Search results for: high temperature polymer electrolyte membrane fuel cell
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 27952

Search results for: high temperature polymer electrolyte membrane fuel cell

11872 Hunger and Health: The Acceptability and Development of Health Coaching in the Food Pantry Environment

Authors: Kelsey Fortin, Susan Harvey

Abstract:

The intersection between hunger and health outcomes is beginning to gain traction among the research community. With new interventions focusing on collaborations between the medical and social service sectors, this study aimed to understand the acceptability and approach of a health coaching intervention within a county-wide Midwest food pantry. Through formative research, the study used mixed methods to review secondary data and conduct surveys and semi-structured interviews with food pantry clients (n=30), staff (n=7), and volunteers (n=10). Supplemental secondary data collected and provided by pantry staff were reviewed to understand the broader pantry context of clientele health and health behaviors, annual food donations, and current pantry programming. Results from secondary data showed that the broader pantry client population reported high rates of chronic disease, low consumption of fruits and vegetables, and poor self-reported health, while annual donation data showed increases in produce availability on pantry shelves. This disconnect between produce availability, client health status, and behaviors was supported in the current study, with pantry staff and volunteers reporting lack of knowledge in produce selection and preparation being amongst the most common client inquiries and barriers to healthy food selection. Additional supports to secondary data came from pantry clients in the current study through self-reported high rates of both individual (60%, n=18) and household (43%, n=13 ) disease diagnosis, low consumption of fruits and vegetables averaging zero to one servings of vegetables (67%, n=20) and fruits (47%, n=14) per day, and low levels of physical activity averaging zero to 120 minutes per week (67%, n=20). Further, pantry clients provided health coaching programmatic recommendations through interviews with feedback such as non-judgmental coaching, accountability measures, and providing participant incentives as considerations for future program design and approach. Volunteers and staff reported the need for client education in food preparation, basic nutrition and physical activity, and the need for additional health expertise to educate and respond to diet related nutrition recommendations. All three stakeholder groups supported hosting a health coach within the pantry to focused on nutrition, physical activity, and health programming, with one client stating, 'I am hoping it really works out [the health coaching program]. I think it would be great for something like this to be offered for someone that isn’t knowledgeable like me.' In conclusion, high rates of chronic disease, partnered with low food, nutrition, and physical activity literacy among pantry clients, demonstrates the need to address health behaviors. With all three stakeholder groups showing acceptability of a health coaching program, partnered with existing literature showing health coaching success as a behavior change intervention, further research should be conducted to pilot the design and implementation of such a program in the pantry setting.

Keywords: food insecurity, formative research, food pantries, health coaching, hunger and health

Procedia PDF Downloads 127
11871 Development of an Experimental Model of Diabetes Co-Existing with Metabolic Syndrome in Rats

Authors: Rajesh Kumar Suman, Ipseeta Ray Mohanty, Manjusha K. Borde, Ujjawala maheswari, Y. A. Deshmukh

Abstract:

Background: Metabolic syndrome encompasses cluster of risk factors for cardiovascular disease which includes abdominal obesity, dyslipidemia, hypertension, and hyperglycemia. The incidence of metabolic syndrome is on the rise globally. Objective: The present study was designed to develop a unique animal model that will mimic the pathological features seen in a large pool of individuals with diabetes and metabolic syndrome; suitable for pharmacological screening of drugs beneficial in this condition. Material and Methods: A combination of high fat diet (HFD) and low dose of streptozotocin (STZ) at 30, 35 and 40 mg/kg was used to induce metabolic syndrome co-existing with diabetes mellitus in Wistar rats. Results: The 40 mg/kg STZ produced sustained hyperglycemia and the dose was thus selected for our study to induce diabetes mellitus. Rat fed HFD (HF-DC) group showed significant (p < 0.001) increase in body weight on 4th and 7th week as compared with NC (Normal Control) group rats. However, the increase in body weight of HF-DC group rats was not sustained at the end of 10th weeks. Various components of metabolic syndrome such as dyslipidemia {(Increased Triglyceride, total Cholesterol, LDL Cholesterol and decreased HDL Cholesterol)}, diabetes mellitus (Blood Glucose, HbA1c, Serum Insulin, C-peptide), hypertension {Systolic Blood pressure (p < 0.001)} were mimicked in the developed model of metabolic syndrome co existing with diabetes mellitus. In addition significant cardiac injury as indicated by CPK-MB levels, artherogenic index, hs-CRP. The decline in hepatic function {(p < 0.01) increase in the level of SGPT (U/L)} and renal function {(increase in creatinine levels (p < 0.01)} when compared to NC group rats. The histopathological assessment confirmed presence of edema, necrosis and inflammation in Heart, Pancreas, Liver and Kidney of HFD-DC group as compared to NC. Conclusion: The present study has developed a unique rodent model of metabolic syndrome; with diabetes as an essential component.

Keywords: diabetes, metabolic syndrome, high fat diet, streptozotocin, rats

Procedia PDF Downloads 342
11870 Epidemiological Correlates of Adherence to Anti-Hypertensive Treatment in Primary Health Care Setting of Ludhiana, Punjab

Authors: Sangeeta Girdhar, Amanat Grewal, Nahush Bansal

Abstract:

Introduction: There is an increasing burden of hypertension in India. The morbidity and mortality arising from complications are mainly due to non-adherence to medication, unhealthy dietary habits, and lack of physical activity. Non-adherence is a well-recognised factor contributing to inadequate control of high blood pressure. Adherence to pharmacotherapy for hypertension varies from 43% to 88%. Non-adherence is influenced by various socio-demographic factors. Understanding these factors is useful in managing non-adherence. Therefore, the study was planned to determine adherence among hypertensives and factors associated with non-adherence to treatment. Methodology: A cross-sectional study was conducted at Urban Health Training Centre of Dayanand Medical College and Hospital Ludhiana. Patients attending the OPD over a period of 3 months were included in the study. Prior ethical approval was obtained, and informed consent was taken from subjects. A predesigned semi-structured questionnaire was applied, which included socio-demographic profile, treatment-seeking behaviour, adherence to the antihypertensive medication, lifestyle factors (intake of alcohol, smoking, consumption of junk food, high salt intake) contributing to the development of the disease. Reasons for non-adherence to the therapy were also explored. Data was entered into excel, and SPSS 26 version was used for analysis. Results: A total of 186 individuals were interviewed. Out of these, 113 females (60.8%) and 73 males (39.2%) participated in the study. Mean age of participants was 60.9 ± 10.7 years. Adherence to anti-hypertensive treatment was found in 68.3% of the participants. It was observed that adherence was more in literate individuals as compared to illiterate (p value- 0.78). Adherence was lower among smokers (33.3%) and alcohol consumers (53.8%) as compared to non-users (69.4% and 70.6%, respectively). The predominant reasons for skipping medications were discontinuing medication when feeling well, forgetfulness and unawareness. Conclusion: There is a need to generate awareness regarding the importance of adherence to therapy among patients. Intensive health education and counselling of the patients is the need of the hour.

Keywords: hypertension, anti-hypertensive, adherence, counselling

Procedia PDF Downloads 87
11869 Pyridoxine Effectiveness and Safety for Postpartum Lactation Inhibition: A Systematic Review

Authors: Doua AlSaad, Ahmed Awaisu, Samah Elsalem, Palli Valapila Abdulrouf, Binny Thomas, Moza AlHail

Abstract:

Background: It has been suggested that pyridoxine has an anti-lactogenic effect. Studies of the efficacy of pyridoxine in suppressing lactation have reported conflicting results. The aim of this review is to evaluate the effectiveness and safety of high-dose pyridoxine in postpartum lactation inhibition. Methods: This systematic review included published trials that compared the efficacy and/or safety of pyridoxine to placebo or to other pharmacological agents for the inhibition of postpartum lactation. We searched PubMed, Embase, ScienceDirect, CINAHL, AMED, the Cochrane library, and the clinical trials registry to identify relevant literature. No limit was imposed on the year of publication of the studies, and the review included studies published until 15 January 2016. Two reviewers independently extracted data and assessed the risk of bias. Results: Seven studies were included, with a total of 1155 women, of which 471 women received pyridoxine. Three studies were randomized controlled trials, while the remaining four studies were non-randomized controlled trials. All of the included studies were relatively small (n = 18 – 482). The studies compared pyridoxine with placebo, bromocriptine, and/or stilboestrol. Pyridoxine was given orally, with a total daily dose of 450 – 600 mg for 5 to 7 days. Two trials (n = 349 participants) indicated that pyridoxine was effective in inhibiting lactation in approximately 95% of the enrolled patients. All other studies failed to demonstrate pyridoxine efficacy through either clinical assessment or prolactin level measurements. Pyridoxine safety was assessed by two trials in which no serious untoward side-effects were reported. Overall, the risk of bias for most of the studies was low to moderate. Conclusion: Current evidence supporting the effectiveness of high dose pyridoxine in the inhibition of postpartum lactation is inconsistent and insufficient. Larger randomized trials are needed to confirm the efficacy of pyridoxine in postpartum lactation inhibition. Acknowledgment: This review received a grant from the Medical Research Center of Hamad Medical Corporation in Qatar (grant number: 15100/15).

Keywords: pyridoxine, safety, effectiveness, lactation inhibition

Procedia PDF Downloads 126
11868 A Corpus-based Study of Adjuncts in Colombian English as a Second Language (ESL) Argumentative Essays

Authors: E. Velasco

Abstract:

Meeting high standards of writing in a Second Language (L2) is extremely important for many students who wish to undertake studies at universities in both English and non-English speaking countries. University lecturers in English speaking countries continue to express dissatisfaction with the apparent poor quality of essay writing skills displayed by English as a Second Language (ESL) students, whose essays are often criticised for their lack of cohesion and coherence. These critiques have extended to contexts such as Colombia, where many ESL students are criticised for their inability to write high-quality academic texts in L2-English, particularly at the tertiary level. If Colombian ESL students are expected to meet high standards of writing when studying locally and abroad, it makes sense to carry out specific research that can perhaps lead to recommendations to support their quest for improving argumentative strategies. Employing Corpus Linguistics methods within a Learner Corpus Research framework, and a combination of Log-Likelihood and Bayes Factor measures, this paper investigated argumentative essays written by Colombian ESL students. The study specifically aimed to analyse conjunctive adjuncts in argumentative essays to find out how Colombian ESL students connect their ideas in discourse. Results suggest that a) Colombian ESL learners need explicit instruction on specific areas of conjunctive adjuncts to counteract overuse, underuse and misuse; b) underuse of endophoric and evidential adjuncts highlights gaps between IELTS-like essays and good quality tertiary-level essays and published papers, and these gaps are linked to prior knowledge brought into writing task, rhetorical functions in writing, and research processes before writing takes place; c) both Colombian ESL learners and L1-English writers (in a reference corpus) overuse some adjuncts and underuse endophoric and evidential adjuncts, when compared to skilled L1-English and L2-English writers, so differences in frequencies of adjuncts has little to do with the writers’ L1, and differences are rather linked to types of essays writers produce (e.g. ESL vs. university essays). Ender Velasco: The pedagogical recommendations deriving from the study are that: a) Colombian ESL learners need to be shown that overuse is not the only way of giving cohesion to argumentative essays and there are other alternatives to cohesion (e.g., implicit adjuncts, lexical chains and collocations); b) syllabi and classroom input need to raise awareness of gaps in writing skills between IELTS-like and tertiary-level argumentative essays, and of how endophoric and evidential adjuncts are used to refer to anaphoric and cataphoric sections of essays, and to other people’s work or ideas; c) syllabi and classroom input need to include essay-writing tasks based on previous research/reading which learners need to incorporate into their arguments, and tasks that raise awareness of referencing systems (e.g., APA); d) classroom input needs to include explicit instruction on use of punctuation, functions and/or syntax with specific conjunctive adjuncts such as for example, for that reason, although, despite and nevertheless.

Keywords: argumentative essays, colombian english as a second language (esl) learners, conjunctive adjuncts, corpus linguistics

Procedia PDF Downloads 75
11867 Deep Learning Framework for Predicting Bus Travel Times with Multiple Bus Routes: A Single-Step Multi-Station Forecasting Approach

Authors: Muhammad Ahnaf Zahin, Yaw Adu-Gyamfi

Abstract:

Bus transit is a crucial component of transportation networks, especially in urban areas. Any intelligent transportation system must have accurate real-time information on bus travel times since it minimizes waiting times for passengers at different stations along a route, improves service reliability, and significantly optimizes travel patterns. Bus agencies must enhance the quality of their information service to serve their passengers better and draw in more travelers since people waiting at bus stops are frequently anxious about when the bus will arrive at their starting point and when it will reach their destination. For solving this issue, different models have been developed for predicting bus travel times recently, but most of them are focused on smaller road networks due to their relatively subpar performance in high-density urban areas on a vast network. This paper develops a deep learning-based architecture using a single-step multi-station forecasting approach to predict average bus travel times for numerous routes, stops, and trips on a large-scale network using heterogeneous bus transit data collected from the GTFS database. Over one week, data was gathered from multiple bus routes in Saint Louis, Missouri. In this study, Gated Recurrent Unit (GRU) neural network was followed to predict the mean vehicle travel times for different hours of the day for multiple stations along multiple routes. Historical time steps and prediction horizon were set up to 5 and 1, respectively, which means that five hours of historical average travel time data were used to predict average travel time for the following hour. The spatial and temporal information and the historical average travel times were captured from the dataset for model input parameters. As adjacency matrices for the spatial input parameters, the station distances and sequence numbers were used, and the time of day (hour) was considered for the temporal inputs. Other inputs, including volatility information such as standard deviation and variance of journey durations, were also included in the model to make it more robust. The model's performance was evaluated based on a metric called mean absolute percentage error (MAPE). The observed prediction errors for various routes, trips, and stations remained consistent throughout the day. The results showed that the developed model could predict travel times more accurately during peak traffic hours, having a MAPE of around 14%, and performed less accurately during the latter part of the day. In the context of a complicated transportation network in high-density urban areas, the model showed its applicability for real-time travel time prediction of public transportation and ensured the high quality of the predictions generated by the model.

Keywords: gated recurrent unit, mean absolute percentage error, single-step forecasting, travel time prediction.

Procedia PDF Downloads 65
11866 Field Emission Scanning Microscope Image Analysis for Porosity Characterization of Autoclaved Aerated Concrete

Authors: Venuka Kuruwita Arachchige Don, Mohamed Shaheen, Chris Goodier

Abstract:

Aerated autoclaved concrete (AAC) is known for its lightweight, easy handling, high thermal insulation, and extremely porous structure. Investigation of pore behavior in AAC is crucial for characterizing the material, standardizing design and production techniques, enhancing the mechanical, durability, and thermal performance, studying the effectiveness of protective measures, and analyzing the effects of weather conditions. The significant details of pores are complicated to observe with acknowledged accuracy. The High-resolution Field Emission Scanning Electron Microscope (FESEM) image analysis is a promising technique for investigating the pore behavior and density of AAC, which is adopted in this study. Mercury intrusion porosimeter and gas pycnometer were employed to characterize porosity distribution and density parameters. The analysis considered three different densities of AAC blocks and three layers in the altitude direction within each block. A set of understandings was presented to extract and analyze the details of pore shape, pore size, pore connectivity, and pore percentages from FESEM images of AAC. Average pore behavior outcomes per unit area were presented. Comparison of porosity distribution and density parameters revealed significant variations. FESEM imaging offered unparalleled insights into porosity behavior, surpassing the capabilities of other techniques. The analysis conducted from a multi-staged approach provides porosity percentage occupied by various pore categories, total porosity, variation of pore distribution compared to AAC densities and layers, number of two-dimensional and three-dimensional pores, variation of apparent and matrix densities concerning pore behaviors, variation of pore behavior with respect to aluminum content, and relationship among shape, diameter, connectivity, and percentage in each pore classification.

Keywords: autoclaved aerated concrete, density, imaging technique, microstructure, porosity behavior

Procedia PDF Downloads 52
11865 Children with Migration Backgrounds in Russian Elementary Schools: Teachers Attitudes and Practices

Authors: Chulpan Gromova, Rezeda Khairutdinova, Dina Birman

Abstract:

One of the most significant issues that schools all over the world face today is the ways teachers respond to increasing diversity. The study was informed by the tripartite model of multicultural competence, with awareness of personal biases a necessary component, together with knowledge of different cultures, and skills to work with students from diverse backgrounds. The paper presents the results of qualitative descriptive studies that help to understand how school teachers in Russia treat migrant children, how they solve the problems of adaptation of migrant children. The purpose of this study was to determine: a) educational practices used by primary school teachers when working with migrant children; b) relationship between practices and attitudes of teachers. Empirical data were collected through interviews. The participants were informed that a conversation was being recorded. They were also warned that the study was voluntary, absolutely anonymous, no personal data was disclosed. Consent was received from 20 teachers. The findings were analyzed using directive content analysis (Graneheim and Lundman, 2004). The analysis was deductive according to the categories of practices and attitudes identified in the literature review and enriched inductively to identify variation within these categories. Studying practices is an essential part of preparing future teachers for working in a multicultural classroom. For language and academic support, teachers mostly use individual work. In order to create a friendly classroom climate and environment teachers have productive conversations with students, organize multicultural events for the whole school or just for an individual class. The majority of teachers have positive attitudes toward migrant children. In most cases, positive attitudes lead to high expectations for their academic achievements. Conceptual orientation of teacher attitudes toward cultural diversity is mostly pluralistic. Positive attitudes, high academic expectations and conceptual orientation toward pluralism are favorably reflected in teachers’ practice.

Keywords: intercultural education, migrant children schooling, teachers attitudes, teaching practices

Procedia PDF Downloads 109
11864 H.263 Based Video Transceiver for Wireless Camera System

Authors: Won-Ho Kim

Abstract:

In this paper, a design of H.263 based wireless video transceiver is presented for wireless camera system. It uses standard WIFI transceiver and the covering area is up to 100m. Furthermore the standard H.263 video encoding technique is used for video compression since wireless video transmitter is unable to transmit high capacity raw data in real time and the implemented system is capable of streaming at speed of less than 1Mbps using NTSC 720x480 video.

Keywords: wireless video transceiver, video surveillance camera, H.263 video encoding digital signal processing

Procedia PDF Downloads 359
11863 Heavy Sulphide Material Characterization of Grasberg Block Cave Mine, Mimika, Papua: Implication for Tunnel Development and Mill Issue

Authors: Cahya Wimar Wicaksono, Reynara Davin Chen, Alvian Kristianto Santoso

Abstract:

Grasberg Cu-Au ore deposit as one of the biggest porphyry deposits located in Papua Province, Indonesia produced by several intrusion that restricted by Heavy Sulphide Zone (HSZ) in peripheral. HSZ is the rock that becomes the contact between Grassberg Igneous Complex (GIC) with sedimentary and igneous rock outside, which is rich in sulphide minerals such as pyrite ± pyrrhotite. This research is to obtain the characteristic of HSZ based on geotechnical, geochemical and mineralogy aspect and those implication for daily mining operational activities. Method used in this research are geological and alteration mapping, core logging, FAA (Fire Assay Analysis), AAS (Atomic absorption spectroscopy), RQD (Rock Quality Designation) and rock water content. Data generated from methods among RQD data, mineral composition and grade, lithological and structural geology distribution in research area. The mapping data show that HSZ material characteristics divided into three type based on rocks association, there are near igneous rocks, sedimentary rocks and on HSZ area. And also divided based on its location, north and south part of research area. HSZ material characteristic consist of rock which rich of pyrite ± pyrrhotite, and RQD range valued about 25%-100%. Pyrite ± pyrrhotite which outcropped will react with H₂O and O₂ resulting acid that generates corrosive effect on steel wire and rockbolt. Whereas, pyrite precipitation proses in HSZ forming combustible H₂S gas which is harmful during blasting activities. Furthermore, the impact of H₂S gas in blasting activities is forming poison gas SO₂. Although HSZ high grade Cu-Au, however those high grade Cu-Au rich in sulphide components which is affected in flotation milling process. Pyrite ± pyrrhotite in HSZ will chemically react with Cu-Au that will settle in milling process instead of floating.

Keywords: combustible, corrosive, heavy sulphide zone, pyrite ± pyrrhotite

Procedia PDF Downloads 323
11862 [Keynote Talk]: Uptake of Co(II) Ions from Aqueous Solutions by Low-Cost Biopolymers and Their Hybrid

Authors: Kateryna Zhdanova, Evelyn Szeinbaum, Michelle Lo, Yeonjae Jo, Abel E. Navarro

Abstract:

Alginate hydrogel beads (AB), spent peppermint leaf (PM), and a hybrid adsorbent of these two materials (ABPM) were studied as potential biosorbents of Cobalt (II) ions from aqueous solutions. Cobalt ion is a commonly underestimated pollutant that is responsible for several health problems. Discontinuous batch experiments were conducted at room temperature to evaluate the effect of solution acidity, mass of adsorbent on the adsorption of Co(II) ions. The interfering effect of salinity, the presence of surfactants, an organic dye, and Pb(II) ions were also studied to resemble the application of these adsorbents in real wastewater. Equilibrium results indicate that Co(II) uptake is maximized at pH values higher than 5, with adsorbent doses of 200 mg, 200 mg, and 120 mg for AB, PM, and ABPM, respectively. Co(II) adsorption followed the trend AB > ABPM > PM with Adsorption percentages of 77%, 71% and 64%, respectively. Salts had a strong negative effect on the adsorption due to the increase of the ionic strength and the competition for adsorption sites. The presence of Pb(II) ions, surfactant, and dye BY57 had a slightly negative effect on the adsorption, apparently due to their interaction with different adsorption sites that do not interfere with the removal of Co(II). A polar-electrostatic adsorption mechanism is proposed based on the experimental results. Scanning electron microscopy indicates that adsorbent has appropriate morphological and textural properties, and also that ABPM encapsulated most of the PM inside of the hydrogel beads. These experimental results revealed that AB, PM, and ABPM are promising adsorbents for the elimination of Co(II) ions from aqueous solutions under different experimental conditions. These biopolymers are proposed as eco-friendly alternatives for the removal of heavy metal ions at lower costs than the conventional techniques.

Keywords: adsorption, Co(II) ions, alginate hydrogel beads, spent peppermint leaf, pH

Procedia PDF Downloads 124
11861 Isolation of Nitrosoguanidine Induced NaCl Tolerant Mutant of Spirulina platensis with Improved Growth and Phycocyanin Production

Authors: Apurva Gupta, Surendra Singh

Abstract:

Spirulina spp., as a promising source of many commercially valuable products, is grown photo autotrophically in open ponds and raceways on a large scale. However, the economic exploitation in an open system seems to have been limited because of lack of multiple stress-tolerant strains. The present study aims to isolate a stable stress tolerant mutant of Spirulina platensis with improved growth rate and enhanced potential to produce its commercially valuable bioactive compounds. N-methyl-n'-nitro-n-nitrosoguanidine (NTG) at 250 μg/mL (concentration permitted 1% survival) was employed for chemical mutagenesis to generate random mutants and screened against NaCl. In a preliminary experiment, wild type S. platensis was treated with NaCl concentrations from 0.5-1.5 M to calculate its LC₅₀. Mutagenized colonies were then screened for tolerance at 0.8 M NaCl (LC₅₀), and the surviving colonies were designated as NaCl tolerant mutants of S. platensis. The mutant cells exhibited 1.5 times improved growth against NaCl stress as compared to the wild type strain in control conditions. This might be due to the ability of the mutant cells to protect its metabolic machinery against inhibitory effects of salt stress. Salt stress is known to adversely affect the rate of photosynthesis in cyanobacteria by causing degradation of the pigments. Interestingly, the mutant cells were able to protect its photosynthetic machinery and exhibited 4.23 and 1.72 times enhanced accumulation of Chl a and phycobiliproteins, respectively, which resulted in enhanced rate of photosynthesis (2.43 times) and respiration (1.38 times) against salt stress. Phycocyanin production in mutant cells was observed to enhance by 1.63 fold. Nitrogen metabolism plays a vital role in conferring halotolerance to cyanobacterial cells by influx of nitrate and efflux of Na+ ions from the cell. The NaCl tolerant mutant cells took up 2.29 times more nitrate as compared to the wild type and efficiently reduce it. Nitrate reductase and nitrite reductase activity in the mutant cells also improved by 2.45 and 2.31 times, respectively against salt stress. From these preliminary results, it could be deduced that enhanced nitrogen uptake and its efficient reduction might be a reason for adaptive and halotolerant behavior of the S. platensis mutant cells. Also, the NaCl tolerant mutant of S. platensis with significant improved growth and phycocyanin accumulation compared to the wild type can be commercially promising.

Keywords: chemical mutagenesis, NaCl tolerant mutant, nitrogen metabolism, photosynthetic machinery, phycocyanin

Procedia PDF Downloads 162
11860 Globalization of Pesticide Technology and Sustainable Agriculture

Authors: Gagandeep Kaur

Abstract:

The pesticide industry is a big supplier of agricultural inputs. The uses of pesticides control weeds, fungal diseases, etc., which causes of yield losses in agricultural production. In agribusiness and agrichemical industry, Globalization of markets, competition and innovation are the dominant trends. By the tradition of increasing the productivity of agro-systems through generic, universally applicable technologies, innovation in the agrichemical industry is limited. The marketing of technology of agriculture needs to deal with some various trends such as locally-organized forces that envision regionalized sustainable agriculture in the future. Agricultural production has changed dramatically over the past century. Before World War second agricultural production was featured as a low input of money, high labor, mixed farming and low yields. Although mineral fertilizers were applied already in the second half of the 19th century, most f the crops were restricted by local climatic, geological and ecological conditions. After World War second, in the period of reconstruction, political and socioeconomic pressure changed the nature of agricultural production. For a growing population, food security at low prices and securing farmer income at acceptable levels became political priorities. Current agricultural policy the new European common agricultural policy is aimed to reduce overproduction, liberalization of world trade and the protection of landscape and natural habitats. Farmers have to increase the quality of their productivity and they have to control costs because of increased competition from the world market. Pesticides should be more effective at lower application doses, less toxic and not pose a threat to groundwater. There is a big debate taking place about how and whether to mitigate the intensive use of pesticides. This debate is about the future of agriculture which is sustainable agriculture. This is possible by moving away from conventional agriculture. Conventional agriculture is featured as high inputs and high yields. The use of pesticides in conventional agriculture implies crop production in a wide range. To move away from conventional agriculture is possible through the gradual adoption of less disturbing and polluting agricultural practices at the level of the cropping system. For a healthy environment for crop production in the future there is a need for the maintenance of chemical, physical or biological properties. There is also required to minimize the emission of volatile compounds in the atmosphere. Companies are limiting themselves to a particular interpretation of sustainable development, characterized by technological optimism and production-maximizing. So the main objective of the paper will present the trends in the pesticide industry and in agricultural production in the era of Globalization. The second objective is to analyze sustainable agriculture. Companies of pesticides seem to have identified biotechnology as a promising alternative and supplement to the conventional business of selling pesticides. The agricultural sector is in the process of transforming its conventional mode of operation. Some experts give suggestions to farmers to move towards precision farming and some suggest engaging in organic farming. The methodology of the paper will be historical and analytical. Both primary and secondary sources will be used.

Keywords: globalization, pesticides, sustainable development, organic farming

Procedia PDF Downloads 93
11859 Thermophysical Properties of Glycine/L-Alanine in 1-Butyl-3-Methylimidazolium Bromide and in 1-Butyl-3-Methylimidazolium Chloride

Authors: Tarnveer Kaur

Abstract:

Amino acids, as fundamental structural units of peptides and proteins, have an important role in biological systems by affecting solubility, denaturation, and activity of biomolecules. A study of these effects on thermophysical properties of model compounds in the presence of electrolytes solutions provides information about solute-solvent and solute-solute interactions on biomolecules. Ionic liquids (ILs) as organic electrolytes and green solvents are composed of an organic cation and an inorganic anion, which are liquid at ambient conditions. In the past decade, extensive investigations showed that the use of ILs as reaction media for processes involving biologically relevant compounds is promising in view of their successful application in kinetic resolution, biocatalysis, biosynthesis, separation, and purification processes. The scope of this information is valuable to explore the interactions of amino acids in ILs. To reach this purpose, apparent molar volumes of glycine/L-alanine in aqueous solutions of 1-butyl-3-methylimidazolium bromide/chloride were determined from precise density measurements at temperatures T = (288.15-318.15) K and at atmospheric pressure. Positive values for all the studied amino acids indicate the dominance of hydrophilic-ionic interactions between amino acids and Ionic liquids. The effect of temperature on volumetric properties of glycine/L-alanine in solutions has been determined from the partial molar expansibility and second-order partial molar expansibility. Further, volumetric interaction parameters and hydration number have been calculated, which have been interpreted in terms of possible solute-solvent interactions.

Keywords: ILs, amino acids, volumetric properties, hydration numbers

Procedia PDF Downloads 162
11858 Study on the Thermal Mixing of Steam and Coolant in the Hybrid Safety Injection Tank

Authors: Sung Uk Ryu, Byoung Gook Jeon, Sung-Jae Yi, Dong-Jin Euh

Abstract:

In such passive safety injection systems in the nuclear power plant as Core Makeup Tank (CMT) and Hybrid Safety Injection Tank, various thermal-hydraulic phenomena including the direct contact condensation of steam and the thermal stratification of coolant occur. These phenomena are also closely related to the performance of the system. Depending on the condensation rate of the steam injected to the tank, the injection of the coolant and pressure equalizing timings of the tank are decided. The steam injected to the tank from the upper nozzle penetrates the coolant and induces a direct contact condensation. In the present study, the direct contact condensation of steam and the thermal mixing between the steam and coolant were examined by using the Particle Image Velocimetry (PIV) technique. Especially, by altering the size of the nozzle from which the steam is injected, the influence of steam injection velocity on the thermal mixing with coolant and condensation shall be comprehended, while also investigating the influence of condensation on the pressure variation inside the tank. Even though the amounts of steam inserted were the same in three different nozzle size conditions, it was found that the velocity of pressure rise becomes lower as the steam injection area decreases. Also, as the steam injection area increases, the thickness of the zone within which the coolant’s temperature decreases. Thereby, the amount of steam condensed by the direct contact condensation also decreases. The results derived from the present study can be utilized for the detailed design of a passive safety injection system, as well as for modeling the direct contact condensation triggered by the steam jet’s penetration into the coolant.

Keywords: passive safety injection systems, steam penetration, direct contact condensation, particle image velocimetry

Procedia PDF Downloads 387
11857 An Assessment of Rice Yield Improvement Among Smallholder Rice Farmers in Asunafo North Municipality of Ghana

Authors: Isaac Diaka, Matsui Kenichi

Abstract:

Ghana’s rice production has increased mainly because of increased cultivated areas. On this point, scholars who promoted crop production increase for food security have overlooked the fact that its per-acre yield has not increased. Also, Ghana’s domestic rice production has not contributed much to domestic rice consumption especially in major cities where consumers tend to rely on imported rice from Asia. Considering these points, the paper seeks to understand why smallholder rice farmers have not been able to increase per acre rice yield. It also examines smallholder rice farmers’ rice yield improvement needs, and the relationship that exist between rice farmers’ socioeconomic factors and their yield levels by rice varieties. The study adopted a simple random sampling technique to select 154 rice farmers for a questionnaire survey between October and November 2020. The data was analyzed by performing a correlation analysis, an independent t-test, and Kendall’s coefficient of concordance. The results showed that 58.4% of the respondents cultivated popular high-yield varieties like AGRA and Jasmine. The rest used local varieties. Regarding respondents’ yield differentials, AGRA and Jasmine had an average yield of 2.6 mt/ha, which is higher than that of local varieties (1.6mt/ha). The study found untimely availability of improved seed varieties and high cost of inputs some of the major reasons affecting yield in the area. For respondents’ yield improvement needs, Kendall’s coefficient of concordance showed that access to improved varieties, irrigation infrastructure, and row planting were respondents’ major technological needs. As to their non-technological needs, the respondents needed timely information about rice production, access to credit support options, and extension services. The correlation analysis revealed that farm size and off-farm income exhibited a positive and negative association towards respondents’ yield level, respectively. This paper then discusses recommendations for providing with improved rice production technologies to farmers.

Keywords: Ghana, rice, smallholder farmers, yield improvement.

Procedia PDF Downloads 85
11856 Antioxidant Capacity, Proximate Biomass Composition and Fatty Acid Profile of Five Marine Microalgal Species with Potential as Aquaculture Feed

Authors: Vasilis Andriopoulos, Maria D. Gkioni, Elena Koutra, Savvas G. Mastropetros, Fotini N. Lamari, Sofia Hatziantoniou, Michalis Kornaros

Abstract:

In the present study, the antioxidant activity of aqueous and methanolic extracts of Chlorella minutissima, Dunaliella salina, Isochrysis galbana, Nannochloropsis oculata and Tisohrysis lutea, as well as the proximate composition and fatty acid profile were evaluated, with the aim to select species suitable for co-production of antioxidants and aquaculture feed. Batch cultivation was performed at 25oC in a modified f/2 medium under continuous illumination and aeration with ambient air. Biomass was collected via centrifugation and extracted first with H2O and subsequently with methanol at two growth phases (early and late stationary). Total phenolic content and antioxidant and reducing activity of the extracts were evaluated. The highest phenolic content was found in the methanolic extract of C. minutissima at the early stationary phase (9.04±0.68 mg Gallic Acid Equivalent g-1 dry weight), and the aqueous extract of D. salina at the late stationary phase (8.78±1.49 mg Gallic Acid Equivalent g-1 Dry weight). Antioxidant activity, measured as 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity, and Ferric reducing antioxidant power assay of methanolic extracts were comparable to the literature and correlated to Total phenolic content and Chlorophyll content of the biomass. No such correlation was found in the aqueous extracts. N. oculata and T. lutea were high in protein (39.88±1.72% Dry weight and 43.30±1.33% Dry weight, respectively) and carotenoids (0.64±0.13% and 0.92±0.02%, respectively). Additionally, they presented high eicosapentaenoic acid and docosahexaenoic acid levels (33.74±9.98 mg eicosapentaenoic acid g-1 DW and 31.31±2.92 mg docosahexaenoic acid g-1 dry weight, respectively). N. oculata and T. lutea are promising candidates for the co-production of antioxidants and aquaculture feed, while C. minutissima and D. salina showed promise due to their higher antioxidant content.

Keywords: aquaculture fee, antioxidant activity, fatty acids, microalgae, total phenolic content

Procedia PDF Downloads 161
11855 Load Comparison between Different Positions during Elite Male Basketball Games: A Sport Metabolomics Approach

Authors: Kayvan Khoramipour, Abbas Ali Gaeini, Elham Shirzad, Øyvind Sandbakk

Abstract:

Basketball has different positions with individual movement profiles, which may influence metabolic demands. Accordingly, the present study aimed to compare the movement and metabolic load between different positions during elite male basketball games. Five main players of 14 teams (n = 70), who participated in the 2017-18 Iranian national basketball leagues, were selected as participants. The players were defined as backcourt (Posts 1-3) and frontcourt (Posts 4-5). Video based time motion analysis (VBTMA) was performed based on players’ individual running and shuffling speed using Dartfish software. Movements were classified into high and low intensity running with and without having the ball, as well as high and low-intensity shuffling and static movements. Mean frequency, duration, and distance were calculated for each class, except for static movements where only frequency was calculated. Saliva samples were collected from each player before and after 40-minute basketball games and analyzed using metabolomics. Principal component analysis (PCA) and Partial least square discriminant analysis (PLSDA) (for metabolomics data) and independent T-tests (for VBTMA) were used as statistical tests. Movement frequency, duration, and distance were higher in backcourt players (all p ≤ 0.05), while static movement frequency did not differ. Saliva samples showed that the levels of Taurine, Succinic acid, Citric acid, Pyruvate, Glycerol, Acetoacetic acid, Acetone, and Hypoxanthine were all higher in backcourt players, whereas Lactate, Alanine, 3-Metyl Histidine, and Methionine were higher in frontcourt players Based on metabolomics, we demonstrate that backcourt and frontcourt players have different metabolic profiles during games, where backcourt players move clearly more during games and therefore rely more on aerobic energy, whereas frontcourt players rely more on anaerobic energy systems in line with less dynamic but more static movement patterns.

Keywords: basketball, metabolomics, saliva, sport loadomics

Procedia PDF Downloads 108
11854 The Electric Car Wheel Hub Motor Work Analysis with the Use of 2D FEM Electromagnetic Method and 3D CFD Thermal Simulations

Authors: Piotr Dukalski, Bartlomiej Bedkowski, Tomasz Jarek, Tomasz Wolnik

Abstract:

The article is concerned with the design of an electric in wheel hub motor installed in an electric car with two-wheel drive. It presents the construction of the motor on the 3D cross-section model. Work simulation of the motor (applicated to Fiat Panda car) and selected driving parameters such as driving on the road with a slope of 20%, driving at maximum speed, maximum acceleration of the car from 0 to 100 km/h are considered by the authors in the article. The demand for the drive power taking into account the resistance to movement was determined for selected driving conditions. The parameters of the motor operation and the power losses in its individual elements, calculated using the FEM 2D method, are presented for the selected car driving parameters. The calculated power losses are used in 3D models for thermal calculations using the CFD method. Detailed construction of thermal models with materials data, boundary conditions and losses calculated using the FEM 2D method are presented in the article. The article presents and describes calculated temperature distributions in individual motor components such as winding, permanent magnets, magnetic core, body, cooling system components. Generated losses in individual motor components and their impact on the limitation of its operating parameters are described by authors. Attention is paid to the losses generated in permanent magnets, which are a source of heat as the removal of which from inside the motor is difficult. Presented results of calculations show how individual motor power losses, generated in different load conditions while driving, affect its thermal state.

Keywords: electric car, electric drive, electric motor, thermal calculations, wheel hub motor

Procedia PDF Downloads 168
11853 Post Harvest Fungi Diversity and Level of Aflatoxin Contamination in Stored Maize: Cases of Kitui, Nakuru and Trans-Nzoia Counties in Kenya

Authors: Gachara Grace, Kebira Anthony, Harvey Jagger, Wainaina James

Abstract:

Aflatoxin contamination of maize in Africa poses a major threat to food security and the health of many African people. In Kenya, aflatoxin contamination of maize is high due to the environmental, agricultural and socio-economic factors. Many studies have been conducted to understand the scope of the problem, especially at pre-harvest level. This research was carried out to gather scientific information on the fungi population, diversity and aflatoxin level during the post-harvest period. The study was conducted in three geographical locations of; Kitui, Kitale and Nakuru. Samples were collected from storage structures of farmers and transported to the Biosciences eastern and central Africa (BecA), International Livestock and Research Institute (ILRI) hub laboratories. Mycoflora was recovered using the direct plating method. A total of five fungal genera (Aspergillus, Penicillium, Fusarium, Rhizopus and Bssyochlamys spp.) were isolated from the stored maize samples. The most common fungal species that were isolated from the three study sites included A. flavus at 82.03% followed by A.niger and F.solani at 49% and 26% respectively. The aflatoxin producing fungi A. flavus was recovered in 82.03% of the samples. Aflatoxin levels were analysed on both the maize samples and in vitro. Most of the A. flavus isolates recorded a high level of aflatoxin when they were analysed for presence of aflatoxin B1 using ELISA. In Kitui, all the samples (100%) had aflatoxin levels above 10ppb with a total aflatoxin mean of 219.2ppb. In Kitale, only 3 samples (n=39) had their aflatoxin levels less than 10ppb while in Nakuru, the total aflatoxin mean level of this region was 239.7ppb. When individual samples were analysed using Vicam fluorometer method, aflatoxin analysis revealed that most of the samples (58.4%) had been contaminated. The means were significantly different (p=0.00<0.05) in all the three locations. Genetic relationships of A. flavus isolates were determined using 13 Simple Sequence Repeats (SSRs) markers. The results were used to generate a phylogenetic tree using DARwin5 software program. A total of 5 distinct clusters were revealed among the genotypes. The isolates appeared to cluster separately according to the geographical locations. Principal Coordinates Analysis (PCoA) of the genetic distances among the 91 A. flavus isolates explained over 50.3% of the total variation when two coordinates were used to cluster the isolates. Analysis of Molecular Variance (AMOVA) showed a high variation of 87% within populations and 13% among populations. This research has shown that A. flavus is the main fungal species infecting maize grains in Kenya. The influence of aflatoxins on human populations in Kenya demonstrates a clear need for tools to manage contamination of locally produced maize. Food basket surveys for aflatoxin contamination should be conducted on a regular basis. This would assist in obtaining reliable data on aflatoxin incidence in different food crops. This would go a long way in defining control strategies for this menace.

Keywords: aflatoxin, Aspergillus flavus, genotyping, Kenya

Procedia PDF Downloads 274
11852 Impact of Wastewater Irrigation on Soil Quality and Productivity of Tuberose (Polianthes tuberosa L. cv. Prajwal)

Authors: D. S. Gurjar, R. Kaur, K. P. Singh, R. Singh

Abstract:

A greater volume of wastewater generate from urban areas in India. Due to the adequate availability, less energy requirement and nutrient richness, farmers of urban and peri-urban areas are deliberately using wastewater to grow high value vegetable crops. Wastewater contains pathogens and toxic pollutants, which can enter in the food chain system while using wastewater for irrigating vegetable crops. Hence, wastewater can use for growing commercial flower crops that may avoid food chain contamination. Tuberose (Polianthes tuberosa L.) is one of the most important commercially grown, cultivated over 30, 000 ha area, flower crop in India. Its popularity is mainly due to the sweet fragrance as well as the long keeping quality of the flower spikes. The flower spikes of tuberose has high market price and usually blooms during summer and rainy seasons when there is meager supply of other flowers in the market. It has high irrigation water requirement and fresh water supply is inadequate in tuberose growing areas of India. Therefore, wastewater may fulfill the water and nutrients requirements and may enhance the productivity of tuberose. Keeping in view, the present study was carried out at WTC farm of ICAR-Indian Agricultural Research Institute, New Delhi in 2014-15. Prajwal was the variety of test crop. The seven treatments were taken as T-1. Wastewater irrigation at 0.6 ID/CPE, T-2: Wastewater irrigation at 0.8 ID/CPE, T-3: Wastewater irrigation at 1.0 ID/CPE, T-4: Wastewater irrigation at 1.2 ID/CPE, T-5: Wastewater irrigation at 1.4 ID/CPE, T-6: Conjunctive use of Groundwater and Wastewater irrigation at 1.0 ID/CPE in cyclic mode, T-7: Control (Groundwater irrigation at 1.0 ID/CPE) in randomized block design with three replication. Wastewater and groundwater samples were collected on monthly basis (April 2014 to March 2015) and analyzed for different parameters of irrigation quality (pH, EC, SAR, RSC), pollution hazard (BOD, toxic heavy metals and Faecal coliforms) and nutrients potential (N, P, K, Cu, Fe, Mn, Zn) as per standard methods. After harvest of tuberose crop, soil samples were also collected and analyzed for different parameters of soil quality as per standard methods. The vegetative growth and flower parameters were recorded at flowering stage of tuberose plants. Results indicated that wastewater samples had higher nutrient potential, pollution hazard as compared to groundwater used in experimental crop. Soil quality parameters such as pH EC, available phosphorous & potassium and heavy metals (Cu, Fe, Mn, Zn, Cd. Pb, Ni, Cr, Co, As) were not significantly changed whereas organic carbon and available nitrogen were significant higher in the treatments where wastewater irrigations were given at 1.2 and 1.4 ID/CPE as compared to groundwater irrigations. Significantly higher plant height (68.47 cm), leaves per plant (78.35), spike length (99.93 cm), rachis length (37.40 cm), numbers of florets per spike (56.53), cut spike yield (0.93 lakh/ha) and loose flower yield (8.5 t/ha) were observed in the treatment of Wastewater irrigation at 1.2 ID/CPE. Study concluded that given quality of wastewater improves the productivity of tuberose without an adverse impact on soil quality/health. However, its long term impacts need to be further evaluated.

Keywords: conjunctive use, irrigation, tuberose, wastewater

Procedia PDF Downloads 324
11851 Exploring the Potential of Phase Change Materials in Construction Environments

Authors: A. Ait Ahsene F., B. Boughrara S.

Abstract:

The buildings sector accounts for a significant portion of global energy consumption, with much of this energy used to heat and cool indoor spaces. In this context, the integration of innovative technologies such as phase change materials (PCM) holds promising potential to improve the energy efficiency and thermal comfort of buildings. This research topic explores the benefits and challenges associated with the use of PCMs in buildings, focusing on their ability to store and release thermal energy to regulate indoor temperature. We investigated the different types of PCM available, their thermal properties, and their potential applications in various climate zones and building types. To evaluate and compare the performance of PCMs, our methodology includes a series of laboratory and field experiments. In the laboratory, we measure the thermal storage capacity, melting and solidification temperatures, latent heat, and thermal conductivity of various PCMs. These measurements make it possible to quantify the capacity of each PCM to store and release thermal energy, as well as its capacity to transfer this energy through the construction materials. Additionally, field studies are conducted to evaluate the performance of PCMs in real-world environments. We install PCM systems in real buildings and monitor their operation over time, measuring energy savings, occupant thermal comfort, and material durability. These empirical data allow us to compare the effectiveness of different types of PCMs under real-world use conditions. By combining the results of laboratory and field experiments, we provide a comprehensive analysis of the advantages and limitations of PCMs in buildings, as well as recommendations for their effective application in practice.

Keywords: energy saving, phase change materials, material sustainability, buildings sector

Procedia PDF Downloads 32
11850 Oi̇l Absorption Behavior and Its Effect on Charpy Impact Test of Glass Reinforced Polyester Composites Used in the Manufacture of Naval Ship Hulls

Authors: Bouhafara Djaber, Menail Younes, Mesrafet Farouk, Aissaoui Mohammed Islem

Abstract:

This article presents results of experimental investigations of the durability of (GFRP) composite exposed to typical environments of marine industries applications,The use of fiber-glass reinforced polyester composites in marine applications such as Hulls of voyage boats and hulls of small vessels for the military navy , this type of composite is becoming attractive because of their reduced weight and improved corrosion resistance. However,a deep understating of oil ageing effect on composite structures is essential to ensure long-term performance and durability. in this work evaluate the effect of oil ageing on absorptıon behavıor and ımpact properties of glass/polyester composites manufactured with two types of fiber fabrics (fibreglass mat and fiberglass woven roving) and isophthalic polyester resin. The specimens obtained from commercial (GFRP) profiles made of unsaturated polyester resin were subjected to immersion in (i) marine oil for boats and (ii) salt water at ambient temperature for up to 1 month. The effects of such exposure conditions on this types of profile we analysed in what concerns their (i) mass change,(ii) mechanical response in impact, namely on the mechanical response – oil immersion caused a higher level of degradation, compared with salt water immersion;fracture surface examination by scanning electron microscopy revealed delamination, fiber debonding and resin crumbling due to oil effect.

Keywords: Marine Engine Oil, Absorption, Polyester, Glass Fibre

Procedia PDF Downloads 71
11849 Analysis of Aquifer Productivity in the Mbouda Area (West Cameroon)

Authors: Folong Tchoffo Marlyse Fabiola, Anaba Onana Achille Basile

Abstract:

Located in the western region of Cameroon, in the BAMBOUTOS department, the city of Mbouda belongs to the Pan-African basement. The water resources exploited in this region consist of surface water and groundwater from weathered and fractured aquifers within the same basement. To study the factors determining the productivity of aquifers in the Mbouda area, we adopted a methodology based on collecting data from boreholes drilled in the region, identifying different types of rocks, analyzing structures, and conducting geophysical surveys in the field. The results obtained allowed us to distinguish two main types of rocks: metamorphic rocks composed of amphibolites and migmatitic gneisses and igneous rocks, namely granodiorites and granites. Several types of structures were also observed, including planar structures (foliation and schistosity), folded structures (folds), and brittle structures (fractures and lineaments). A structural synthesis combines all these elements into three major phases of deformation. Phase D1 is characterized by foliation and schistosity, phase D2 is marked by shear planes and phase D3 is characterized by open and sealed fractures. The analysis of structures (fractures in outcrops, Landsat lineaments, subsurface structures) shows a predominance of ENE-WSW and WNW-ESE directions. Through electrical surveys and borehole data, we were able to identify the sequence of different geological formations. Four geo-electric layers were identified, each with a different electrical conductivity: conductive, semi-resistive, or resistive. The last conductive layer is considered a potentially aquiferous zone. The flow rates of the boreholes ranged from 2.6 to 12 m3/h, classified as moderate to high according to the CIEH classification. The boreholes were mainly located in basalts, which are mineralogically rich in ferromagnesian minerals. This mineral composition contributes to their high productivity as they are more likely to be weathered. The boreholes were positioned along linear structures or at their intersections.

Keywords: Mbouda, Pan-African basement, productivity, west-Cameroon

Procedia PDF Downloads 55
11848 Improvement in the Photocatalytic Activity of Nanostructured Manganese Ferrite – Type of Materials by Mechanochemical Activation

Authors: Katerina Zaharieva, Katya Milenova, Zara Cherkezova-Zheleva, Alexander Eliyas, Boris Kunev, Ivan Mitov

Abstract:

The synthesized nanosized manganese ferrite-type of samples have been tested as photocatalysts in the reaction of oxidative degradation of model contaminant Reactive Black 5 (RB5) dye in aqueous solutions under UV irradiation. As it is known this azo dye is applied in the textile-coloring industry and it is discharged into the waterways causing pollution. The co-precipitation procedure has been used for the synthesis of manganese ferrite-type of materials: Sample 1 - Mn0.25Fe2.75O4, Sample 2 - Mn0.5Fe2.5O4 and Sample 3 - MnFe2O4 from 0.03M aqueous solutions of MnCl2•4H2O, FeCl2•4H2O and/or FeCl3•6H2O and 0.3M NaOH in appropriate amounts. The mechanochemical activation of co-precipitated ferrite-type of samples has been performed in argon (Samples 1 and 2) or in air atmosphere (Sample 3) for 2 hours at a milling speed of 500 rpm. The mechano-chemical treatment has been carried out in a high energy planetary ball mill type PM 100, Retsch, Germany. The mass ratio between balls and powder was 30:1. As a result mechanochemically activated Sample 4 - Mn0.25Fe2.75O4, Sample 5 - Mn0.5Fe2.5O4 and Sample 6 - MnFe2O4 have been obtained. The synthesized manganese ferrite-type photocatalysts have been characterized by X-ray diffraction method and Moessbauer spectroscopy. The registered X-ray diffraction patterns and Moessbauer spectra of co-precipitated ferrite-type of materials show the presence of manganese ferrite and additional akaganeite phase. The presence of manganese ferrite and small amounts of iron phases is established in the mechanochemically treated samples. The calculated average crystallite size of manganese ferrites varies within the range 7 – 13 nm. This result is confirmed by Moessbauer study. The registered spectra show superparamagnetic behavior of the prepared materials at room temperature. The photocatalytic investigations have been made using polychromatic UV-A light lamp (Sylvania BLB, 18 W) illumination with wavelength maximum at 365 nm. The intensity of light irradiation upon the manganese ferrite-type photocatalysts was 0.66 mW.cm-2. The photocatalytic reaction of oxidative degradation of RB5 dye was carried out in a semi-batch slurry photocatalytic reactor with 0.15 g of ferrite-type powder, 150 ml of 20 ppm dye aqueous solution under magnetic stirring at rate 400 rpm and continuously feeding air flow. The samples achieved adsorption-desorption equilibrium in the dark period for 30 min and then the UV-light was turned on. After regular time intervals aliquot parts from the suspension were taken out and centrifuged to separate the powder from solution. The residual concentrations of dye were established by a UV-Vis absorbance single beam spectrophotometer CamSpec M501 (UK) measuring in the wavelength region from 190 to 800 nm. The photocatalytic measurements determined that the apparent pseudo-first-order rate constants calculated by linear slopes approximating to first order kinetic equation, increase in following order: Sample 3 (1.1х10-3 min-1) < Sample 1 (2.2х10-3 min-1) < Sample 2 (3.3 х10-3 min-1) < Sample 4 (3.8х10-3 min-1) < Sample 6 (11х10-3 min-1) < Sample 5 (15.2х10-3 min-1). The mechanochemically activated manganese ferrite-type of photocatalyst samples show significantly higher degree of oxidative degradation of RB5 dye after 120 minutes of UV light illumination in comparison with co-precipitated ferrite-type samples: Sample 5 (92%) > Sample 6 (91%) > Sample 4 (63%) > Sample 2 (53%) > Sample 1 (42%) > Sample 3 (15%). Summarizing the obtained results we conclude that the mechanochemical activation leads to a significant enhancement of the degree of oxidative degradation of the RB5 dye and photocatalytic activity of tested manganese ferrite-type of catalyst samples under our experimental conditions. The mechanochemically activated Mn0.5Fe2.5O4 ferrite-type of material displays the highest photocatalytic activity (15.2х10-3 min-1) and degree of oxidative degradation of the RB5 dye (92%) compared to the other synthesized samples. Especially a significant improvement in the degree of oxidative degradation of RB5 dye (91%) has been determined for mechanochemically treated MnFe2O4 ferrite-type of sample with the highest extent of substitution of iron ions by manganese ions than in the case of the co-precipitated MnFe2O4 sample (15%). The mechanochemically activated manganese ferrite-type of samples show good photocatalytic properties in the reaction of oxidative degradation of RB5 azo dye in aqueous solutions and it could find potential application for dye removal from wastewaters originating from textile industry.

Keywords: nanostructured manganese ferrite-type materials, photocatalytic activity, Reactive Black 5, water treatment

Procedia PDF Downloads 343
11847 Increasing Sulfur Handling Cost Efficiency Using the Eco Sulfur Paving Block Method at PT Pertamina EP Field Cepu

Authors: Adha Bayu Wijaya, A. Zainal Abidin, Naufal Baihaqi, Joko Suprayitno, Astika Titistiti, Muslim Adi Wijaya, Endah Tri Lestari, Agung Wibowo

Abstract:

Sulfur is a non-metallic chemical element in the form of a yellow crystalline solid with the chemical formula, and is formed from several types of natural and artificial chemical reactions. Commercial applications of sulfur processed products can be found in various aspects of life, for example in the use of processed sulfur as paving blocks. The Gundih Central Processing Plant (CPP) is capable of producing 14 tons/day of sulfur pellets. This amount comes from the high H2S content of the wells with a total concentration of 20,000 ppm and a volume accumulation of 14 MMSCFD acid gas. H2S is converted to sulfur using the thiobacillus microbe in the Biological Sulfur Recovery Unit (BSRU) with a sulfur product purity level greater than 95%. In 2018 sulfur production at Gundih CPP was recorded at 4044 tons which could potentially trigger serious problems from an environmental aspect. The use of sulfur as material for making paving blocks is an alternative solution in addressing the potential impact on the environment, as regulated by Government Regulation No.22 of Year 2021 concerning the Waste Management of Non-Hazardous and Toxic Substances (B3), and the high cost of handling sulfur by third parties. The design mix of ratio sulfur paving blocks is 22% cements, rock ash 67%, and 11% of sulfur pellets. The sulfur used in making the paving mixture is pure sulfur, namely the side product category without any contaminants, thereby eliminating the potential for environmental pollution when implementing sulfur paving. Strength tests of sulfur paving materials have also been confirmed by external laboratories. The standard used in making sulfur paving blocks refers to the SNI 03-0691-1996 standard. With the results of sulfur paving blocks made according to quality B. Currently, sulfur paving blocks are used in building access to wells locations and in public roads in the Cepu Field area as a contribution from Corporate Social Responsibility (CSR).

Keywords: sulphur, innovation, paving block, CSR, sulphur paving

Procedia PDF Downloads 64
11846 Identification of Potent and Selective SIRT7 Anti-Cancer Inhibitor via Structure-Based Virtual Screening and Molecular Dynamics Simulation

Authors: Md. Fazlul Karim, Ashik Sharfaraz, Aysha Ferdoushi

Abstract:

Background: Computational medicinal chemistry approaches are used for designing and identifying new drug-like molecules, predicting properties and pharmacological activities, and optimizing lead compounds in drug development. SIRT7, a nicotinamide adenine dinucleotide (NAD+)-dependent deacylase which regulates aging, is an emerging target for cancer therapy with mounting evidence that SIRT7 downregulation plays important roles in reversing cancer phenotypes and suppressing tumor growth. Activation or altered expression of SIRT7 is associated with the progression and invasion of various cancers, including liver, breast, gastric, prostate, and non-small cell lung cancer. Objectives: The goal of this work was to identify potent and selective bioactive candidate inhibitors of SIRT7 by in silico screening of small molecule compounds obtained from Nigella sativa (N. sativa). Methods: SIRT7 structure was retrieved from The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB), and its active site was identified using CASTp and metaPocket. Molecular docking simulation was performed with PyRx 0.8 virtual screening software. Drug-likeness properties were tested using SwissADME and pkCSM. In silico toxicity was evaluated by Osiris Property Explorer. Bioactivity was predicted by Molinspiration software. Antitumor activity was screened for Prediction of Activity Spectra for Substances (PASS) using Way2Drug web server. Molecular dynamics (MD) simulation was carried out by Desmond v3.6 package. Results: A total of 159 bioactive compounds from the N. Sativa were screened against the SIRT7 enzyme. Five bioactive compounds: chrysin (CID:5281607), pinocembrin (CID:68071), nigellidine (CID:136828302), nigellicine (CID:11402337), and epicatechin (CID:72276) were identified as potent SIRT7 anti-cancer candidates after docking score evaluation and applying Lipinski's Rule of Five. Finally, MD simulation identified Chrysin as the top SIRT7 anti-cancer candidate molecule. Conclusion: Chrysin, which shows a potential inhibitory effect against SIRT7, can act as a possible anti-cancer drug candidate. This inhibitor warrants further evaluation to check its pharmacokinetics and pharmacodynamics properties both in vitro and in vivo.

Keywords: SIRT7, antitumor, molecular docking, molecular dynamics simulation

Procedia PDF Downloads 67
11845 Managing Sunflower Price Risk from a South African Oil Crushing Company’s Perspective

Authors: Daniel Mokatsanyane, Johnny Jansen Van Rensburg

Abstract:

The integral role oil-crushing companies play in sunflower oil production is often overlooked to offer high-quality oil to refineries and end consumers. Sunflower oil crushing companies in South Africa are exposed to price fluctuations resulting from the local and international markets. Hedging instruments enable these companies to hedge themselves against unexpected prices spikes and to ensure sustained profitability. A crushing company is a necessary middleman, and as such, these companies have exposure to the purchasing and selling sides of sunflower. Sunflower oil crushing companies purchase sunflower seeds from farmers or agricultural companies that provide storage facilities. The purchasing price is determined by the supply and demand of sunflower seed, both national and international. When the price of sunflower seeds in South Africa is high but still below import parity, then the crush margins realised by these companies are reduced or even negative at times. There are three main products made by sunflower oil crushing companies, oil, meal, and shells. Profits are realised from selling three products, namely, sunflower oil, meal and shells. However, when selling sunflower oil to refineries, sunflower oil crushing companies needs to hedge themselves against a reduction in vegetable oil prices. Hedging oil prices is often done via futures and is subject to specific volume commitments before a hedge position can be taken in. Furthermore, South African oil-crushing companies hedge sunflower oil with international, Over-the-counter contracts as South Africa is a price taker of sunflower oil and not a price maker. As such, South Africa provides a fraction of the world’s sunflower oil supply and, therefore, has minimal influence on price changes. The advantage of hedging using futures ensures that the sunflower crushing company will know the profits they will realise, but the downside is that they can no longer benefit from a price increase. Alternative hedging instruments like options might pose a solution to the opportunity cost does not go missing and that profit margins are locked in at the best possible prices for the oil crushing company. This paper aims to investigate the possibility of employing options alongside futures to simulate different scenarios to determine if options can bridge the opportunity cost gap.

Keywords: derivatives, hedging, price risk, sunflower, sunflower oil, South Africa

Procedia PDF Downloads 160
11844 Climate Smart Agriculture: Nano Technology in Solar Drying

Authors: Figen Kadirgan, M. A. Neset Kadirgan, Gokcen A. Ciftcioglu

Abstract:

Addressing food security and climate change challenges have to be done in an integrated manner. To increase food production and to reduce emissions intensity, thus contributing to mitigate climate change, food systems have to be more efficient in the use of resources. To ensure food security and adapt to climate change they have to become more resilient. The changes required in agricultural and food systems will require the creation of supporting institutions and enterprises to provide services and inputs to smallholders, fishermen and pastoralists, and transform and commercialize their production more efficiently. Thus there is continously growing need to switch to green economy where simultaneously causes reduction in carbon emissions and pollution, enhances energy and resource-use efficiency; and prevents the loss of biodiversity and ecosystem services. Smart Agriculture takes into account the four dimensions of food security, availability, accessibility, utilization, and stability. It is well known that, the increase in world population will strengthen the population-food imbalance. The emphasis on reduction of food losses makes a point on production, on farmers, on increasing productivity and income ensuring food security. Where also small farmers enhance their income and stabilize their budget. The use of solar drying for agricultural, marine or meat products is very important for preservation. Traditional sun drying is a relatively slow process where poor food quality is seen due to an infestation of insects, enzymatic reactions, microorganism growth and micotoxin development. In contrast, solar drying has a sound solution to all these negative effects of natural drying and artificial mechanical drying. The technical directions in the development of solar drying systems for agricultural products are compact collector design with high efficiency and low cost. In this study, using solar selective surface produced in Selektif Teknoloji Co. Inc. Ltd., solar dryers with high efficiency will be developed and a feasibility study will be realized.

Keywords: energy, renewable energy, solar collector, solar drying

Procedia PDF Downloads 220
11843 Wireless FPGA-Based Motion Controller Design by Implementing 3-Axis Linear Trajectory

Authors: Kiana Zeighami, Morteza Ozlati Moghadam

Abstract:

Designing a high accuracy and high precision motion controller is one of the important issues in today’s industry. There are effective solutions available in the industry but the real-time performance, smoothness and accuracy of the movement can be further improved. This paper discusses a complete solution to carry out the movement of three stepper motors in three dimensions. The objective is to provide a method to design a fully integrated System-on-Chip (SOC)-based motion controller to reduce the cost and complexity of production by incorporating Field Programmable Gate Array (FPGA) into the design. In the proposed method the FPGA receives its commands from a host computer via wireless internet communication and calculates the motion trajectory for three axes. A profile generator module is designed to realize the interpolation algorithm by translating the position data to the real-time pulses. This paper discusses an approach to implement the linear interpolation algorithm, since it is one of the fundamentals of robots’ movements and it is highly applicable in motion control industries. Along with full profile trajectory, the triangular drive is implemented to eliminate the existence of error at small distances. To integrate the parallelism and real-time performance of FPGA with the power of Central Processing Unit (CPU) in executing complex and sequential algorithms, the NIOS II soft-core processor was added into the design. This paper presents different operating modes such as absolute, relative positioning, reset and velocity modes to fulfill the user requirements. The proposed approach was evaluated by designing a custom-made FPGA board along with a mechanical structure. As a result, a precise and smooth movement of stepper motors was observed which proved the effectiveness of this approach.

Keywords: 3-axis linear interpolation, FPGA, motion controller, micro-stepping

Procedia PDF Downloads 203