCP consisted of both 13 mm and 19 mm aggregate sections were investigated. The effects of consistency on compacted depth, strength, international roughness index (IRI), skid resistance are examined. From this study, a new range of consistency is suggested for RCCP application.Keywords: compacted depth, consistency, international roughness index (IRI), pavement, roller-compacted concrete (RCC), skid resistance, strength
Procedia PDF Downloads 2438159 SNR Classification Using Multiple CNNs
Authors: Thinh Ngo, Paul Rad, Brian Kelley
Abstract:
Noise estimation is essential in today wireless systems for power control, adaptive modulation, interference suppression and quality of service. Deep learning (DL) has already been applied in the physical layer for modulation and signal classifications. Unacceptably low accuracy of less than 50% is found to undermine traditional application of DL classification for SNR prediction. In this paper, we use divide-and-conquer algorithm and classifier fusion method to simplify SNR classification and therefore enhances DL learning and prediction. Specifically, multiple CNNs are used for classification rather than a single CNN. Each CNN performs a binary classification of a single SNR with two labels: less than, greater than or equal. Together, multiple CNNs are combined to effectively classify over a range of SNR values from −20 ≤ SNR ≤ 32 dB.We use pre-trained CNNs to predict SNR over a wide range of joint channel parameters including multiple Doppler shifts (0, 60, 120 Hz), power-delay profiles, and signal-modulation types (QPSK,16QAM,64-QAM). The approach achieves individual SNR prediction accuracy of 92%, composite accuracy of 70% and prediction convergence one order of magnitude faster than that of traditional estimation.Keywords: classification, CNN, deep learning, prediction, SNR
Procedia PDF Downloads 1348158 Propagation of Ultra-High Energy Cosmic Rays through Extragalactic Magnetic Fields: An Exploratory Study of the Distance Amplification from Rectilinear Propagation
Authors: Rubens P. Costa, Marcelo A. Leigui de Oliveira
Abstract:
The comprehension of features on the energy spectra, the chemical compositions, and the origins of Ultra-High Energy Cosmic Rays (UHECRs) - mainly atomic nuclei with energies above ~1.0 EeV (exa-electron volts) - are intrinsically linked to the problem of determining the magnitude of their deflections in cosmic magnetic fields on cosmological scales. In addition, as they propagate from the source to the observer, modifications are expected in their original energy spectra, anisotropy, and the chemical compositions due to interactions with low energy photons and matter. This means that any consistent interpretation of the nature and origin of UHECRs has to include the detailed knowledge of their propagation in a three-dimensional environment, taking into account the magnetic deflections and energy losses. The parameter space range for the magnetic fields in the universe is very large because the field strength and especially their orientation have big uncertainties. Particularly, the strength and morphology of the Extragalactic Magnetic Fields (EGMFs) remain largely unknown, because of the intrinsic difficulty of observing them. Monte Carlo simulations of charged particles traveling through a simulated magnetized universe is the straightforward way to study the influence of extragalactic magnetic fields on UHECRs propagation. However, this brings two major difficulties: an accurate numerical modeling of charged particles diffusion in magnetic fields, and an accurate numerical modeling of the magnetized Universe. Since magnetic fields do not cause energy losses, it is important to impose that the particle tracking method conserve the particle’s total energy and that the energy changes are results of the interactions with background photons only. Hence, special attention should be paid to computational effects. Additionally, because of the number of particles necessary to obtain a relevant statistical sample, the particle tracking method must be computationally efficient. In this work, we present an analysis of the propagation of ultra-high energy charged particles in the intergalactic medium. The EGMFs are considered to be coherent within cells of 1 Mpc (mega parsec) diameter, wherein they have uniform intensities of 1 nG (nano Gauss). Moreover, each cell has its field orientation randomly chosen, and a border region is defined such that at distances beyond 95% of the cell radius from the cell center smooth transitions have been applied in order to avoid discontinuities. The smooth transitions are simulated by weighting the magnetic field orientation by the particle's distance to the two nearby cells. The energy losses have been treated in the continuous approximation parameterizing the mean energy loss per unit path length by the energy loss length. We have shown, for a particle with the typical energy of interest the integration method performance in the relative error of Larmor radius, without energy losses and the relative error of energy. Additionally, we plotted the distance amplification from rectilinear propagation as a function of the traveled distance, particle's magnetic rigidity, without energy losses, and particle's energy, with energy losses, to study the influence of particle's species on these calculations. The results clearly show when it is necessary to use a full three-dimensional simulation.Keywords: cosmic rays propagation, extragalactic magnetic fields, magnetic deflections, ultra-high energy
Procedia PDF Downloads 1278157 Synthesis of Quinazoline Derivatives as Selective Inhibitors of Cyclooxygenase-1 Enzyme
Authors: Marcela Dvorakova, Lenka Langhansova, Premysl Landa
Abstract:
A series of quinazoline derivatives bearing aromatic rings in 2- and 4-positions were prepared and tested for their biological activity. Firstly, the compounds were evaluated for their potential to inhibit various kinases, such as autophagy activating kinase ULK1, 3-Phosphoinositide-dependent kinase 1, and TANK-binding kinase 1. None of the compounds displayed any activity on these kinases. Secondly, the compounds were tested for their anti-inflammatory activity expressed as cyclooxygenase (COX) isoforms and 5-lipoxygenase (5-LOX) inhibition. Three of the compounds showed significant selectivity towards COX-1 isoform (COX-2/COX-1 SI = 20-30). They inhibited COX-1 in a single-digit µM range. There was also one compound that exhibited inhibitory activity towards all three tested enzymes in µM range (IC50COX-1 = 1.9 µM; IC50COX-2 and 5-LOX = 10.1µM. COX-1 inhibition was until recently considered undesirable due to COX-1 constitutive expression in most cell types and tissues. Thus, there are not many compounds known with selective COX-1 activity. However, it is now believed that COX-1 plays an important role in the pathophysiology of several acute and chronic disorders, including cancer or neurodegenerative diseases. Thus, the discovery of effective COX-1 selective inhibitors is desirable and important.Keywords: cyclooxygenases, kinases, lipoxygenases, quinazolines
Procedia PDF Downloads 1358156 Semi-Analytic Method in Fast Evaluation of Thermal Management Solution in Energy Storage System
Authors: Ya Lv
Abstract:
This article presents the application of the semi-analytic method (SAM) in the thermal management solution (TMS) of the energy storage system (ESS). The TMS studied in this work is fluid cooling. In fluid cooling, both effective heat conduction and heat convection are indispensable due to the heat transfer from solid to fluid. Correspondingly, an efficient TMS requires a design investigation of the following parameters: fluid inlet temperature, ESS initial temperature, fluid flow rate, working c rate, continuous working time, and materials properties. Their variation induces a change of thermal performance in the battery module, which is usually evaluated by numerical simulation. Compared to complicated computation resources and long computation time in simulation, the SAM is developed in this article to predict the thermal influence within a few seconds. In SAM, a fast prediction model is reckoned by combining numerical simulation with theoretical/empirical equations. The SAM can explore the thermal effect of boundary parameters in both steady-state and transient heat transfer scenarios within a short time. Therefore, the SAM developed in this work can simplify the design cycle of TMS and inspire more possibilities in TMS design.Keywords: semi-analytic method, fast prediction model, thermal influence of boundary parameters, energy storage system
Procedia PDF Downloads 1548155 A Numerical Investigation of Total Temperature Probes Measurement Performance
Authors: Erdem Meriç
Abstract:
Measuring total temperature of air flow accurately is a very important requirement in the development phases of many industrial products, including gas turbines and rockets. Thermocouples are very practical devices to measure temperature in such cases, but in high speed and high temperature flows, the temperature of thermocouple junction may deviate considerably from real flow total temperature due to the effects of heat transfer mechanisms of convection, conduction, and radiation. To avoid errors in total temperature measurement, special probe designs which are experimentally characterized are used. In this study, a validation case which is an experimental characterization of a specific class of total temperature probes is selected from the literature to develop a numerical conjugate heat transfer analysis methodology to study the total temperature probe flow field and solid temperature distribution. Validated conjugate heat transfer methodology is used to investigate flow structures inside and around the probe and effects of probe design parameters like the ratio between inlet and outlet hole areas and prob tip geometry on measurement accuracy. Lastly, a thermal model is constructed to account for errors in total temperature measurement for a specific class of probes in different operating conditions. Outcomes of this work can guide experimentalists to design a very accurate total temperature probe and quantify the possible error for their specific case.Keywords: conjugate heat transfer, recovery factor, thermocouples, total temperature probes
Procedia PDF Downloads 1348154 Changes in Student Definition of De-Escalation in Professional Peace Officer Education
Authors: Pat Nelson
Abstract:
Since the release of the 21st century policing report in the United States, the techniques of de-escalation have received a lot of attention and focus in political systems, policy changes, and the media. The challenge in professional peace officer education is that there is a vast range of defining de-escalation and understanding the various techniques involved, many of which are based on popular media. This research surveyed professional peace officer education university students on their definition of de-escalation and the techniques associated with de-escalation before specific communications coursework was completed. The students were then surveyed after the communication coursework was completed to determine the changes in defining and understanding de-escalation techniques. This research has found that clearly defining de-escalation and emphasizing the broad range of techniques available enhances the students’ understanding and application of proper de-escalation. This research demonstrates the need for professional peace officer education to move students from media concepts of law enforcement to theoretical concepts.Keywords: criminal justice education, communication theory, de-escalation, peace officer communication
Procedia PDF Downloads 1658153 Influence of Loading Pattern and Shaft Rigidity on Laterally Loaded Helical Piles in Cohesion-Less Soil
Authors: Mohamed Hesham Hamdy Abdelmohsen, Ahmed Shawky Abdul Aziz, Mona Fawzy Al-Daghma
Abstract:
Helical piles are widely used as axially and laterally loaded deep foundations. Once they are required to resist bearing combined loads (BCLs), as axial compression and lateral thrust, different behaviour is expected, necessitating further investigation. The objective of the present article is to clarify the behaviour of a single helical pile of different shaft rigidity embedded in cohesion-less soil and subjected to simultaneous or successive loading patterns of BCLs. The study was first developed analytically and extended numerically. The numerical analysis was further verified through a laboratory experimental program on a set of helical pile models. The results indicate highly interactive effects of the studied parameters, but it is obviously confirmed that the pile performance increases with both the increase of shaft rigidity and the change of BCLs loading pattern from simultaneous to successive. However, it is noted that the increase of vertical load does not always enhance the lateral capacity but may cause a decrement in lateral capacity, as observed with helical piles of flexible shafts. This study provides insightful information for the design of helical piles in structures loaded by complex sequence of forces, wind turbines, and industrial shafts.Keywords: helical pile, lateral loads, combined loads, cohesion-less soil, analytical, numerical
Procedia PDF Downloads 658152 Design Of High Sensitivity Transceiver for WSN
Authors: A. Anitha, M. Aishwariya
Abstract:
The realization of truly ubiquitous wireless sensor networks (WSN) demands Ultra-low power wireless communication capability. Because the radio transceiver in a wireless sensor node consumes more power when compared to the computation part it is necessary to reduce the power consumption. Hence, a low power transceiver is designed and implemented in a 120 nm CMOS technology for wireless sensor nodes. The power consumption of the transceiver is reduced still by maintaining the sensitivity. The transceiver designed combines the blocks including differential oscillator, mixer, envelope detector, power amplifiers, and LNA. RF signal modulation and demodulation is carried by On-Off keying method at 2.4 GHz which is said as ISM band. The transmitter demonstrates an output power of 2.075 mW while consuming a supply voltage of range 1.2 V-5.0 V. Here the comparison of LNA and power amplifier is done to obtain an amplifier which produces a high gain of 1.608 dB at receiver which is suitable to produce a desired sensitivity. The multistage RF amplifier is used to improve the gain at the receiver side. The power dissipation of the circuit is in the range of 0.183-0.323 mW. The receiver achieves a sensitivity of about -95 dBm with data rate of 1 Mbps.Keywords: CMOS, envelope detector, ISM band, LNA, low power electronics, PA, wireless transceiver
Procedia PDF Downloads 5198151 Study of Laminar Convective Heat Transfer, Friction Factor, and Pumping Power Advantage of Aluminum Oxide-Water Nanofluid through a Channel
Authors: M. Insiat Islam Rabby, M. Mahbubur Rahman, Eshanul Islam, A. K. M. Sadrul Islam
Abstract:
The numerical and simulative analysis of laminar heat exchange convection of aluminum oxide (Al₂O₃) - water nanofluid for the developed region through two parallel plates is presented in this present work. The second order single phase energy equation, mass and momentum equation are solved by using finite volume method with the ANSYS FLUENT 16 software. The distance between two parallel plates is 4 mm and length is 600 mm. Aluminum oxide (Al₂O₃) is used as nanoparticle and water is used as the base/working fluid for the investigation. At the time of simulation 1% to 5% volume concentrations of the Al₂O₃ nanoparticles are used for mixing with water to produce nanofluid and a wide range of interval of Reynolds number from 500 to 1100 at constant heat flux 500 W/m² at the channel wall has also been introduced. The result reveals that for increasing the Reynolds number the Nusselt number and heat transfer coefficient are increased linearly and friction factor decreased linearly in the developed region for both water and Al₂O₃-H₂O nanofluid. By increasing the volume fraction of Al₂O₃-H₂O nanofluid from 1% to 5% the value of Nusselt number increased rapidly from 0.7 to 7.32%, heat transfer coefficient increased 7.14% to 31.5% and friction factor increased very little from 0.1% to 4% for constant Reynolds number compared to pure water. At constant heat transfer coefficient 700 W/m2-K the pumping power advantages have been achieved 20% for 1% volume concentration and 62% for 3% volume concentration of nanofluid compared to pure water.Keywords: convective heat transfer, pumping power, constant heat flux, nanofluid, nanoparticles, volume concentration, thermal conductivity
Procedia PDF Downloads 1598150 Using Scilab® as New Introductory Method in Numerical Calculations and Programming for Computational Fluid Dynamics (CFD)
Authors: Nicoly Coelho, Eduardo Vieira Vilas Boas, Paulo Orestes Formigoni
Abstract:
Faced with the remarkable developments in the various segments of modern engineering, provided by the increasing technological development, professionals of all educational areas need to overcome the difficulties generated due to the good understanding of those who are starting their academic journey. Aiming to overcome these difficulties, this article aims at an introduction to the basic study of numerical methods applied to fluid mechanics and thermodynamics, demonstrating the modeling and simulations with its substance, and a detailed explanation of the fundamental numerical solution for the use of finite difference method, using SCILAB, a free software easily accessible as it is free and can be used for any research center or university, anywhere, both in developed and developing countries. It is known that the Computational Fluid Dynamics (CFD) is a necessary tool for engineers and professionals who study fluid mechanics, however, the teaching of this area of knowledge in undergraduate programs faced some difficulties due to software costs and the degree of difficulty of mathematical problems involved in this way the matter is treated only in postgraduate courses. This work aims to bring the use of DFC low cost in teaching Transport Phenomena for graduation analyzing a small classic case of fundamental thermodynamics with Scilab® program. The study starts from the basic theory involving the equation the partial differential equation governing heat transfer problem, implies the need for mastery of students, discretization processes that include the basic principles of series expansion Taylor responsible for generating a system capable of convergence check equations using the concepts of Sassenfeld, finally coming to be solved by Gauss-Seidel method. In this work we demonstrated processes involving both simple problems solved manually, as well as the complex problems that required computer implementation, for which we use a small algorithm with less than 200 lines in Scilab® in heat transfer study of a heated plate in rectangular shape on four sides with different temperatures on either side, producing a two-dimensional transport with colored graphic simulation. With the spread of computer technology, numerous programs have emerged requiring great researcher programming skills. Thinking that this ability to program DFC is the main problem to be overcome, both by students and by researchers, we present in this article a hint of use of programs with less complex interface, thus enabling less difficulty in producing graphical modeling and simulation for DFC with an extension of the programming area of experience for undergraduates.Keywords: numerical methods, finite difference method, heat transfer, Scilab
Procedia PDF Downloads 3878149 One-Step Synthesis of Fluorescent Carbon Dots in a Green Way as Effective Fluorescent Probes for Detection of Iron Ions and pH Value
Authors: Mostafa Ghasemi, Andrew Urquhart
Abstract:
In this study, fluorescent carbon dots (CDs) were synthesized in a green way using a one-step hydrothermal method. Carbon dots are carbon-based nanomaterials with a size of less than 10 nm, unique structure, and excellent properties such as low toxicity, good biocompatibility, tunable fluorescence, excellent photostability, and easy functionalization. These properties make them a good candidate to use in different fields such as biological sensing, photocatalysis, photodynamic, and drug delivery. Fourier transformed infrared (FTIR) spectra approved OH/NH groups on the surface of the as-synthesized CDs, and UV-vis spectra showed excellent fluorescence quenching effect of Fe (III) ion on the as-synthesized CDs with high selectivity detection compared with other metal ions. The probe showed a linear response concentration range (0–2.0 mM) to Fe (III) ion, and the limit of detection was calculated to be about 0.50 μM. In addition, CDs also showed good sensitivity to the pH value in the range from 2 to 14, indicating great potential as a pH sensor.Keywords: carbon dots, fluorescence, pH sensing, metal ions sensor
Procedia PDF Downloads 758148 The Investigation of Precipitation Conditions of Chevreul’s Salt
Authors: Turan Çalban, Fatih Sevim, Oral Laçin
Abstract:
In this study, the precipitation conditions of Chevreul’s salt were evaluated. The structure of Chevreul’s salt was examined by considering the previous studies. Thermodynamically, the most important precipitation parameters were pH, temperature, and sulphite-copper(II) ratio. The amount of Chevreul’s salt increased with increasing the temperature and sulphite-copper(II) ratio at the certain range, while it increased with decreasing the pH value at the chosen range. The best solution medium for recovery of Chevreul’s salt is sulphur dioxide gas-water system. Moreover, the soluble sulphite salts are used as efficient precipitating reagents. Chevreul’s salt is generally used to produce the highly pure copper powders from synthetic copper sulphate solutions and impure leach solutions. When the pH of the initial ammoniacal solution is greater than 8.5, ammonia in the medium is not free, and Chevreul’s salt from solution does not precipitate. In contrast, copper ammonium sulphide is precipitated. The pH of the initial solution containing ammonia for precipitating of Chevreul’s salt must be less than 8.5.Keywords: Chevreul's salt, production, copper sulfites, copper compound
Procedia PDF Downloads 2498147 Microwave Sintering and Its Application on Cemented Carbides
Authors: Rumman M. D. Raihanuzzaman, Lee Chang Chuan, Zonghan Xie, Reza Ghomashchi
Abstract:
Cemented carbides, owing to their excellent mechanical properties, have been of immense interest in the field of hard materials for the past few decades. A number of processing techniques have been developed to obtain high quality carbide tools, with a wide range of grain size depending on the application and requirements. Microwave sintering is one of the heating processes, which has been used on a wide range of materials including ceramics. The complete understanding of microwave sintering and its contribution towards control of grain growth and on deformation of the resulting carbide materials needs further studies and attention. In addition, the effect of binder materials and their behaviour as a function of microwave sintering is another area that requires clear understanding. This review aims to focus on microwave sintering, providing information of how the process works and what type of materials it is best suited for. In addition, a closer look at some microwave sintered Tungsten Carbide-Cobalt samples will be taken and discussed, addressing some of the key issues and challenges faced in the research.Keywords: cemented carbides, consolidation, microwave sintering, mechanical properties
Procedia PDF Downloads 5978146 Surface Pressure Distributions for a Forebody Using Pressure Sensitive Paint
Authors: Yi-Xuan Huang, Kung-Ming Chung, Ping-Han Chung
Abstract:
Pressure sensitive paint (PSP), which relies on the oxygen quenching of a luminescent molecule, is an optical technique used in wind-tunnel models. A full-field pressure pattern with low aerodynamic interference can be obtained, and it is becoming an alternative to pressure measurements using pressure taps. In this study, a polymer-ceramic PSP was used, using toluene as a solvent. The porous particle and polymer were silica gel (SiO₂) and RTV-118 (3g:7g), respectively. The compound was sprayed onto the model surface using a spray gun. The absorption and emission spectra for Ru(dpp) as a luminophore were respectively 441-467 nm and 597 nm. A Revox SLG-55 light source with a short-pass filter (550 nm) and a 14-bit CCD camera with a long-pass (600 nm) filter were used to illuminate PSP and to capture images. This study determines surface pressure patterns for a forebody of an AGARD B model in a compressible flow. Since there is no experimental data for surface pressure distributions available, numerical simulation is conducted using ANSYS Fluent. The lift and drag coefficients are calculated and in comparison with the data in the open literature. The experiments were conducted using a transonic wind tunnel at the Aerospace Science and Research Center, National Cheng Kung University. The freestream Mach numbers were 0.83, and the angle of attack ranged from -4 to 8 degree. Deviation between PSP and numerical simulation is within 5%. However, the effect of the setup of the light source should be taken into account to address the relative error.Keywords: pressure sensitive paint, forebody, surface pressure, compressible flow
Procedia PDF Downloads 1278145 Mechanical Properties of D2 Tool Steel Cryogenically Treated Using Controllable Cooling
Authors: A. Rabin, G. Mazor, I. Ladizhenski, R. Shneck, Z.
Abstract:
The hardness and hardenability of AISI D2 cold work tool steel with conventional quenching (CQ), deep cryogenic quenching (DCQ) and rapid deep cryogenic quenching heat treatments caused by temporary porous coating based on magnesium sulfate was investigated. Each of the cooling processes was examined from the perspective of the full process efficiency, heat flux in the austenite-martensite transformation range followed by characterization of the temporary porous layer made of magnesium sulfate using confocal laser scanning microscopy (CLSM), surface and core hardness and hardenability using Vickr’s hardness technique. The results show that the cooling rate (CR) at the austenite-martensite transformation range have a high influence on the hardness of the studied steel.Keywords: AISI D2, controllable cooling, magnesium sulfate coating, rapid cryogenic heat treatment, temporary porous layer
Procedia PDF Downloads 1378144 The Impact of Hospital Intensive Care Unit Window Design on Daylighting and Energy Performance in Desert Climate
Authors: A. Sherif, H. Sabry, A. Elzafarany, M. Gadelhak, R. Arafa, M. Aly
Abstract:
This paper addresses the design of hospital Intensive Care Unit windows for the achievement of visual comfort and energy savings. The aim was to identify the window size and shading system configurations that could fulfill daylighting adequacy, avoid glare and reduce energy consumption. The study focused on addressing the effect of utilizing different shading systems in association with a range of Window-to-Wall Ratios (WWR) in different orientations under the desert clear-sky of Cairo, Egypt. The results of this study demonstrated that solar penetration is a critical concern affecting the design of ICU windows in desert locations, as in Cairo, Egypt. Use of shading systems was found to be essential in providing acceptable daylight performance and energy saving. Careful positioning of the ICU window towards a proper orientation can dramatically improve performance. It was observed that ICU windows facing the north direction enjoyed the widest range of successful window configuration possibilities at different WWRs. ICU windows facing south enjoyed a reasonable number of configuration options as well. By contrast, the ICU windows facing the east orientation had a very limited number of options that provide acceptable performance. These require additional local shading measures at certain times due to glare incidence. Moreover, use of horizontal sun breakers and solar screens to protect the ICU windows proved to be more successful than the other alternatives in a wide range of Window to Wall Ratios. By contrast, the use of light shelves and vertical shading devices seemed questionable.Keywords: daylighting, desert, energy efficiency, shading
Procedia PDF Downloads 4318143 Sclerobiont Assemblages on Macro-Invertebrates from the Cenomanian Strata of Djebel Bouarif (Aurès Range, Algeria)
Authors: Salmi-laouar Sihem, Kara Ahmed Imad
Abstract:
The ichnological study of the Djebel BouarifCenomaniandeposits(Northern Aurès Range, Algeria) revealed relatively abundant and diverse sclerobiont communities that are preserved in corals, bivalves, and gastropods ; all are described herein. Fossil traces are dominated by exceptionally preserved Gastrochaenolitesoften with tracemakers (bivalves), which are preserved in situ, Entobia, and Maeandropolydora. Other borings are rare and are represented by a single specimen of Rogerella, Nihilichnus, and Spirolites. Amongsclerozoans, encrustingjuvenile oysters, and non-oyster bivalves (Pseudolimea?granulata) are the mostabundant groups. Otherepibionts, such as gastropods and polychaetes (Glomerulaserpentina), are lesscommon; dwarfgastropods were located on a single oyster Costagyraolisiponensis, whereas Glomerula specimens were clustered on the lower and upper surfaces of coral Aspidiscuscristatus. Gastrochaenoliteswith original tracemakers and all the epibionts studied herein have not been described from the Djebel BouarifCenomaniandeposits to date. The rare occurrences of Spirolites and Nihilichnus are reported from Algeria for the first time.Keywords: bioerosion, sclerobionts, upper creataceous, southern tethys, atlasic domain
Procedia PDF Downloads 1088142 Understanding Seismic Behavior of Masonry Buildings in Earthquake
Authors: Alireza Mirzaee, Soosan Abdollahi, Mohammad Abdollahi
Abstract:
Unreinforced Masonry (URM) wall is vulnerable in resisting horizontal load such as wind and seismic loading. It is due to the low tensile strength of masonry, the mortar connection between the brick units. URM structures are still widely used in the world as an infill wall and commonly constructed with door and window openings. This research aimed to investigate the behavior of URM wall with openings when horizontal load acting on it and developed load-drift relationship of the wall. The finite element (FE) method was chosen to numerically simulate the behavior of URM with openings. In this research, ABAQUS, commercially available FE software with explicit solver was employed. In order to ensure the numerical model can accurately represent the behavior of an URM wall, the model was validated for URM wall without openings using available experimental results. Load-displacement relationship of numerical model is well agreed with experimental results. Evidence shows the same load displacement curve shape obtained from the FE model. After validating the model, parametric study conducted on URM wall with openings to investigate the influence of area of openings and pre-compressive load on the horizontal load capacity of the wall. The result showed that the increasing of area of openings decreases the capacity of the wall in resisting horizontal loading. It is also well observed from the result that capacity of the wall increased with the increasing of pre-compressive load applied on the top of the walls.Keywords: masonry constructions, performance at earthquake, MSJC-08 (ASD), bearing wall, tie-column
Procedia PDF Downloads 2528141 Evaluation of Bioactive Phenols in Blueberries from Different Cultivars
Authors: Christophe Gonçalves, Raquel P. F. Guiné, Daniela Teixeira, Fernando J. Gonçalves
Abstract:
Blueberries are widely valued for their high content in phenolic compounds with antioxidant activity, and hence beneficial for the human health. In this way, a study was done to determine the phenolic composition (total phenols, anthocyanins and tannins) and antioxidant activity of blueberries from three cultivars (Duke, Bluecrop, and Ozarblue) grown in two different Portuguese farms. Initially two successive extractions were done with methanol followed by two extractions with aqueous acetone solutions. These extracts obtained were then used to evaluate the amount of phenolic compounds and the antioxidant activity. The total phenols were observed to vary from 4.9 to 8.2 mg GAE/g fresh weight, with anthocyanin’s contents in the range 1.5-2.8 mg EMv3G/g and tannins contents in the range 1.5- 3.8 mg/g. The results for antioxidant activity ranged from 9.3 to 23.2 mol TE/g, and from 24.7 to 53.4 mol TE/g, when measured, respectively, by DPPH and ABTS methods. In conclusion it was observed that, in general, the cultivar had a visible effect on the phenols present, and furthermore, the geographical origin showed relevance either in the phenols contents or the antioxidant activity.Keywords: anthocyanins, antioxidant activity, blueberry cultivar, geographical origin, phenolic compounds
Procedia PDF Downloads 4748140 Optical and Double Folding Model Analysis for Alpha Particles Elastically Scattered from 9Be and 11B Nuclei at Different Energies
Authors: Ahmed H. Amer, A. Amar, Sh. Hamada, I. I. Bondouk, F. A. El-Hussiny
Abstract:
Elastic scattering of α-particles from 9Be and 11B nuclei at different alpha energies have been analyzed. Optical model parameters (OMPs) of α-particles elastic scattering by these nuclei at different energies have been obtained. In the present calculations, the real part of the optical potential are derived by folding of nucleon-nucleon (NN) interaction into nuclear matter density distribution of the projectile and target nuclei using computer code FRESCO. A density-dependent version of the M3Y interaction (CDM3Y6), which is based on the G-matrix elements of the Paris NN potential, has been used. Volumetric integrals of the real and imaginary potential depth (JR, JW) have been calculated and found to be energy dependent. Good agreement between the experimental data and the theoretical predictions in the whole angular range. In double folding (DF) calculations, the obtained normalization coefficient Nr is in the range 0.70–1.32.Keywords: elastic scattering, optical model, double folding model, density distribution
Procedia PDF Downloads 2908139 A Long Range Wide Area Network-Based Smart Pest Monitoring System
Authors: Yun-Chung Yu, Yan-Wen Wang, Min-Sheng Liao, Joe-Air Jiang, Yuen-Chung Lee
Abstract:
This paper proposes to use a Long Range Wide Area Network (LoRaWAN) for a smart pest monitoring system which aims at the oriental fruit fly (Bactrocera dorsalis) to improve the communication efficiency of the system. The oriental fruit fly is one of the main pests in Southeast Asia and the Pacific Rim. Different smart pest monitoring systems based on the Internet of Things (IoT) architecture have been developed to solve problems of employing manual measurement. These systems often use Octopus II, a communication module following the 2.4GHz IEEE 802.15.4 ZigBee specification, as sensor nodes. The Octopus II is commonly used in low-power and short-distance communication. However, the energy consumption increase as the logical topology becomes more complicate to have enough coverage in the large area. By comparison, LoRaWAN follows the Low Power Wide Area Network (LPWAN) specification, which targets the key requirements of the IoT technology, such as secure bi-directional communication, mobility, and localization services. The LoRaWAN network has advantages of long range communication, high stability, and low energy consumption. The 433MHz LoRaWAN model has two superiorities over the 2.4GHz ZigBee model: greater diffraction and less interference. In this paper, The Octopus II module is replaced by a LoRa model to increase the coverage of the monitoring system, improve the communication performance, and prolong the network lifetime. The performance of the LoRa-based system is compared with a ZigBee-based system using three indexes: the packet receiving rate, delay time, and energy consumption, and the experiments are done in different settings (e.g. distances and environmental conditions). In the distance experiment, a pest monitoring system using the two communication specifications is deployed in an area with various obstacles, such as buildings and living creatures, and the performance of employing the two communication specifications is examined. The experiment results show that the packet receiving the rate of the LoRa-based system is 96% , which is much higher than that of the ZigBee system when the distance between any two modules is about 500m. These results indicate the capability of a LoRaWAN-based monitoring system in long range transmission and ensure the stability of the system.Keywords: LoRaWan, oriental fruit fly, IoT, Octopus II
Procedia PDF Downloads 3528138 Digital Holographic Interferometric Microscopy for the Testing of Micro-Optics
Authors: Varun Kumar, Chandra Shakher
Abstract:
Micro-optical components such as microlenses and microlens array have numerous engineering and industrial applications for collimation of laser diodes, imaging devices for sensor system (CCD/CMOS, document copier machines etc.), for making beam homogeneous for high power lasers, a critical component in Shack-Hartmann sensor, fiber optic coupling and optical switching in communication technology. Also micro-optical components have become an alternative for applications where miniaturization, reduction of alignment and packaging cost are necessary. The compliance with high-quality standards in the manufacturing of micro-optical components is a precondition to be compatible on worldwide markets. Therefore, high demands are put on quality assurance. For quality assurance of these lenses, an economical measurement technique is needed. For cost and time reason, technique should be fast, simple (for production reason), and robust with high resolution. The technique should provide non contact, non-invasive and full field information about the shape of micro- optical component under test. The interferometric techniques are noncontact type and non invasive and provide full field information about the shape of the optical components. The conventional interferometric technique such as holographic interferometry or Mach-Zehnder interferometry is available for characterization of micro-lenses. However, these techniques need more experimental efforts and are also time consuming. Digital holography (DH) overcomes the above described problems. Digital holographic microscopy (DHM) allows one to extract both the amplitude and phase information of a wavefront transmitted through the transparent object (microlens or microlens array) from a single recorded digital hologram by using numerical methods. Also one can reconstruct the complex object wavefront at different depths due to numerical reconstruction. Digital holography provides axial resolution in nanometer range while lateral resolution is limited by diffraction and the size of the sensor. In this paper, Mach-Zehnder based digital holographic interferometric microscope (DHIM) system is used for the testing of transparent microlenses. The advantage of using the DHIM is that the distortions due to aberrations in the optical system are avoided by the interferometric comparison of reconstructed phase with and without the object (microlens array). In the experiment, first a digital hologram is recorded in the absence of sample (microlens array) as a reference hologram. Second hologram is recorded in the presence of microlens array. The presence of transparent microlens array will induce a phase change in the transmitted laser light. Complex amplitude of object wavefront in presence and absence of microlens array is reconstructed by using Fresnel reconstruction method. From the reconstructed complex amplitude, one can evaluate the phase of object wave in presence and absence of microlens array. Phase difference between the two states of object wave will provide the information about the optical path length change due to the shape of the microlens. By the knowledge of the value of the refractive index of microlens array material and air, the surface profile of microlens array is evaluated. The Sag of microlens and radius of curvature of microlens are evaluated and reported. The sag of microlens agrees well within the experimental limit as provided in the specification by the manufacturer.Keywords: micro-optics, microlens array, phase map, digital holographic interferometric microscopy
Procedia PDF Downloads 4998137 The Stock Price Effect of Apple Keynotes
Authors: Ethan Petersen
Abstract:
In this paper, we analyze the volatility of Apple’s stock beginning January 3, 2005 up to October 9, 2014, then focus on a range from 30 days prior to each product announcement until 30 days after. Product announcements are filtered; announcements whose 60 day range is devoid of other events are separated. This filtration is chosen to isolate, and study, a potential cross-effect. Concerning Apple keynotes, there are two significant dates: the day the invitations to the event are received and the day of the event itself. As such, the statistical analysis is conducted for both invite-centered and event-centered time frames. A comparison to the VIX is made to determine if the trend is simply following the market or deviating. Regardless of the filtration, we find that there is a clear deviation from the market. Comparing these data sets, there are significantly different trends: isolated events have a constantly decreasing, erratic trend in volatility but an increasing, linear trend is observed for clustered events. According to the Efficient Market Hypothesis, we would expect a change when new information is publicly known and the results of this study support this claim.Keywords: efficient market hypothesis, event study, volatility, VIX
Procedia PDF Downloads 2808136 Thermal Analysis and Computational Fluid Dynamics Simulation of Large-Scale Cryopump
Authors: Yue Shuai Zhao, Rong Ping Shao, Wei Sun, Guo Hua Ren, Yong Wang, Li Chen Sun
Abstract:
A large-scale cryopump (DN1250) used in large vacuum leak detecting system was designed and its performance experimentally investigated by Beijing Institute of Spacecraft Environment Engineering. The cryopump was cooled by four closed cycle helium refrigerators (two dual stage refrigerators and two single stage refrigerators). Detailed numerical analysis of the heat transfer in the first stage array and the second stage array were performed by using computational fluid dynamic method (CFD). Several design parameters were considered to find the effect on the temperature distribution and the cooldown time. The variation of thermal conductivity and heat capacity with temperature was taken into account. The thermal analysis method based on numerical techniques was introduced in this study, the heat transfer in the first stage array and the second stage cryopanel was carefully analyzed to determine important considerations in the thermal design of the cryopump. A performance test system according to the RNEUROP standards was built to test main performance of the cryopump. The experimental results showed that the structure of first stage array which was optimized by the method could meet the requirement of the cryopump well. The temperature of the cryopanel was down to 10K within 300 min, and the result of the experiment was accordant with theoretical analysis' conclusion. The test also showed that the pumping speed for N2 of the pump was up to 57,000 L/s, and the crossover was over than 300,000 Pa•L.Keywords: cryopump, temperature distribution, thermal analysis, CFD Simulation
Procedia PDF Downloads 3048135 Happiness of Thai People: An Analysis by Socioeconomic Factors
Authors: Kalayanee Senasu
Abstract:
This research investigates Thai people’s happiness based on socioeconomic factors, i.e. region, municipality, gender, age, and occupation. The research data were collected from survey data using interviewed questionnaires. The primary data were from stratified multi-stage sampling in each region, province, district, and enumeration area; and simple random sampling in each enumeration area. These data were collected in 13 provinces: Bangkok and three provinces in each of all four regions. The data were collected over two consecutive years. There were 3,217 usable responses from the 2017 sampling, and 3,280 usable responses from the 2018 sampling. The Senasu’s Thai Happiness Index (THaI) was used to calculate the happiness level of Thai people in 2017 and 2018. This Thai Happiness Index comprises five dimensions: subjective well-being, quality of life, philosophy of living, governance, and standard of living. The result reveals that the 2017 happiness value is 0.506, while Thai people are happier in 2018 (THaI = 0.556). For 2017 happiness, people in the Central region have the highest happiness (THaI = 0.532), which is followed closely by people in the Bangkok Metropolitan Area (THaI = 0.530). People in the North have the lowest happiness (THaI = 0.476) which is close to the level for people in the Northeast (THaI = 0.479). Comparing age groups, it is found that people in the age range 25-29 years old are the happiest (THaI = 0.529), followed by people in the age range 55-59 and 35-39 years old (THaI = 0.526 and 0.523, respectively). Additionally, people who live in municipal areas are happier than those who live in non-municipal areas (THaI = 0.533 vs. 0.475). Males are happier than females (THaI = 0.530 vs. 0.482), and retired people, entrepreneurs, and government employees are all in the high happiness groups (THaI =0.614, 0.608, and 0.593, respectively). For 2018 happiness, people in the Northern region have the highest happiness (THaI = 0.590), which is followed closely by people in the South and Bangkok Metropolitan Area (THaI = 0.578 and 0.577, respectively). People in the Central have the lowest happiness (THaI = 0.530), which is close to the level for people in the Northeast (THaI = 0.533). Comparing age groups, it is found that people in the age range 35-39 years old are the happiest (THaI = 0.572), followed by people in the age range 40-44 and 60-64 years old (THaI = 0.569 and 0.568, respectively). Similar to 2017 happiness, people who live in municipal areas are happier than those who live in non-municipal areas (THaI = 0.567 vs. 0. 552). However, males and females are happy at about the same levels (THaI = 0.561 vs. 0.560), and government employees, retired people, and state enterprise employees are all in the high happiness groups (THaI =0.667, 0.639, and 0.661, respectively).Keywords: happiness, quality of life, Thai happiness index, socio-economic factors
Procedia PDF Downloads 114