Search results for: subtle change detection and quantification
9132 Improving Subjective Bias Detection Using Bidirectional Encoder Representations from Transformers and Bidirectional Long Short-Term Memory
Authors: Ebipatei Victoria Tunyan, T. A. Cao, Cheol Young Ock
Abstract:
Detecting subjectively biased statements is a vital task. This is because this kind of bias, when present in the text or other forms of information dissemination media such as news, social media, scientific texts, and encyclopedias, can weaken trust in the information and stir conflicts amongst consumers. Subjective bias detection is also critical for many Natural Language Processing (NLP) tasks like sentiment analysis, opinion identification, and bias neutralization. Having a system that can adequately detect subjectivity in text will boost research in the above-mentioned areas significantly. It can also come in handy for platforms like Wikipedia, where the use of neutral language is of importance. The goal of this work is to identify the subjectively biased language in text on a sentence level. With machine learning, we can solve complex AI problems, making it a good fit for the problem of subjective bias detection. A key step in this approach is to train a classifier based on BERT (Bidirectional Encoder Representations from Transformers) as upstream model. BERT by itself can be used as a classifier; however, in this study, we use BERT as data preprocessor as well as an embedding generator for a Bi-LSTM (Bidirectional Long Short-Term Memory) network incorporated with attention mechanism. This approach produces a deeper and better classifier. We evaluate the effectiveness of our model using the Wiki Neutrality Corpus (WNC), which was compiled from Wikipedia edits that removed various biased instances from sentences as a benchmark dataset, with which we also compare our model to existing approaches. Experimental analysis indicates an improved performance, as our model achieved state-of-the-art accuracy in detecting subjective bias. This study focuses on the English language, but the model can be fine-tuned to accommodate other languages.Keywords: subjective bias detection, machine learning, BERT–BiLSTM–Attention, text classification, natural language processing
Procedia PDF Downloads 1349131 Impact Assessment of Tropical Cyclone Hudhud on Visakhapatnam, Andhra Pradesh
Authors: Vivek Ganesh
Abstract:
Tropical cyclones are some of the most damaging events. They occur in yearly cycles and affect the coastal population with three dangerous effects: heavy rain, strong wind and storm surge. In order to estimate the area and the population affected by a cyclone, all the three types of physical impacts must be taken into account. Storm surge is an abnormal rise of water above the astronomical tides, generated by strong winds and drop in the atmospheric pressure. The main aim of the study is to identify the impact by comparing three different months data. The technique used here is NDVI classification technique for change detection and other techniques like storm surge modelling for finding the tide height. Current study emphasize on recent very severe cyclonic storm Hud Hud of category 3 hurricane which had developed on 8 October 2014 and hit the coast on 12 October 2014 which caused significant changes on land and coast of Visakhapatnam, Andhra Pradesh. In the present study, we have used Remote Sensing and GIS tools for investigating and quantifying the changes in vegetation and settlement.Keywords: inundation map, NDVI map, storm tide map, track map
Procedia PDF Downloads 2719130 Modeling the Impact of Controls on Information System Risks
Authors: M. Ndaw, G. Mendy, S. Ouya
Abstract:
Information system risk management helps to reduce or eliminate risk by implementing appropriate controls. In this paper, we propose a quantification model of controls impact on information system risks by automatizing the residual criticality estimation step of FMECA which is based on a inductive reasoning. For this, we defined three equations based on type and maturity of controls. For testing, the values obtained with the model were compared to estimated values given by interlocutors during different working sessions and the result is satisfactory. This model allows an optimal assessment of controls maturity and facilitates risk analysis of information system.Keywords: information system, risk, control, FMECA method
Procedia PDF Downloads 3569129 Hydrothermal Synthesis of Mesoporous Carbon Nanospheres and Their Electrochemical Properties for Glucose Detection
Authors: Ali Akbar Kazemi Asl, Mansour Rahsepar
Abstract:
Mesoporous carbon nanospheres (MCNs) with uniform particle size distribution having an average of 290 nm and large specific surface area (274.4 m²/g) were synthesized by a one-step hydrothermal method followed by the calcination process and then utilized as an enzyme-free glucose biosensor. Morphology, crystal structure, and porous nature of the synthesized nanospheres were characterized by scanning electron microscopy (SEM), X-Ray diffraction (XRD), and Brunauer–Emmett–Teller (BET) analysis, respectively. Also, the electrochemical performance of the MCNs@GCE electrode for the measurement of glucose concentration in alkaline media was investigated by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and chronoamperometry (CA). MCNs@GCE electrode shows good sensing performance, including a rapid glucose oxidation response within 3.1 s, a wide linear range of 0.026-12 mM, a sensitivity of 212.34 μA.mM⁻¹.cm⁻², and a detection limit of 25.7 μM with excellent selectivity.Keywords: biosensor, electrochemical, glucose, mesoporous carbon, non-enzymatic
Procedia PDF Downloads 1959128 Relation of Optimal Pilot Offsets in the Shifted Constellation-Based Method for the Detection of Pilot Contamination Attacks
Authors: Dimitriya A. Mihaylova, Zlatka V. Valkova-Jarvis, Georgi L. Iliev
Abstract:
One possible approach for maintaining the security of communication systems relies on Physical Layer Security mechanisms. However, in wireless time division duplex systems, where uplink and downlink channels are reciprocal, the channel estimate procedure is exposed to attacks known as pilot contamination, with the aim of having an enhanced data signal sent to the malicious user. The Shifted 2-N-PSK method involves two random legitimate pilots in the training phase, each of which belongs to a constellation, shifted from the original N-PSK symbols by certain degrees. In this paper, legitimate pilots’ offset values and their influence on the detection capabilities of the Shifted 2-N-PSK method are investigated. As the implementation of the technique depends on the relation between the shift angles rather than their specific values, the optimal interconnection between the two legitimate constellations is investigated. The results show that no regularity exists in the relation between the pilot contamination attacks (PCA) detection probability and the choice of offset values. Therefore, an adversary who aims to obtain the exact offset values can only employ a brute-force attack but the large number of possible combinations for the shifted constellations makes such a type of attack difficult to successfully mount. For this reason, the number of optimal shift value pairs is also studied for both 100% and 98% probabilities of detecting pilot contamination attacks. Although the Shifted 2-N-PSK method has been broadly studied in different signal-to-noise ratio scenarios, in multi-cell systems the interference from the signals in other cells should be also taken into account. Therefore, the inter-cell interference impact on the performance of the method is investigated by means of a large number of simulations. The results show that the detection probability of the Shifted 2-N-PSK decreases inversely to the signal-to-interference-plus-noise ratio.Keywords: channel estimation, inter-cell interference, pilot contamination attacks, wireless communications
Procedia PDF Downloads 2219127 A Dual Channel Optical Sensor for Norepinephrine via Situ Generated Silver Nanoparticles
Authors: Shalini Menon, K. Girish Kumar
Abstract:
Norepinephrine (NE) is one of the naturally occurring catecholamines which act both as a neurotransmitter and a hormone. Catecholamine levels are used for the diagnosis and regulation of phaeochromocytoma, a neuroendocrine tumor of the adrenal medulla. The development of simple, rapid and cost-effective sensors for NE still remains a great challenge. Herein, a dual-channel sensor has been developed for the determination of NE. A mixture of AgNO₃, NaOH, NH₃.H₂O and cetrimonium bromide in appropriate concentrations was taken as the working solution. To the thoroughly vortexed mixture, an appropriate volume of NE solution was added. After a particular time, the fluorescence and absorbance were measured. Fluorescence measurements were made by exciting at a wavelength of 400 nm. A dual-channel optical sensor has been developed for the colorimetric as well as the fluorimetric determination of NE. Metal enhanced fluorescence property of nanoparticles forms the basis of the fluorimetric detection of this assay, whereas the appearance of brown color in the presence of NE leads to colorimetric detection. Wide linear ranges and sub-micromolar detection limits were obtained using both the techniques. Moreover, the colorimetric approach was applied for the determination of NE in synthetic blood serum and the results obtained were compared with the classic high-performance liquid chromatography (HPLC) method. Recoveries between 97% and 104% were obtained using the proposed method. Based on five replicate measurements, relative standard deviation (RSD) for NE determination in the examined synthetic blood serum was found to be 2.3%. This indicates the reliability of the proposed sensor for real sample analysis.Keywords: norepinephrine, colorimetry, fluorescence, silver nanoparticles
Procedia PDF Downloads 1169126 Assessing the Impact of Climate Change on Pulses Production in Khyber Pakhtunkhwa, Pakistan
Authors: Khuram Nawaz Sadozai, Rizwan Ahmad, Munawar Raza Kazmi, Awais Habib
Abstract:
Climate change and crop production are intrinsically associated with each other. Therefore, this research study is designed to assess the impact of climate change on pulses production in Southern districts of Khyber Pakhtunkhwa (KP) Province of Pakistan. Two pulses (i.e. chickpea and mung bean) were selected for this research study with respect to climate change. Climatic variables such as temperature, humidity and precipitation along with pulses production and area under cultivation of pulses were encompassed as the major variables of this study. Secondary data of climatic variables and crop variables for the period of thirty four years (1986-2020) were obtained from Pakistan Metrological Department and Agriculture Statistics of KP respectively. Panel data set of chickpea and mung bean crops was estimated separately. The analysis validate that both data sets were a balanced panel data. The Hausman specification test was run separately for both the panel data sets whose findings had suggested the fixed effect model can be deemed as an appropriate model for chickpea panel data, however random effect model was appropriate for estimation of the panel data of mung bean. Major findings confirm that maximum temperature is statistically significant for the chickpea yield. This implies if maximum temperature increases by 1 0C, it can enhance the chickpea yield by 0.0463 units. However, the impact of precipitation was reported insignificant. Furthermore, the humidity was statistically significant and has a positive association with chickpea yield. In case of mung bean the minimum temperature was significantly contributing in the yield of mung bean. This study concludes that temperature and humidity can significantly contribute to enhance the pulses yield. It is recommended that capacity building of pulses growers may be made to adapt the climate change strategies. Moreover, government may ensure the availability of climate change resistant varieties of pulses to encourage the pulses cultivation.Keywords: climate change, pulses productivity, agriculture, Pakistan
Procedia PDF Downloads 489125 A Comprehensive Model of Professional Ethics Based on the Teachings of the Holy Quran
Authors: Zahra Mohagheghian, Fatema Agharebparast
Abstract:
Professional ethic is a subject that has been an issue today, so most of the businesses, including the teaching profession, understand the need and importance of it. So they need to develop a code of professional ethics for their own. In this regard, this study seeks to answer the question, with respect to the integrity of the Qur'an (Nahl / 89), is it possible to contemplate the divine teachers conduct to extract the divine pattern for teaching and training? In the code of conduct for divine teachers what are the most important moral obligations and duties of the teaching professionals? The results of this study show that the teaching of Khidr, according to the Quran’s verses, Abundant and subtle hints emphasized that it can be as comprehensive and divine pattern used in teaching and in the drafting of the charter of professional ethics of teachers used it. Also, the results show that in there have been many ethical principles in prophet Khidr’s teaching pattern.The most important ethical principles include: Student assessment, using objective and not subjective examples, assessment during teaching, flexibility, and others. According to each of these principles can help teachers achieve their educational goals and lead human being in their path toward spiritual evaluation.Keywords: professional ethics, teaching-learning process, teacher, student, Quran
Procedia PDF Downloads 3019124 Application of Biosensors in Forensic Analysis
Authors: Shirin jalili, Hadi Shirzad, Samaneh Nabavi, Somayeh Khanjani
Abstract:
Biosensors in forensic analysis are ideal biological tools that can be used for rapid and sensitive initial screening and testing to detect of suspicious components like biological and chemical agent in crime scenes. The wide use of different biomolecules such as proteins, nucleic acids, microorganisms, antibodies and enzymes makes it possible. These biosensors have great advantages such as rapidity, little sample manipulation and high sensitivity, also Because of their stability, specificity and low cost they have become a very important tool to Forensic analysis and detection of crime. In crime scenes different substances such as rape samples, Semen, saliva fingerprints and blood samples, act as a detecting elements for biosensors. On the other hand, successful fluid recovery via biosensor has the propensity to yield a highly valuable source of genetic material, which is important in finding the suspect. Although current biological fluid testing techniques are impaired for identification of body fluids. But these methods have disadvantages. For example if they are to be used simultaneously, Often give false positive result. These limitations can negatively result the output of a case through missed or misinterpreted evidence. The use of biosensor enable criminal researchers the highly sensitive and non-destructive detection of biological fluid through interaction with several fluid-endogenous and other biological and chemical contamination at the crime scene. For this reason, using of the biosensors for detecting the biological fluid found at the crime scenes which play an important role in identifying the suspect and solving the criminal.Keywords: biosensors, forensic analysis, biological fluid, crime detection
Procedia PDF Downloads 11249123 Requirement Engineering for Intrusion Detection Systems in Wireless Sensor Networks
Authors: Afnan Al-Romi, Iman Al-Momani
Abstract:
The urge of applying the Software Engineering (SE) processes is both of vital importance and a key feature in critical, complex large-scale systems, for example, safety systems, security service systems, and network systems. Inevitably, associated with this are risks, such as system vulnerabilities and security threats. The probability of those risks increases in unsecured environments, such as wireless networks in general and in Wireless Sensor Networks (WSNs) in particular. WSN is a self-organizing network of sensor nodes connected by wireless links. WSNs consist of hundreds to thousands of low-power, low-cost, multi-function sensor nodes that are small in size and communicate over short-ranges. The distribution of sensor nodes in an open environment that could be unattended in addition to the resource constraints in terms of processing, storage and power, make such networks in stringent limitations such as lifetime (i.e. period of operation) and security. The importance of WSN applications that could be found in many militaries and civilian aspects has drawn the attention of many researchers to consider its security. To address this important issue and overcome one of the main challenges of WSNs, security solution systems have been developed by researchers. Those solutions are software-based network Intrusion Detection Systems (IDSs). However, it has been witnessed, that those developed IDSs are neither secure enough nor accurate to detect all malicious behaviours of attacks. Thus, the problem is the lack of coverage of all malicious behaviours in proposed IDSs, leading to unpleasant results, such as delays in the detection process, low detection accuracy, or even worse, leading to detection failure, as illustrated in the previous studies. Also, another problem is energy consumption in WSNs caused by IDS. So, in other words, not all requirements are implemented then traced. Moreover, neither all requirements are identified nor satisfied, as for some requirements have been compromised. The drawbacks in the current IDS are due to not following structured software development processes by researches and developers when developing IDS. Consequently, they resulted in inadequate requirement management, process, validation, and verification of requirements quality. Unfortunately, WSN and SE research communities have been mostly impermeable to each other. Integrating SE and WSNs is a real subject that will be expanded as technology evolves and spreads in industrial applications. Therefore, this paper will study the importance of Requirement Engineering when developing IDSs. Also, it will study a set of existed IDSs and illustrate the absence of Requirement Engineering and its effect. Then conclusions are drawn in regard of applying requirement engineering to systems to deliver the required functionalities, with respect to operational constraints, within an acceptable level of performance, accuracy and reliability.Keywords: software engineering, requirement engineering, Intrusion Detection System, IDS, Wireless Sensor Networks, WSN
Procedia PDF Downloads 3279122 The Inattentional Blindness Paradigm: A Breaking Wave for Attentional Biases in Test Anxiety
Authors: Kritika Kulhari, Aparna Sahu
Abstract:
Test anxiety results from concerns about failure in examinations or evaluative situations. Attentional biases are known to pronounce the symptomatic expression of test anxiety. In recent times, the inattentional blindness (IB) paradigm has shown promise as an attention bias modification treatment (ABMT) for anxiety by overcoming practice and expectancy effects which preexisting paradigms fail to counter. The IB paradigm assesses the inability of an individual to attend to a stimulus that appears suddenly while indulging in a perceptual discrimination task. The present study incorporated an IB task with three critical items (book, face, and triangle) appearing randomly in the perceptual discrimination task. Attentional biases were assessed as detection and identification of the critical item. The sample (N = 50) consisted of low test anxiety (LTA) and high test anxiety (HTA) groups based on the reactions to tests scale scores. Test threat manipulation was done with pre- and post-test assessment of test anxiety using the State Test Anxiety Inventory. A mixed factorial design with gender, test anxiety, presence or absence of test threat, and critical items was conducted to assess their effects on attentional biases. Results showed only a significant main effect for test anxiety on detection with higher accuracy of detection of the critical item for the LTA group. The study presents promising results in the realm of ABMT for test anxiety.Keywords: attentional bias, attentional bias modification treatment, inattentional blindness, test anxiety
Procedia PDF Downloads 2299121 Change to the Location/Ownership and Control of Liquid Metering Skids
Authors: Mahmoud Jumah
Abstract:
This paper presents the circumstances and decision making in case of change management in any industrial processes, and the effective strategic planning ensured to provide with the on time completion of projects. In this specific case, the Front End Engineering Design and the awarded Lump Sum Turn Key Contract had provided for full control and ownership of all Liquid Metering Skids by Controlling Team. The demarcation and location were changed, and the Ownership and Control of the Liquid Metering Skids inside the boundaries of the Asset Owner were transferred from Controlling Team to Asset Owner after the award of the LSTK Contract. The requested changes resulted in Adjustment Order and the relevant scope of work is an essential part of the original Contract. The majority of equipment and materials (i.e. liquid metering skids, valves, piping, etc.) has already been in process.Keywords: critical path, project change management, stakeholders problem solving, strategic planning
Procedia PDF Downloads 2719120 Tomato-Weed Classification by RetinaNet One-Step Neural Network
Authors: Dionisio Andujar, Juan lópez-Correa, Hugo Moreno, Angela Ri
Abstract:
The increased number of weeds in tomato crops highly lower yields. Weed identification with the aim of machine learning is important to carry out site-specific control. The last advances in computer vision are a powerful tool to face the problem. The analysis of RGB (Red, Green, Blue) images through Artificial Neural Networks had been rapidly developed in the past few years, providing new methods for weed classification. The development of the algorithms for crop and weed species classification looks for a real-time classification system using Object Detection algorithms based on Convolutional Neural Networks. The site study was located in commercial corn fields. The classification system has been tested. The procedure can detect and classify weed seedlings in tomato fields. The input to the Neural Network was a set of 10,000 RGB images with a natural infestation of Cyperus rotundus l., Echinochloa crus galli L., Setaria italica L., Portulaca oeracea L., and Solanum nigrum L. The validation process was done with a random selection of RGB images containing the aforementioned species. The mean average precision (mAP) was established as the metric for object detection. The results showed agreements higher than 95 %. The system will provide the input for an online spraying system. Thus, this work plays an important role in Site Specific Weed Management by reducing herbicide use in a single step.Keywords: deep learning, object detection, cnn, tomato, weeds
Procedia PDF Downloads 1089119 Multiple Identity Construction among Multilingual Minorities: A Quantitative Sociolinguistic Case Study
Authors: Stefanie Siebenhütter
Abstract:
This paper aims to reveal criterions involved in the process of identity-forming among multilingual minority language speakers in Northeastern Thailand and in the capital Bangkok. Using sociolinguistic interviews and questionnaires, it is asked which factors are important for speakers and how they define their identity by their interactions socially as well as linguistically. One key question to answer is how sociolinguistic factors may force or diminish the process of forming social identity of multilingual minority speakers. However, the motivation for specific language use is rarely overt to the speaker’s themselves as well as to others. Therefore, identifying the intentions included in the process of identity construction is to approach by scrutinizing speaker’s behavior and attitudes. Combining methods used in sociolinguistics and social psychology allows uncovering the tools for identity construction that ethnic Kui uses to range themselves within a multilingual setting. By giving an overview of minority speaker’s language use in context of the specific border near multilingual situation and asking how speakers construe identity within this spatial context, the results exhibit some of the subtle and mostly unconscious criterions involved in the ongoing process of identity construction.Keywords: social identity, identity construction, minority language, multilingualism, social networks, social boundaries
Procedia PDF Downloads 2729118 A Machine Learning Approach to Detecting Evasive PDF Malware
Authors: Vareesha Masood, Ammara Gul, Nabeeha Areej, Muhammad Asif Masood, Hamna Imran
Abstract:
The universal use of PDF files has prompted hackers to use them for malicious intent by hiding malicious codes in their victim’s PDF machines. Machine learning has proven to be the most efficient in identifying benign files and detecting files with PDF malware. This paper has proposed an approach using a decision tree classifier with parameters. A modern, inclusive dataset CIC-Evasive-PDFMal2022, produced by Lockheed Martin’s Cyber Security wing is used. It is one of the most reliable datasets to use in this field. We designed a PDF malware detection system that achieved 99.2%. Comparing the suggested model to other cutting-edge models in the same study field, it has a great performance in detecting PDF malware. Accordingly, we provide the fastest, most reliable, and most efficient PDF Malware detection approach in this paper.Keywords: PDF, PDF malware, decision tree classifier, random forest classifier
Procedia PDF Downloads 959117 Assessing Impacts of Climate Variability and Change on Water Productivity and Nutrient Use Efficiency of Maize in the Semi-arid Central Rift Valley of Ethiopia
Authors: Fitih Ademe, Kibebew Kibret, Sheleme Beyene, Mezgebu Getnet, Gashaw Meteke
Abstract:
Changes in precipitation, temperature and atmospheric CO2 concentration are expected to alter agricultural productivity patterns worldwide. The interactive effects of soil moisture and nutrient availability are the two key edaphic factors that determine crop yield and are sensitive to climatic changes. The study assessed the potential impacts of climate change on maize yield and corresponding water productivity and nutrient use efficiency under climate change scenarios for the Central Rift Valley of Ethiopia by mid (2041-2070) and end century (2071-2100). Projected impacts were evaluated using climate scenarios generated from four General Circulation Models (GCMs) dynamically downscaled by the Swedish RCA4 Regional Climate Model (RCM) in combination with two Representative Concentration Pathways (RCP 4.5 and RCP8.5). Decision Support System for Agro-technology Transfer cropping system model (DSSAT-CSM) was used to simulate yield, water and nutrient use for the study periods. Results indicate that rainfed maize yield might decrease on average by 16.5 and 23% by the 2050s and 2080s, respectively, due to climate change. Water productivity is expected to decline on average by 2.2 and 12% in the CRV by mid and end centuries with respect to the baseline. Nutrient uptake and corresponding nutrient use efficiency (NUE) might also be negatively affected by climate change. Phosphorus uptake probably will decrease in the CRV on average by 14.5 to 18% by 2050s, while N uptake may not change significantly at Melkassa. Nitrogen and P use efficiency indicators showed decreases in the range between 8.5 to 10.5% and between 9.3 to 10.5%, respectively, by 2050s relative to the baseline average. The simulation results further indicated that a combination of increased water availability and optimum nutrient application might increase both water productivity and nutrient use efficiency in the changed climate, which can ensure modest production in the future. Potential options that can improve water availability and nutrient uptake should be identified for the study locations using a crop modeling approach.Keywords: crop model, climate change scenario, nutrient uptake, nutrient use efficiency, water productivity
Procedia PDF Downloads 919116 Nano-Plasmonic Diagnostic Sensor Using Ultraflat Single-Crystalline Au Nanoplate and Cysteine-Tagged Protein G
Authors: Hwang Ahreum, Kang Taejoon, Kim Bongsoo
Abstract:
Nanosensors for high sensitive detection of diseases have been widely studied to improve the quality of life. Here, we suggest robust nano-plasmonic diagnostic sensor using cysteine tagged protein G (Cys3-protein G) and ultraflat, ultraclean and single-crystalline Au nanoplates. Protein G formed on an ultraflat Au surface provides ideal background for dense and uniform immobilization of antibodies. The Au is highly stable in diverse biochemical environment and can immobilize antibodies easily through Au-S bonding, having been widely used for various biosensing applications. Especially, atomically smooth single-crystalline Au nanomaterials synthesized using chemical vapor transport (CVT) method are very suitable to fabricate reproducible sensitive sensors. As the C-reactive protein (CRP) is a nonspecific biomarker of inflammation and infection, it can be used as a predictive or prognostic marker for various cardiovascular diseases. Cys3-protein G immobilized uniformly on the Au nanoplate enable CRP antibody (anti-CRP) to be ordered in a correct orientation, making their binding capacity be maximized for CRP detection. Immobilization condition for the Cys3-protein G and anti-CRP on the Au nanoplate is optimized visually by AFM analysis. Au nanoparticle - Au nanoplate (NPs-on-Au nanoplate) assembly fabricated from sandwich immunoassay for CRP can reduce zero-signal extremely caused by nonspecific bindings, providing a distinct surface-enhanced Raman scattering (SERS) enhancement still in 10-18 M of CRP concentration. Moreover, the NP-on-Au nanoplate sensor shows an excellent selectivity against non-target proteins with high concentration. In addition, comparing with control experiments employing a Au film fabricated by e-beam assisted deposition and linker molecule, we validate clearly contribution of the Au nanoplate for the attomolar sensitive detection of CRP. We expect that the devised platform employing the complex of single-crystalline Au nanoplates and Cys3-protein G can be applied for detection of many other cancer biomarkers.Keywords: Au nanoplate, biomarker, diagnostic sensor, protein G, SERS
Procedia PDF Downloads 2599115 Investigation on Solar Thermoelectric Generator Using D-Mannitol/Multi-Walled Carbon Nanotubes Composite Phase Change Materials
Authors: Zihua Wu, Yueming He, Xiaoxiao Yu, Yuanyuan Wang, Huaqing Xie
Abstract:
The match of Solar thermoelectric generator (STEG) and phase change materials (PCM) can enhance the solar energy storage and reduce environmental impact from the day-and-night transformation and weather changes. This work utilizes D-mannitol (DM) matrix as the suitable PCM for coupling with thermoelectric generator to achieve the middle-temperature solar energy storage performance at 165℃-167℃. DM/MWCNT composite phase change materials prepared by ball milling not only can keep a high phase change enthalpy of DM material but also have great photo-thermal conversion efficiency of 82%. Based on the self-made storage device container, the effect of PCM thickness on the solar energy storage performance is further discussed and analyzed. The experimental results prove that PCM-STEG coupling system can output more electric energy than pure STEG system because PCM can decline the heat transfer and storage thermal energy to further generate the electric energy through thermal-to-electric conversion when the light is removed. The increase of PCM thickness can reduce the heat transfer and enhance thermal storage, and then the power generation performance of PCM-STEG coupling system can be improved. As the increase of light intensity, the output electric energy of the coupling system rises accordingly, and the maximum amount of electrical energy can reach by 113.85 J at 1.6 W/cm2. The study of the PCM-STEG coupling system has certain reference for the development of solar energy storage and application.Keywords: solar energy, solar thermoelectric generator, phase change materials, solar-to-electric energy, DM/MWCNT
Procedia PDF Downloads 769114 The Functions of “Question” and Its Role in Education Process: Quranic Approach
Authors: Sara Tusian, Zahra Salehi Motaahed, Narges Sajjadie, Nikoo Dialame
Abstract:
One of the methods which have frequently been used in Quran is the “question”. In the Quran, in addition to the content, methods are also important. Using analysis-interpretation method, the present study has investigated Quranic questions, and extracted its functions from educational perspective. In so doing, it has first investigated all the questions in Quran and then taking the three-stage classification of education into account, it has offered question functions. The results obtained from this study suggest that question functions in Quran are presented in three categories: the preparation stage (including preparation of the audience, revising the insights, and internal Evolution); main body (including the granting the insight, and elimination of intellectual negligence and the question of innate and logical axioms, the introducting of the realm of thinking, creating emotional arousal and alleged in the claim) and the third stage as modification and revision (including invitation to move in the framework of tasks using the individual beliefs to reveal the contradictions and, Error detection and contribution to change the function) that each of which has a special role in the education process.Keywords: education, question, Quranic questions, Quran
Procedia PDF Downloads 5089113 A Study on Abnormal Behavior Detection in BYOD Environment
Authors: Dongwan Kang, Joohyung Oh, Chaetae Im
Abstract:
Advancement of communication technologies and smart devices in the recent times is leading to changes into the integrated wired and wireless communication environments. Since early days, businesses had started introducing environments for mobile device application to their operations in order to improve productivity (efficiency) and the closed corporate environment gradually shifted to an open structure. Recently, individual user's interest in working environment using mobile devices has increased and a new corporate working environment under the concept of BYOD is drawing attention. BYOD (bring your own device) is a concept where individuals bring in and use their own devices in business activities. Through BYOD, businesses can anticipate improved productivity (efficiency) and also a reduction in the cost of purchasing devices. However, as a result of security threats caused by frequent loss and theft of personal devices and corporate data leaks due to low security, companies are reluctant about adopting BYOD system. In addition, without considerations to diverse devices and connection environments, there are limitations in detecting abnormal behaviors such as information leaks which use the existing network-based security equipment. This study suggests a method to detect abnormal behaviors according to individual behavioral patterns, rather than the existing signature-based malicious behavior detection and discusses applications of this method in BYOD environment.Keywords: BYOD, security, anomaly behavior detection, security equipment, communication technologies
Procedia PDF Downloads 3279112 Combination of the Hydrological Model and SDSM for Assessing Climate Change Impacts on Future Water Resources in the R’dom Watershed, Morocco
Authors: Abdennabi Alitane, Ali Essahlaoui, Ahmed M. Saqr, Sabine Sauvage, José-Miguel Sánchez-Pérez, Ann Van Griensven
Abstract:
Climate change effect of on water resources in semi-arid regions can be serious, it is essential to understand the effects of climate change on the water balance in order to develop sustainable adaptation strategies. This research project examined the impact of climate change on the components of the water balance in a R'Dom hydrological watershed in the Mediterranean region. The assessment of climate change impact on the future hydrology is done by using the SDSM (Statistical DownScaling Model) and SWAT+ (The Soil and Water Assessment Tool) hydrological model during the baseline period (2002–2013), the data was analyzed and compared to future climate projections . The future projections of the global circulation model canEMS2 under the RCP 2.6, RCP 4.5 and RCP 8.5 scenarios were statically downscaled for a period (2014–2100). Afterwards, the SWAT+ model is simulated for the period from 2000 to 2013, calibrated from 2002 to 2007, and validated from 2008 to 2013 using monthly streamflow data. The model results showed good performance with an NSE of 0.72 and R2 of 0.71 during the validation period. The future precipitation shows a decreasing tendency under all scenarios, with -6.59%, -2.86%, and -2.57% for RCPaveg 2.6, RCPaveg 4.5, and RCPaveg 8.5, respectively. On other hand, the average monthly streamflow of R’Dom river in the near future (2014–2043) will decrease by 44–48%, decrease by 36–48% in the Medium period (2044–2071) and decrease by 43–52% in the period (2072–2100) under the three RCP scenarios. Regarding the water balance components changes, the average annual of actual evapotranspiration is predicted to increase from 5% to 9% under the three RCP scenarios for the three future study periods. Projected average annual flows are expected to decrease by 37% to 90% under the three RCP scenarios over the three future periods. In general, the current scientific research context and the results obtained from the methodology applied will help to optimize future water planning in semi-arid regions in the face of climate change.Keywords: climate change, water balance, R'Dom watershed, SDSM, SWAT+ model
Procedia PDF Downloads 99111 YOLO-Based Object Detection for the Automatic Classification of Intestinal Organoids
Authors: Luana Conte, Giorgio De Nunzio, Giuseppe Raso, Donato Cascio
Abstract:
The intestinal epithelium serves as a pivotal model for studying stem cell biology and diseases such as colorectal cancer. Intestinal epithelial organoids, which replicate many in vivo features of the intestinal epithelium, are increasingly used as research models. However, manual classification of organoids is labor-intensive and prone to subjectivity, limiting scalability. In this study, we developed an automated object-detection algorithm to classify intestinal organoids in transmitted-light microscopy images. Our approach utilizes the YOLOv10 medium model (YOLO10m), a state-of-the-art object-detection algorithm, to predict and classify objects within labeled bounding boxes. The model was fine-tuned on a publicly available dataset containing 840 manually annotated images with 23,066 total annotations, averaging 28.2 annotations per image (median: 21; range: 1–137). It was trained to identify four categories: cysts, early organoids, late organoids, and spheroids, using a 90:10 train-validation split over 150 epochs. Model performance was assessed using mean average precision (mAP), precision, and recall metrics. The mAP, a standard metric ranging from 0 to 1 (with 1 indicating perfect agreement with manual labeling), was calculated at a 50% overlap threshold (mAP=0.5). Optimal performance was achieved at epoch 80, with an mAP of 0.85, precision of 0.78, and recall of 0.80 on the validation dataset. Classspecific mAP values were highest for cysts (0.87), followed by late organoids (0.83), early organoids (0.76), and spheroids (0.68). Additionally, the model demonstrated the ability to measure organoid sizes and classify them with accuracy comparable to expert scientists, while operating significantly faster. This automated pipeline represents a robust tool for large-scale, high-throughput analysis of intestinal organoids, paving the way for more efficient research in organoid biology and related fields.Keywords: intestinal organoids, object detection, YOLOv10, transmitted-light microscopy
Procedia PDF Downloads 109110 Anomaly Detection of Log Analysis using Data Visualization Techniques for Digital Forensics Audit and Investigation
Authors: Mohamed Fadzlee Sulaiman, Zainurrasyid Abdullah, Mohd Zabri Adil Talib, Aswami Fadillah Mohd Ariffin
Abstract:
In common digital forensics cases, investigation may rely on the analysis conducted on specific and relevant exhibits involved. Usually the investigation officer may define and advise digital forensic analyst about the goals and objectives to be achieved in reconstructing the trail of evidence while maintaining the specific scope of investigation. With the technology growth, people are starting to realize the importance of cyber security to their organization and this new perspective creates awareness that digital forensics auditing must come in place in order to measure possible threat or attack to their cyber-infrastructure. Instead of performing investigation on incident basis, auditing may broaden the scope of investigation to the level of anomaly detection in daily operation of organization’s cyber space. While handling a huge amount of data such as log files, performing digital forensics audit for large organization proven to be onerous task for the analyst either to analyze the huge files or to translate the findings in a way where the stakeholder can clearly understand. Data visualization can be emphasized in conducting digital forensic audit and investigation to resolve both needs. This study will identify the important factors that should be considered to perform data visualization techniques in order to detect anomaly that meet the digital forensic audit and investigation objectives.Keywords: digital forensic, data visualization, anomaly detection , log analysis, forensic audit, visualization techniques
Procedia PDF Downloads 2919109 Joint Probability Distribution of Extreme Water Level with Rainfall and Temperature: Trend Analysis of Potential Impacts of Climate Change
Authors: Ali Razmi, Saeed Golian
Abstract:
Climate change is known to have the potential to impact adversely hydrologic patterns for variables such as rainfall, maximum and minimum temperature and sea level rise. Long-term average of these climate variables could possibly change over time due to climate change impacts. In this study, trend analysis was performed on rainfall, maximum and minimum temperature and water level data of a coastal area in Manhattan, New York City, Central Park and Battery Park stations to investigate if there is a significant change in the data mean. Partial Man-Kendall test was used for trend analysis. Frequency analysis was then performed on data using common probability distribution functions such as Generalized Extreme Value (GEV), normal, log-normal and log-Pearson. Goodness of fit tests such as Kolmogorov-Smirnov are used to determine the most appropriate distributions. In flood frequency analysis, rainfall and water level data are often separately investigated. However, in determining flood zones, simultaneous consideration of rainfall and water level in frequency analysis could have considerable effect on floodplain delineation (flood extent and depth). The present study aims to perform flood frequency analysis considering joint probability distribution for rainfall and storm surge. First, correlation between the considered variables was investigated. Joint probability distribution of extreme water level and temperature was also investigated to examine how global warming could affect sea level flooding impacts. Copula functions were fitted to data and joint probability of water level with rainfall and temperature for different recurrence intervals of 2, 5, 25, 50, 100, 200, 500, 600 and 1000 was determined and compared with the severity of individual events. Results for trend analysis showed increase in long-term average of data that could be attributed to climate change impacts. GEV distribution was found as the most appropriate function to be fitted to the extreme climate variables. The results for joint probability distribution analysis confirmed the necessity for incorporation of both rainfall and water level data in flood frequency analysis.Keywords: climate change, climate variables, copula, joint probability
Procedia PDF Downloads 3679108 Spectral Dual Layer CT for Choledocholithiasis: A Blinded Comparison Study
Authors: Cheng Hong YEO
Abstract:
Introduction: Objective: To evaluate the effectiveness of Spectral Dual Layer CT (DECT) in diagnosing choledocholithiasis, specifically focusing on its accuracy in detecting small biliary stones compared to other imaging modalities. Background: DECT has shown promise in improving the detection and characterization of gallstones in the common bile duct, offering potential advantages over traditional imaging methods like standard CT and ultrasonography. Methodology: Study Design: Single-blinded retrospective study conducted at a teaching hospital. Patient Selection: Reviewed records of patients who underwent DECT for suspected choledocholithiasis and had follow-up MRCP, ERCP, or IOC within 8 weeks. 23 patients with proven choledocholithiasis and 23 controls without biliary filling defects were included. DECT Protocol: Used a Philips IQ 256-slice dual-energy CT scanner with standard protocols including 120 kVp and 40 keV mono-E images. Assessment: Four radiologists, blinded to the study question, evaluated images for the presence of choledocholithiasis. Sensitivity, specificity, PPV, and NPV were calculated based on consensus diagnoses. Results: Diagnostic Performance: DECT showed an overall sensitivity of 47.8% and specificity of 78.3% for detecting choledocholithiasis. The accuracy of the diagnosis ranged from 54% to 63% among observers. Stone Detection: Of the identified stones, 6 were calcified and 17 non-calcified. Detection of calcified stones was more accurate (83.3%) compared to non-calcified stones (35.3%). Differences in signal between stones and bile were noted in certain imaging parameters. Interobserver Agreement: The agreement among radiologists was fair, with a Fleiss Kappa coefficient of 0.30. Conclusion: This is the first study to specifically analyse the performance of spectral CT in choledocholithiasis detection using a control group and blinding of reviewers. Our modest results demonstrating lower overall sensitivity than had been reported previously at 47.8% overall while identifying 40% of non-calcified stones <9 mm. We believe further research and development on advancements in spectral CT technology or newer techniques such as photon counting CT is warranted.Keywords: dual energy CT, choledocholithiasis, gallstones, body imaging
Procedia PDF Downloads 69107 Discovery of Exoplanets in Kepler Data Using a Graphics Processing Unit Fast Folding Method and a Deep Learning Model
Authors: Kevin Wang, Jian Ge, Yinan Zhao, Kevin Willis
Abstract:
Kepler has discovered over 4000 exoplanets and candidates. However, current transit planet detection techniques based on the wavelet analysis and the Box Least Squares (BLS) algorithm have limited sensitivity in detecting minor planets with a low signal-to-noise ratio (SNR) and long periods with only 3-4 repeated signals over the mission lifetime of 4 years. This paper presents a novel precise-period transit signal detection methodology based on a new Graphics Processing Unit (GPU) Fast Folding algorithm in conjunction with a Convolutional Neural Network (CNN) to detect low SNR and/or long-period transit planet signals. A comparison with BLS is conducted on both simulated light curves and real data, demonstrating that the new method has higher speed, sensitivity, and reliability. For instance, the new system can detect transits with SNR as low as three while the performance of BLS drops off quickly around SNR of 7. Meanwhile, the GPU Fast Folding method folds light curves 25 times faster than BLS, a significant gain that allows exoplanet detection to occur at unprecedented period precision. This new method has been tested with all known transit signals with 100% confirmation. In addition, this new method has been successfully applied to the Kepler of Interest (KOI) data and identified a few new Earth-sized Ultra-short period (USP) exoplanet candidates and habitable planet candidates. The results highlight the promise for GPU Fast Folding as a replacement to the traditional BLS algorithm for finding small and/or long-period habitable and Earth-sized planet candidates in-transit data taken with Kepler and other space transit missions such as TESS(Transiting Exoplanet Survey Satellite) and PLATO(PLAnetary Transits and Oscillations of stars).Keywords: algorithms, astronomy data analysis, deep learning, exoplanet detection methods, small planets, habitable planets, transit photometry
Procedia PDF Downloads 2279106 The Institutional Change Occurring in the Chinese Sport Sector: A Case Study on the Chinese Football Association Reform
Authors: Qi Peng
Abstract:
The Chinese sport sector is currently undergoing a dramatic institutional change. A sport system that was heavily dominated by the government is starting to shift towards one that is driven by the market. During the past sixty years, the Chinese Football Association (CFA), although ostensibly a ‘non-governmental organization’, has been in fact operated under the close supervision and control of the government. The double-identity of CFA has taken most of the blame for the poor performance of the Chinese football team, especially the men’s team. In 2015, a policy initiated by the Chinese government introduced a potentially radical change to the institutional structure of CFA by delegating the power of government agency – the General Administration of Sport of China - to the organization (CFA) itself. Against such background, an overarching research question was brought up- will an organization remained institutionalized within the system change in response to the external (policy) jolt? To answer this question, three principal data collection methods were employed: document review, participant observation and semi-structured interviews. Document review provides the mapping of the structural and cultural framework in which the CFA functions during the change process. The author have had the chance to interact closely with the organization as participant observer in the organization for a period of time, long enough to collect the data, but never too long to get biased view of the situation. This stage enables the author to gain an in-depth understanding of how CFA managed to restructure the governance and legitimacy. Conducting semi-structured interviews with staff within the CFA and from staff within selected stakeholders of CFA also provided a crucial step to gain an insight into the factors for change as well as the implications of the change. A wide range of interviewees that have been and to be interviewed include: CFA members (senior officials and staff); local football associations members; senior Chinese Super League football club managers; CFA Super League Co., LTD (senior officials and staff); CSL broadcasters; Chinese Olympic Committee members. The preliminary research data shows that the CFA is currently undergoing two levels of change: although the settings of CFA has been gradually restructured (organizational framework), the organizational values and beliefs remain almost the same as the CFA before the reform. This means that the plan of shifting from a governmental agency to an autonomous association is an going process, and that organizational core beliefs and values are more difficult to change than its structural framework. This is due to the inertia of the organizational history and the effect of institutionalization. The change of Chinese Football Association is looked at as a pioneering sport organization in China to undertake the “decoupling” road. It is believed that many other sport organizations, especially sport governing bodies will follow the step of CFA in the near future. Therefore, the experience of CFA change is worthy of studying.Keywords: Chinese Football Association, Organizational Change, Organizational Culture, Structural Framework
Procedia PDF Downloads 3499105 Nano-Immunoassay for Diagnosis of Active Schistosomal Infection
Authors: Manal M. Kame, Hanan G. El-Baz, Zeinab A.Demerdash, Engy M. Abd El-Moneem, Mohamed A. Hendawy, Ibrahim R. Bayoumi
Abstract:
There is a constant need to improve the performance of current diagnostic assays of schistosomiasis as well as develop innovative testing strategies to meet new testing challenges. This study aims at increasing the diagnostic efficiency of monoclonal antibody (MAb)-based antigen detection assays through gold nanoparticles conjugated with specific anti-Schistosoma mansoni monoclonal antibodies. In this study, several hybidoma cell lines secreting MAbs against adult worm tegumental Schistosoma antigen (AWTA) were produced at Immunology Department of Theodor Bilharz Research Institute and preserved in liquid nitrogen. One MAb (6D/6F) was chosen for this study due to its high reactivity to schistosome antigens with highest optical density (OD) values. Gold nanoparticles (AuNPs) were functionalized and conjugated with MAb (6D/6F). The study was conducted on serum samples of 116 subjects: 71 patients with S. mansoni eggs in their stool samples group (gp 1), 25 with other parasites (gp2) and 20 negative healthy controls (gp3). Patients in gp1 were further subdivided according to egg count in their stool samples into Light infection {≤ 50 egg per gram(epg) (n= 17)}, moderate {51-100 epg (n= 33)} and severe infection {>100 epg(n= 21)}. Sandwich ELISA was performed using (AuNPs -MAb) for detection of circulating schistosomal antigen (CSA) levels in serum samples of all groups and the results were compared with that after using MAb/ sandwich ELISA system. Results Gold- MAb/ ELISA system reached a lower detection limit of 10 ng/ml compared to 85 ng/ml on using MAb/ ELISA and the optimal concentrations of AuNPs -MAb were found to be 12 folds less than that of MAb/ ELISA system for detection of CSA. The sensitivity and specificity of sandwich ELISA for detection of CSA levels using AuNPs -MAb were 100% & 97.8 % respectively compared to 87.3% &93.38% respectively on using MAb/ ELISA system. It was found that CSA was detected in 9 out of 71 S.mansoni infected patients on using AuNPs - MAb/ ELISA system and was not detected by MAb/ ELISA system. All those patients (9) was found to have an egg count below 50 epg feces (patients with light infections). ROC curve analyses revealed that sandwich ELISA using gold-MAb was an excellent diagnostic investigator that could differentiate Schistosoma patients from healthy controls, on the other hand it revealed that sandwich ELISA using MAb was not accurate enough as it could not recognize nine out of 71 patients with light infections. Conclusion Our data demonstrated that: Loading gold nanoparticles with MAb (6D/6F) increases the sensitivity and specificity of sandwich ELISA for detection of CSA, thus active (early) and light infections could be easily detected. Moreover this binding will decrease the amount of MAb consumed in the assay and lower the coast. The significant positive correlation that was detected between ova count (intensity of infection) and OD reading in sandwich ELISA using gold- MAb enables its use to detect the severity of infections and follow up patients after treatment for monitoring of cure.Keywords: Schistosomiasis, nanoparticles, gold, monoclonal antibodies, ELISA
Procedia PDF Downloads 3769104 Challenge of Net-Zero Carbon Construction and Measurement of Energy Consumption and Carbon Emission Reduction to Climate Change, Economy and Job Growths in Hong Kong and Australia
Authors: Kwok Tak Kit
Abstract:
Under the Paris Agreement 2015, the countries committed to address and combat the climate change and its negative impacts and agree to the target of reducing the global greenhouse gas (GHG) emission substantially by limiting the global temperature to 20C above the pre-industrial level in this century. A internationally Submit named “ 26th United Nations Climate Conference” (COP26) was held in Glasgow in 2021 with all committed countries agreed to the finalize the outstanding element in Paris Agreement and Glasgow Climate Pact to keep 1.50C. In this paper, we will focus on the basic approach of waste strategy, recycling policy, circular economy strategy, net-zero strategy and sustainability strategy and the importance of the elements which affect the carbon emission, waste generation and energy conservation will be further reviewed with recommendation for future study.Keywords: net-zero carbon, climate change, carbon emission, energy consumption
Procedia PDF Downloads 1879103 Efficient Elimination of Common Allergens through the Application of Dry Microfine Steam on Innate Surfaces
Authors: O. Rachinel, C. Recchia, M. Bourel, B. Recchia
Abstract:
Dry microfine steam (DMS) technology, developed by Laurastar, was shown to effectively eliminate a range of pathogens such as Sars-CoV-2, E. coli, S. aureus and C. Albicans. The aim of this study was to investigate the effect of DMS technology on allergens. Therefore, the application of the DMS technology was tested on two common allergens (Dermatophagoides pteronyssinus and cat allergen Fel d 1), on different inert surfaces (e.g., cotton), during 2 to 3 seconds. Quantification of the remaining allergens was performed and the reduction rates reached 100% in 3 seconds for D. pteronyssinus and 97,74% in 2 seconds for cat allergens. In conclusion, DMS showed high efficacy in the elimination of common allergens and could be seen as a natural solution to improve domestic hygiene and reduce allergies.Keywords: steam, allergens, dust mites, pollens
Procedia PDF Downloads 139