Search results for: multijunction solar cell
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4829

Search results for: multijunction solar cell

3269 Wastewater Treatment and Bio-Electricity Generation via Microbial Fuel Cell Technology Operating with Starch Proton Exchange Membrane

Authors: Livinus A. Obasi, Augustine N. Ajah

Abstract:

Biotechnology in recent times has tried to develop a mechanism whereby sustainable electricity can be generated by the activity of microorganisms on waste and renewable biomass (often regarded as “negative value”) in a device called microbial fuel cell, MFC. In this paper, we established how the biocatalytic activities of bacteria on organic matter (substrates) produced some electrons with the associated removal of some water pollution parameters; Biochemical oxygen demand (BOD), chemical oxygen demand (COD) to the tune of 77.2% and 88.3% respectively from a petrochemical sanitary wastewater. The electricity generation was possible by conditioning the bacteria to operate anaerobically in one chamber referred to as the anode while the electrons are transferred to the fully aerated counter chamber containing the cathode. Power densities ranging from 12.83 mW/m2 to 966.66 mW/m2 were achieved using a dual-chamber starch membrane MFC experimental set-up. The maximum power density obtained in this research shows an improvement in the use of low cost MFC set up to achieve power production. Also, the level of organic matter removal from the sanitary waste water by the operation of this device clearly demonstrates its potential benefit in achieving an improved benign environment. The beauty of the MFCs is their potential utility in areas lacking electrical infrastructures like in most developing countries.

Keywords: bioelectricity, COD, microbial fuel cell, sanitary wastewater, wheat starch

Procedia PDF Downloads 236
3268 Bi-Lateral Comparison between NIS-Egypt and NMISA-South Africa for the Calibration of an Optical Spectrum Analyzer

Authors: Osama Terra, Hatem Hussein, Adriaan Van Brakel

Abstract:

Dense wavelength division multiplexing (DWDM) technology requires tight specification and therefore measurement of wavelength accuracy and stability of the telecommunication lasers. Thus, calibration of the used Optical Spectrum Analyzers (OSAs) that are used to measure wavelength is of a great importance. Proficiency testing must be performed on such measuring activity to insure the accuracy of the measurement results. In this paper, a new comparison scheme is introduced to test the performance of such calibrations. This comparison scheme is implemented between NIS-Egypt and NMISA-South Africa for the calibration of the wavelength scale of an OSA. Both institutes employ reference gas cell to calibrate OSA according to the standard IEC/ BS EN 62129 (2006). The result of this comparison is compiled in this paper.

Keywords: OSA calibration, HCN gas cell, DWDM technology, wavelength measurement

Procedia PDF Downloads 284
3267 Soft Robotic System for Mechanical Stimulation of Scaffolds During Dynamic Cell Culture

Authors: Johanna Perdomo, Riki Lamont, Edmund Pickering, Naomi C. Paxton, Maria A. Woodruff

Abstract:

Background: Tissue Engineering (TE) has combined advanced materials, such as biomaterials, to create affordable scaffolds and dynamic systems to generate stimulation of seeded cells on these scaffolds, improving and maintaining the cellular growth process in a cell culture. However, Few TE skin products have been clinically translated, and more research is required to produce highly biomimetic skin substitutes that mimic the native elasticity of skin in a controlled manner. Therefore, this work will be focused on the fabrication of a novel mechanical system to enhance the TE treatment approaches for the reparation of damaged tissue skin. Aims: To archive this, a soft robotic device will be created to emulate different deformation of skin stress. The design of this soft robot will allow the attachment of scaffolds, which will then be mechanically actuated. This will provide a novel and highly adaptable platform for dynamic cell culture. Methods: Novel, low-cost soft robot is fabricated via 3D printed moulds and silicone. A low cost, electro-mechanical device was constructed to actuate the soft robot through the controlled combination of positive and negative air pressure to control the different state of movements. Mechanical tests were conducted to assess the performance and calibration of each electronic component. Similarly, pressure-displacement test was performed on scaffolds, which were attached to the soft robot, applying various mechanical loading regimes. Lastly, digital image correlation test was performed to obtain strain distributions over the soft robot’s surface. Results: The control system can control and stabilise positive pressure changes for long hours. Similarly, pressure-displacement test demonstrated that scaffolds with 5µm of diameter and wavy geometry can displace at 100%, applying a maximum pressure of 1.5 PSI. Lastly, during the inflation state, the displacement of silicone was measured using DIC method, and this showed a parameter of 4.78 mm and strain of 0.0652. Discussion And Conclusion: The developed soft robot system provides a novel and low-cost platform for the dynamic actuation of tissue scaffolds with a target towards dynamic cell culture.

Keywords: soft robot, tissue engineering, mechanical stimulation, dynamic cell culture, bioreactor

Procedia PDF Downloads 80
3266 Host Cell Membrane Lipid Rafts Are Required for Influenza A Virus Adsorption to Host Cell Surface

Authors: Dileep K. Verma, Sunil K. Lal

Abstract:

Influenza still remains one of the most challenging diseases posing significant threat to public health causing seasonal epidemics and pandemics. Previous studies suggest that influenza hemagglutinin is essential for viral attachment to host sialic acid receptors and concentrate in lipid rafts for efficient viral fusion. Studies also reported selective nature of Influenza virus to utilize rafts micro-domain for efficient virus assembly and budding. However, the detailed mechanism of Influenza A Virus (IAV) binding to host cell membrane and entry inside the host remains elusive. In the present study, we investigated if host membrane lipid rafts play any significant role in early life cycle events of influenza A virus. Role of host lipid rafts was studied using raft disruption method by extraction of cholesterol and Methyl-β-Cyclodextrin was used to remove membrane cholesterol. We observed co-localization of Influenza A Virus to lipid rafts by visualization of known lipid raft marker GM1 on host cell membrane. Co-localization suggest direct involvement of these micro-domain in initiation of IAV life cycle. We found significant reduction in influenza A virus adsorption in raft disrupted target host cells indicating poor binding and attachment in absence of coherent membrane rafts. Taken together, the results of present study provide evidence for critical involvement of host lipid rafts and its constituents in adsorption process of Influenza A Virus and suggests crucial involvement in other early events of IAV life cycle. The present study opens a new domain to study influenza virus-host interaction and to combat flu at the very early steps of viral life cycle.

Keywords: lipid raft, adsorption, cholesterol, methyl-β-cyclodextrin, GM1

Procedia PDF Downloads 282
3265 Development of Prediction Models of Day-Ahead Hourly Building Electricity Consumption and Peak Power Demand Using the Machine Learning Method

Authors: Dalin Si, Azizan Aziz, Bertrand Lasternas

Abstract:

To encourage building owners to purchase electricity at the wholesale market and reduce building peak demand, this study aims to develop models that predict day-ahead hourly electricity consumption and demand using artificial neural network (ANN) and support vector machine (SVM). All prediction models are built in Python, with tool Scikit-learn and Pybrain. The input data for both consumption and demand prediction are time stamp, outdoor dry bulb temperature, relative humidity, air handling unit (AHU), supply air temperature and solar radiation. Solar radiation, which is unavailable a day-ahead, is predicted at first, and then this estimation is used as an input to predict consumption and demand. Models to predict consumption and demand are trained in both SVM and ANN, and depend on cooling or heating, weekdays or weekends. The results show that ANN is the better option for both consumption and demand prediction. It can achieve 15.50% to 20.03% coefficient of variance of root mean square error (CVRMSE) for consumption prediction and 22.89% to 32.42% CVRMSE for demand prediction, respectively. To conclude, the presented models have potential to help building owners to purchase electricity at the wholesale market, but they are not robust when used in demand response control.

Keywords: building energy prediction, data mining, demand response, electricity market

Procedia PDF Downloads 297
3264 Cytolethal Distending Toxins in Intestinal and Extraintestinal E. coli

Authors: Katarína Čurová, Leonard Siegfried, Radka Vargová, Marta Kmeťová, Vladimír Hrabovský

Abstract:

Introduction: Cytolethal distending toxins (CDTs) represent intracellular acting proteins which interfere with cell cycle of eukaryotic cells. They are produced by Gram-negative bacteria with afinity to mucocutaneous surfaces and could play a role in the pathogenesis of various diseases. CDTs induce DNA damage probably through DNAse activity, which causes cell cycle arrest and leads to further changes (cell distension and death, apoptosis) depending on the cell type. Five subtypes of CDT (I to V) were reported in E. coli. Methods: We examined 252 E. coli strains belonging to four different groups. Of these strains, 57 were isolated from patients with diarrhea, 65 from patients with urinary tract infections (UTI), 65 from patients with sepsis and 65 from patients with other extraintestinal infections (mostly surgical wounds, decubitus ulcers and respiratory tract infections). Identification of these strains was performed by MALDI-TOF analysis and detection of genes encoding CDTs and determination of the phylogenetic group was performed by PCR. Results: In this study, we detected presence of cdt genes in 11 of 252 E. coli strains tested (4,4 %). Four cdt positive E. coli strains were confirmed in group of UTI (6,15 %), three cdt positive E. coli strains in groups of diarrhea (5,3 %) and other extraintestinal infections (4,6 %). The lowest incidence, one cdt positive E. coli strain, was observed in group of sepsis (1,5 %). All cdt positive E. coli strains belonged to phylogenetic group B2. Conclusion: CDT-producing E. coli are isolated in a low percentage from patients with intestinal and extraintestinal infections, including sepsis and our results correspond with these studies. A weak prevalence of cdt genes suggests that CDTs are not major virulence factors but in combination with other virulence factors may increase virulence potential of E. coli. We suppose that all 11 cdt positive E. coli strains represent real pathogens because they belong to the phylogenetic group B2 which is pathogenic lineage for bacteria E. coli.

Keywords: cytolethal distending toxin, E. coli, phylogenetic group, extraintestinal infection, diarrhea

Procedia PDF Downloads 332
3263 Modeling a Feedback Concept in a Spherical Thundercloud Cell

Authors: Zemlianskaya Daria, Egor Stadnichuk, Ekaterina Svechnikova

Abstract:

Relativistic runaway electron avalanches (RREAs) are generally accepted as a source of thunderstorms gamma-ray radiation. Avalanches' dynamics in the electric fields can lead to their multiplication via gamma-rays and positrons, which is called relativistic feedback. This report shows that a non-uniform electric field geometry leads to the new RREAs multiplication mechanism - “geometric feedback”, which occurs due to the exchange of high-energy particles between different accelerating regions within a thundercloud. This report will present the results of the simulation in GEANT4 of feedback in a spherical cell. Necessary conditions for the occurrence of geometric feedback were obtained from it.

Keywords: electric field, GEANT4, gamma-rays, relativistic runaway electron avalanches (RREAs), relativistic feedback, the thundercloud

Procedia PDF Downloads 156
3262 Control System Design for a Simulated Microbial Electrolysis Cell

Authors: Pujari Muruga, T. K. Radhakrishnan, N. Samsudeen

Abstract:

Hydrogen is considered as the most important energy carrier and fuel of the future because of its high energy density and zero emission properties. Microbial Electrolysis Cell (MEC) is a new and promising approach for hydrogen production from organic matter, including wastewater and other renewable resources. By utilizing anode microorganism activity, MEC can produce hydrogen gas with smaller voltages (as low as 0.2 V) than those required for electrolytic hydrogen production ( ≥ 1.23 V). The hydrogen production processes of the MEC reactor are very nonlinear and highly complex because of the presence of microbial interactions and highly complex phenomena in the system. Increasing the hydrogen production rate and lowering the energy input are two important challenges of MEC technology. The mathematical model of the MEC is based on material balance with the integration of bioelectrochemical reactions. The main objective of the research is to produce biohydrogen by selecting the optimum current and controlling applied voltage to the MEC. Precise control is required for the MEC reactor, so that the amount of current required to produce hydrogen gas can be controlled according to the composition of the substrate in the reactor. Various simulation tests involving multiple set-point changes disturbance and noise rejection were performed to evaluate the performance using PID controller tuned with Ziegler Nichols settings. Simulation results shows that other good controller can provide better control effect on the MEC system, so that higher hydrogen production can be obtained.

Keywords: microbial electrolysis cell, hydrogen production, applied voltage, PID controller

Procedia PDF Downloads 228
3261 The Study on Mechanical Properties of Graphene Using Molecular Mechanics

Authors: I-Ling Chang, Jer-An Chen

Abstract:

The elastic properties and fracture of two-dimensional graphene were calculated purely from the atomic bonding (stretching and bending) based on molecular mechanics method. Considering the representative unit cell of graphene under various loading conditions, the deformations of carbon bonds and the variations of the interlayer distance could be realized numerically under the geometry constraints and minimum energy assumption. In elastic region, it was found that graphene was in-plane isotropic. Meanwhile, the in-plane deformation of the representative unit cell is not uniform along armchair direction due to the discrete and non-uniform distributions of the atoms. The fracture of graphene could be predicted using fracture criteria based on the critical bond length, over which the bond would break. It was noticed that the fracture behavior were directional dependent, which was consistent with molecular dynamics simulation results.

Keywords: energy minimization, fracture, graphene, molecular mechanics

Procedia PDF Downloads 380
3260 Synergistic Cytotoxicity of Cisplatin and Taxol in Overcoming Taxol Resistance through the Inhibition of LDHA in Oral Squamous Cell Carcinoma

Authors: Lin Feng, Ling-Ling E., Hong-Chen Liu

Abstract:

The development of chemoresistance in patients represents a major challenge in cancer treatment. Lactate dehydrogenase‑A (LDHA) is one of the principle isoforms of LDH that is expressed in breast tissue, controlling the conversion of pyruvate to lactate and also playing a significant role in the metabolism of glucose. The aim of this study was to identify whether LDHA was involved in oral cancer cell resistance to Taxol and whether the downregulation of LDHA, as a result of cisplatin treatment, may overcome Taxol resistance in human oral squamous cells. The OECM‑1 oral epidermal carcinoma cell line was used, which has been widely used as a model of oral cancer in previous studies. The role of LDHA in Taxol and cisplatin resistance was investigated and the synergistic cytotoxicity of cisplatin and/or Taxol in oral squamous cells was analyzed. Cell viability was analyzed by MTT assay, LDHA expression was analyzed by western blot analysis and siRNA transfection was performed to knock down LDHA expression. The present study results showed that decreased levels of LDHA were responsible for the resistance of oral cancer cells to cisplatin (CDDP). CDDP treatments downregulated LDHA expression and lower levels of LDHA were detected in the CDDP‑resistant oral cancer cells compared with the CDDP‑sensitive cells. By contrast, the Taxol‑resistant cancer cells showed elevated LDHA expression levels. In addition, small interfering RNA‑knockdown of LDHA sensitized the cells to Taxol but desensitized them to CDDP treatment while exogenous expression of LDHA sensitized the cells to CDDP, but desensitized them to Taxol. The present study also revealed the synergistic cytotoxicity of CDDP and Taxol for killing oral cancer cells through the inhibition of LDHA. This study highlights LDHA as a novel therapeutic target for overcoming Taxol resistance in oral cancer patients using the combined treatments of Taxol and CDDP.

Keywords: cisplatin, Taxol, carcinoma, oral squamous cells

Procedia PDF Downloads 392
3259 Investigation of Water Transport Dynamics in Polymer Electrolyte Membrane Fuel Cells Based on a Gas Diffusion Media Layers

Authors: Saad S. Alrwashdeh, Henning Markötter, Handri Ammari, Jan Haußmann, Tobias Arlt, Joachim Scholta, Ingo Manke

Abstract:

In this investigation, synchrotron X-ray imaging is used to study water transport inside polymer electrolyte membrane fuel cells. Two measurement techniques are used, namely in-situ radiography and quasi-in-situ tomography combining together in order to reveal the relationship between the structures of the microporous layers (MPLs) and the gas diffusion layers (GDLs), the operation temperature and the water flow. The developed cell is equipped with a thick GDL and a high back pressure MPL. It is found that these modifications strongly influence the overall water transport in the whole adjacent GDM.

Keywords: polymer electrolyte membrane fuel cell, microporous layer, water transport, radiography, tomography

Procedia PDF Downloads 161
3258 Vibration Analysis of a Solar Powered UAV

Authors: Kevin Anderson, Sukhwinder Singh Sandhu, Nouh Anies, Shilpa Ravichandra, Steven Dobbs, Donald Edberg

Abstract:

This paper presents the results of a Finite Element based vibration analysis of a solar powered Unmanned Aerial Vehicle (UAV). The purpose of this paper was to quantify the free vibration, forced vibration response due to differing point inputs in order to mimic the vibration induced by actuators (magnet in coil generators) used to aid in the flight of the UAV. A Fluid-Structure Interaction (FSI) study was performed in order to ascertain pertinent deigns stresses and deflections as well as aerodynamic parameters of the UAV airfoil. The 10 ft span airfoil is modeled using Mylar as the primary material. Results show that the free mode in bending is 4.8 Hz while the first forced bending mode is in the range of 16.2 to 16.7 Hz depending on the location of excitation. The free torsional bending mode is 28.3 Hz, and the first forced torsional mode is in the range of 26.4 to 27.8 Hz, depending on the location of excitation. The FSI results predict the coefficients of aerodynamic drag and lift of 0.0052 and 0.077, respectively, which matches hand-calculations used to validate the Finite Element based results. FSI based maximum von Mises stresses and deflections were found to be 0.282 MPa and 3.4 mm, respectively. Dynamic pressures on the airfoil range of 1.04 to 1.23 kPa corresponding to velocity magnitudes in the range of 22 to 66 m/s.

Keywords: ANSYS, finite element, FSI, UAV, vibrations

Procedia PDF Downloads 480
3257 Biomimetic Systems to Reveal the Action Mode of Epigallocatechin-3-Gallate in Lipid Membrane

Authors: F. Pires, V. Geraldo, O. N. Oliveira Jr., M. Raposo

Abstract:

Catechins are powerful antioxidants which have attractive properties useful for tumor therapy. Considering their antioxidant activity, these molecules can act as a scavenger of the reactive oxygen species (ROS), alleviating the damage of cell membrane induced by oxidative stress. The complexity and dynamic nature of the cell membrane compromise the analysis of the biophysical interactions between drug and cell membrane and restricts the transport or uptake of the drug by intracellular targets. To avoid the cell membrane complexity, we used biomimetic systems as liposomes and Langmuir monolayers to study the interaction between catechin and membranes at the molecular level. Liposomes were formed after the dispersion of anionic 1,2-dipalmitoyl-sn-glycero-3-[phospho-rac-(1-glycerol)(sodium salt) (DPPG) phospholipids in an aqueous solution, which mimic the arrangement of lipids in natural cell membranes and allows the entrapment of catechins. Langmuir monolayers were formed after dropping amphiphilic molecules, DPPG phospholipids, dissolved in an organic solvent onto the water surface. In this work, we mixed epigallocatechin-3-gallate (EGCG) with DPPG liposomes and exposed them to ultra-violet radiation in order to evaluate the antioxidant potential of these molecules against oxidative stress induced by radiation. The presence of EGCG in the mixture decreased the rate of lipid peroxidation, proving that EGCG protects membranes through the quenching of the reactive oxygen species. Considering the high amount of hydroxyl groups (OH groups) on structure of EGCG, a possible mechanism to these molecules interact with membrane is through hydrogen bonding. We also investigated the effect of EGCG at various concentrations on DPPG Langmuir monolayers. The surface pressure isotherms and infrared reflection-absorption spectroscopy (PM-IRRAS) results corroborate with absorbance results preformed on liposome-model, showing that EGCG interacts with polar heads of the monolayers. This study elucidates the physiological action of EGCG which can be incorporated in lipid membrane. These results are also relevant for the improvement of the current protocols used to incorporate catechins in drug delivery systems.

Keywords: catechins, lipid membrane, anticancer agent, molecular interactions

Procedia PDF Downloads 215
3256 Turbine Engine Performance Experimental Tests of Subscale UAV

Authors: Haluk Altay, Bilal Yücel, Berkcan Ulcay, Yücel Aydın

Abstract:

In this study, the design, integration, and testing of measurement systems required for performance tests of jet engines used in small-scale unmanned aerial vehicles are described. Performance tests are carried out as thrust and fuel consumption. For thrust tests, measurements are made using a load cell. Amplifier and filter designs have been made for the load cell to measure accurately to meet the desired sensitivity. It was calibrated by making multiple measurements at different thrust levels. As a result of these processes, the cycle thrust graph was obtained. For fuel consumption tests, tests are carried out using a flow meter. Performance graphics were obtained by finding the fuel consumption for different RPM levels of the engine.

Keywords: jet engine, UAV, experimental test, loadcell, thrust, fuel consumption

Procedia PDF Downloads 55
3255 SolarSPELL Case Study: Pedagogical Quality Indicators to Evaluate Digital Library Resources

Authors: Lorena Alemán de la Garza, Marcela Georgina Gómez-Zermeño

Abstract:

This paper presents the SolarSPELL case study that aims to generate information on the use of indicators that help evaluate the pedagogical quality of a digital library resources. SolarSPELL is a solar-powered digital library with WiFi connectivity. It offers a variety of open educational resources selected for their potential for the digital transformation of educational practices and the achievement of the 2030 Agenda for Sustainable Development, adopted by all United Nations Member States. The case study employed a quantitative methodology and the research instrument was applied to 55 teachers, directors and librarians. The results indicate that it is possible to strengthen the pedagogical quality of open educational resources, through actions focused on improving temporal and technological parameters. They also reveal that users believe that SolarSPELL improves the teaching-learning processes and motivates the teacher to improve his or her development. This study provides valuable information on a tool that supports teaching-learning processes and facilitates connectivity with renewable energies that improves the teacher training in active methodologies for ecosystem learning.

Keywords: educational innovation, digital library, pedagogical quality, solar energy, teacher training, sustainable development

Procedia PDF Downloads 105
3254 Internet of Things Edge Device Power Modelling and Optimization Simulator

Authors: Cian O'Shea, Ross O'Halloran, Peter Haigh

Abstract:

Wireless Sensor Networks (WSN) are Internet of Things (IoT) edge devices. They are becoming widely adopted in many industries, including health care, building energy management, and conditional monitoring. As the scale of WSN deployments increases, the cost and complexity of battery replacement and disposal become more significant and in time may become a barrier to adoption. Harvesting ambient energies provide a pathway to reducing dependence on batteries and in the future may lead to autonomously powered sensors. This work describes a simulation tool that enables the user to predict the battery life of a wireless sensor that utilizes energy harvesting to supplement the battery power. To create this simulator, all aspects of a typical WSN edge device were modelled including, sensors, transceiver, and microcontroller as well as the energy source components (batteries, solar cells, thermoelectric generators (TEG), supercapacitors and DC/DC converters). The tool allows the user to plug and play different pre characterized devices as well as add user-defined devices. The goal of this simulation tool is to predict the lifetime of a device and scope for extension using ambient energy sources.

Keywords: Wireless Sensor Network, IoT, edge device, simulation, solar cells, TEG, supercapacitor, energy harvesting

Procedia PDF Downloads 112
3253 Novel Aminoglycosides to Target Resistant Pathogens

Authors: Nihar Ranjan, Derrick Watkins, Dev P. Arya

Abstract:

Current methods in the study of antibiotic activity of ribosome targeted antibiotics are dependent on cell based bacterial inhibition assays or various forms of ribosomal binding assays. These assays are typically independent of each other and little direct correlation between the ribosomal binding and bacterial inhibition is established with the complementary assay. We have developed novel high-throughput capable assays for ribosome targeted drug discovery. One such assay examines the compounds ability to bind to a model ribosomal RNA A-site. We have also coupled this assay to other functional orthogonal assays. Such analysis can provide valuable understanding of the relationships between two complementary drug screening methods and could be used as standard analysis to correlate the affinity of a compound for its target and the effect the compound has on a cell.

Keywords: bacterial resistance, aminoglycosides, screening, drugs

Procedia PDF Downloads 350
3252 A Study on Evaluation for Performance Verification of Ni-63 Radioisotope Betavoltaic Battery

Authors: Youngmok Yun, Bosung Kim, Sungho Lee, Kyeongsu Jeon, Hyunwook Hwangbo, Byounggun Choi

Abstract:

A betavoltaic battery converts nuclear energy released as beta particles (β-) directly into electrical energy. Betavoltaic cells are analogous to photovoltaic cells. The beta particle’s kinetic energy enters a p-n junction and creates electron-hole pairs. Subsequently, the built-in potential of the p-n junction accelerates the electrons and ions to their respective collectors. The major challenges are electrical conversion efficiencies and exact evaluation. In this study, the performance of betavoltaic battery was evaluated. The betavoltaic cell was evaluated in the same condition as radiation from radioactive isotope using by FE-SEM(field emission scanning electron microscope). The average energy of the radiation emitted from the Ni-63 radioisotope is 17.42 keV. FE-SEM is capable of emitting an electron beam of 1-30keV. Therefore, it is possible to evaluate betavoltaic cell without radioactive isotopes. The betavoltaic battery consists of radioisotope that is physically connected on the surface of Si-based PN diode. The performance of betavoltaic battery can be estimated by the efficiency of PN diode unit cell. The current generated by scanning electron microscope with fixed accelerating voltage (17keV) was measured by using faraday cup. Electrical characterization of the p-n junction diode was performed by using Nano Probe Work Station and I-V measurement system. The output value of the betavoltaic cells developed by this research team was 0.162 μw/cm2 and the efficiency was 1.14%.

Keywords: betavoltaic, nuclear, battery, Ni-63, radio-isotope

Procedia PDF Downloads 242
3251 Expression of Inflammatory and Cell Death Genes and DNA Damage Induced by Endotoxic Shock in Laying Hens

Authors: Mariam G. Eshak, Ahmed Abbas, M. I. El-Sabry, M. M. Mashaly

Abstract:

This investigation was conducted to determine the physiological response and evaluate the expression of inflammatory and cell death genes and DNA damage induced by endotoxic shock in laying hens. Endotoxic shock was induced by a single intravenous injection of 107 Escherichia coli (E. coli,) colony/hen. In the present study, 240 forty-week-old laying hens (H&N) were randomly assigned into 2 groups with 3 replicates of 40 birds each. Hens were reared in battery cages with wire floors in an open-sided housing system under natural conditions. Housing and general management practices were similar for all groups. At 42-wk of age, 45 hens from the first group (15 replicate) were infected with E. coli, while the same number of hens from the second group was injected with saline and served as a control. Heat shock protein-70 (HSP-70) expression, plasma corticosterone concentration, body temperature, and the gene expression of bax, caspase-3 activity, P38, Interlukin-1β (Il-1β), and tumor necrosis factor alpha (TNF-α) genes and DNA damage in the brain and liver were measured. Hens treated with E. coli showed significant (P≤0.05) increase of body temperature by 1.2 ᴼC and plasma corticosterone by 3 folds compared to the controls. Further, hens injected with E.Coli showed markedly over-expression of HSP-70 and increase DNA damage in brain and liver. These results were synchronized with activating cell death program since our data showed significant (P≤0.05) high expression of bax and caspase-3 activity genes in the brain and liver. These results were related to remarkable over-inflammation gene expression of P38, IL-1β, and TNF-α in brain and liver. In conclusion, our results indicate that endotoxic shock induces inflammatory physiological response and triggers cell death program by promoting P38, IL-1β, and TNF-α gene expression in the brain and liver.

Keywords: chicken, DNA damage, Escherichia coli, gene expression, inflammation

Procedia PDF Downloads 328
3250 A Double-Blind, Randomized, Controlled Trial on N-Acetylcysteine for the Prevention of Acute Kidney Injury in Patients Undergoing Allogeneic Hematopoietic Stem Cell Transplantation

Authors: Sara Ataei, Molouk Hadjibabaie, Amirhossein Moslehi, Maryam Taghizadeh-Ghehi, Asieh Ashouri, Elham Amini, Kheirollah Gholami, Alireza Hayatshahi, Mohammad Vaezi, Ardeshir Ghavamzadeh

Abstract:

Acute kidney injury (AKI) is one of the complications of hematopoietic stem cell transplantation and is associated with increased mortality. N-acetylcysteine (NAC) is a thiol compound with antioxidant and vasodilatory properties that has been investigated for the prevention of AKI in several clinical settings. In the present study, we evaluated the effects of intravenous NAC on the prevention of AKI in allogeneic hematopoietic stem cell transplantation patients. A double-blind randomized placebo-controlled trial was conducted, and 80 patients were recruited to receive 100 mg/kg/day NAC or placebo as intermittent intravenous infusion from day -6 to day +15. AKI was determined on the basis of the Risk-Injury-Failure-Loss-Endstage renal disease and AKI Network criteria as the primary outcome. We assessed urine neutrophil gelatinase-associated lipocalin (uNGAL) on days -6, -3, +3, +9, and +15 as the secondary outcome. Moreover, transplant-related outcomes and NAC adverse reactions were evaluated during the study period. Statistical analysis was performed using appropriate parametric and non-parametric methods including Kaplan–Meier for AKI and generalized estimating equation for uNGAL. At the end of the trial, data from 72 patients were analyzed (NAC: 33 patients and placebo: 39 patients). Participants of each group were not different considering baseline characteristics. AKI was observed in 18% of NAC recipients and 15% of placebo group patients, and the occurrence pattern was not significantly different (p = 0.73). Moreover, no significant difference was observed between groups for uNGAL measures (p = 0.10). Transplant-related outcomes were similar for both groups, and all patients had successful engraftment. Three patients did not tolerate NAC because of abdominal pain, shortness of breath and rash with pruritus and were dropped from the intervention group before transplantation. However, the frequency of adverse reactions was not significantly different between groups. In conclusion, our findings could not show any clinical benefits from high-dose NAC particularly for AKI prevention in allogeneic hematopoietic stem cell transplantation patients.

Keywords: acute kidney injury, N-acetylcysteine, hematopoietic stem cell transplantation, urine neutrophil gelatinase-associated lipocalin, randomized controlled trial

Procedia PDF Downloads 416
3249 Photocatalytic Degradation of Naproxen in Water under Solar Irradiation over NiFe₂O₄ Nanoparticle System

Authors: H. Boucheloukh, S. Rouissa, N. Aoun, M. Beloucifa, T. Sehili, F. Parrino, V. Loddo

Abstract:

To optimize water purification and wastewater treatment by heterogeneous photocatalysis, we used NiFe₂O₄ as a catalyst and solar irradiation as a source of energy. In this concept, an organic substance present in many industrial effluents was chosen: naproxen ((S)-6-methoxy-α-methyl-2-naphthaleneacetic acid or 2-(6-methoxynaphthalenyl) propanoic), a non-steroidal anti-inflammatory drug. The main objective of this study is to degrade naproxen by an iron and nickel catalyst, the degradation of this organic pollutant by nickel ferrite has been studied in a heterogeneous aqueous medium, with the study of the various factors influencing photocatalysis such as the concentration of matter and the acidity of the medium. The photocatalytic activity was followed by HPLC-UV andUV-Vis spectroscopy. A first-order kinetic model appropriately fitted the experimental data. The degradation of naproxen was also studied in the presence of H₂O₂ as well as in an aqueous solution. The new hetero-system NiFe₂O₄/oxalic acid is also discussed. The fastest naproxen degradation was obtained with NiFe₂O₄/H₂O₂. In a first-place, we detailed the characteristics of the material NiFe₂O₄, which was synthesized by the sol-gel methods, using various analytical techniques: visible UV spectrophotometry, X-ray diffraction, FTIR, cyclic voltammetry, luminescent discharge optical emission spectroscopy.

Keywords: naproxen, nickelate, photocatalysis, oxalic acid

Procedia PDF Downloads 184
3248 Bone Strengthening Effects of Deer Antler Extract

Authors: Hye Kyung Kim, Myung-Gyou Kim, Kang-Hyun Leem

Abstract:

It has been reported that deer antler extract has bone-strengthening activity and effectively used in bone diseases therapy. However, little is known about the cellular and molecular mechanism of this effect. The upper section, mid section, and base of the antler has been known to exhibit different biological properties. Present study investigated the effects of these three parts of deer antler extracts on bone formation and resorption. The effects of deer antler extracts (DH) on bone formation were determined by cell proliferation, alkaline phosphatase (ALP) activity, collagen synthesis, and mineralization in human osteoblastic MG-63 cells. The effect on bone resorption was determined by osteoclastogenesis from bone marrow-derived precursor cells driven by RANKL. Ethanol extracts of DH (50 ~ 100 µg/ml) dose-dependently increased cell proliferation, and upper part increased the cell proliferation by 118.4% while mid and base parts increased proliferation by 107.8% and 102.3%, respectively. ALP activity was significantly increased by upper part of the DH treatment. After enhancement of ALP activity, significant augmentation of collagen synthesis and calcification assessed by Sirus red and Alzarin red staining, respectively, was observed in upper part of the DH treatment. The effect of DH on bone resorption was not observed in all three parts of the DH. These results could provide a mechanistic explanation for the bone-strengthening effects of DH.

Keywords: alkaline phosphatase, collagen synthesis, deer antler, osteoblastic MG-63 cells

Procedia PDF Downloads 293
3247 Design and Analysis of an Electro Thermally Symmetrical Actuated Microgripper

Authors: Sh. Foroughi, V. Karamzadeh, M. Packirisamy

Abstract:

This paper presents design and analysis of an electrothermally symmetrical actuated microgripper applicable for performing micro assembly or biological cell manipulation. Integration of micro-optics with microdevice leads to achieve extremely precise control over the operation of the device. Geometry, material, actuation, control, accuracy in measurement and temperature distribution are important factors which have to be taken into account for designing the efficient microgripper device. In this work, analyses of four different geometries are performed by means of COMSOL Multiphysics 5.2 with implementing Finite Element Methods. Then, temperature distribution along the fingertip, displacement of gripper site as well as optical efficiency vs. displacement and electrical potential are illustrated. Results show in addition to the industrial application of this device, the usage of that as a cell manipulator is possible.

Keywords: electro thermal actuator, MEMS, microgripper, MOEMS

Procedia PDF Downloads 146
3246 Effect of Plasma Radiation on Keratinocyte Cells Involved in the Wound Healing Process

Authors: B. Fazekas, I. Korolov, K. Kutasi

Abstract:

Plasma medicine, which involves the use of gas discharge plasmas for medical applications is a rapidly growing research field. The use of non-thermal atmospheric pressure plasmas in dermatology to assist tissue regeneration by improving the healing of infected and/or chronic wounds is a promising application. It is believed that plasma can activate cells, which are involved in the wound closure. Non-thermal atmospheric plasmas are rich in chemically active species (such as O and N-atoms, O2(a) molecules) and radiative species such as the NO, N2+ and N2 excited molecules, which dominantly radiate in the 200-500 nm spectral range. In order to understand the effect of plasma species, both of chemically active and radiative species on wound healing process, the interaction of physical plasma with the human skin cells is necessary. In order to clarify the effect of plasma radiation on the wound healing process we treated keratinocyte cells – that are one of the main cell types in human skin epidermis – covered with a layer of phosphate-buffered saline (PBS) with a low power atmospheric pressure plasma. For the generation of such plasma we have applied a plasma needle. Here, the plasma is ignited at the tip of the needle in flowing helium gas in contact with the ambient air. To study the effect of plasma radiation we used a plasma needle configuration, where the plasma species – chemically active radicals and charged species – could not reach the treated cells, but only the radiation. For the comparison purposes, we also irradiated the cells using a UV-B light source (FS20 lamp) with a 20 and 40 mJ cm-2 dose of 312 nm. After treatment the viability and the proliferation of the cells have been examined. The proliferation of cells has been studied with a real time monitoring system called Xcelligence. The results have indicated, that the 20 mJ cm-2 dose did not affect cell viability, whereas the 40 mJ cm-2 dose resulted a decrease in cell viability. The results have shown that the plasma radiation have no quantifiable effect on the cell proliferation as compared to the non-treated cells.

Keywords: UV radiation, non-equilibrium gas discharges (non-thermal plasmas), plasma emission, keratinocyte cells

Procedia PDF Downloads 587
3245 Experimental Study of Hydrothermal Properties of Cool Pavements to Mitigate Urban Heat Islands

Authors: Youssef Wardeh, Elias Kinab, Pierre Rahme, Gilles Escadeillas, Stephane Ginestet

Abstract:

Urban heat islands designate a local phenomenon that appears in high density cities. This results in a rise ofambient temperature in the urban area compared to the neighboring rural area. Solar radiation plays an important role in this phenomenon since it is partially absorbed by the materials, especially roads and parking lots. Cool pavements constitute an innovative and promising technique to mitigate urban heat islands. The cool pavements studied in this work allow to limit the increase of the surface temperature, thanks to evaporation of the water conducted through capillary pores, from the humidified base to the surface exposed to solar radiation. However, the performance or the cooling capacity of a pavement sometimes remained difficult to characterize. In this work, a new definition of the cooling capacity of a pavement is presented, and a correlation between the latter and the hydrothermal properties of cool pavements is revealed. Firstly, several porous concrete pavements were characterized through their hydrothermal properties, which can be related to the cooling effect, such as albedo, thermal conductivity, water absorption, etc. Secondly, these pavements initially saturated and continuously supplied with water through their bases, were exposed to external solar radiation during three sunny summer days, and their surface temperatures were measured. For draining pavements, a strong second-degreepolynomial correlation(R² = 0.945) was found between the cooling capacity and the term, which reflects the interconnection of capillary water to the surface. Moreover, it was noticed that the cooling capacity reaches its maximum for an optimal range of capillary pores for which the capillary rise is stronger than gravity. For non-draining pavements, a good negative linear correlation (R² = 0.828) was obtained between the cooling capacity and the term, which expresses the ability to heat the capillary water by the energystored far from the surface, and, therefore, the dominance of the evaporation process by diffusion. The latest tests showed that this process is, however, likely to be disturbed by the material resistance to the water vapor diffusion.

Keywords: urban heat islands, cool pavement, cooling capacity, hydrothermal properties, evaporation

Procedia PDF Downloads 78
3244 Effect of Radiation on Magnetohydrodynamic Two Phase Stenosed Arterial Blood Flow with Heat and Mass Transfer

Authors: Bhavya Tripathi, Bhupendra Kumar Sharma

Abstract:

In blood, the concentration of red blood cell varies with the arterial diameter. In the case of narrow arteries, red blood cells concentrate around the center of the artery and there exists a cell-free plasma layer near the arterial wall due to Fahraeus-Lindqvist effect. Due to non- uniformity of the fluid in the narrow arteries, it is preferable to consider the two-phase model of the blood flow. In the present article, coupled nonlinear differential equations have been developed for momentum, energy and concentration of two phase model of the blood flow assuming the Newtonian fluid in both central core and cell free plasma layer and the exact solutions have been found for the problem. For having an adequate insight into the stenosed arterial two-phase blood flow, major components of the flow as flow resistance, total flow rate, and wall shear stress have been estimated for different values of magnetic and radiation parameter. Results show that the increase in the effects of magnetic field decreases the velocity of both cores as well as plasma regions. This result can be helpful to control the blood flow in narrow arteries during surgical process. Temperature of core as well plasma regions decrease as value of radiation parameter increases. The present result is implemented in the form of radiation therapy which is very helpful for cancer patients.

Keywords: two phase blood flow, radiation, magnetohydrodynamics (MHD), stenosis

Procedia PDF Downloads 181
3243 Advanced Nanostructured Materials and Their Application for Solar Fuel

Authors: A. Hegazy, Ahmed Elsayed, Essam El Shenawy, N. Allam, Hala Handal, K. R. Mahmoud

Abstract:

Highly crystalline, TiO₂ pristine sub-10 nm anatase nanocrystals were fabricated at low temperatures by post hydrothermal treatment of the as-prepared TiO₂ nanoparticles. This treatment resulted in bandgap narrowing and increased photocurrent density value (3.8 mA/cm²) when this material was employed in water splitting systems. The achieved photocurrent values are among the highest reported ones so far for the fabricated nanoparticles at this low temperature. This might be explained by the increased surface defects of the prepared nanoparticles. It resulted in bandgap narrowing that was further investigated using positron annihilation experiments by measuring positron lifetime and Doppler broadening. Besides, homogeneous spherical TiO₂ nanoparticles were synthesized in large diameter and high surface area and the high percentage of (001) facet by sol-gel method using potassium persulfate (K₂S₂O₈) as an oxidizing agent. The fabricated particles exhibited high exposed surface area, high photoactivity and reduced band gap. Enhanced performance for water splitting applications was displayed by formed TiO₂ nanoparticles. Their morphological and structural properties were studied to optimize their synthesis parameters in an attempt to construct more applicable fuel cells in the industry for hydrogen fuel production.

Keywords: positron annihilation, solar energy, TiO2 nanoparticles, water splitting

Procedia PDF Downloads 120
3242 Single-Molecule Optical Study of Cholesterol-Mediated Dimerization Process of EGFRs in Different Cell Lines

Authors: Chien Y. Lin, Jung Y. Huang, Leu-Wei Lo

Abstract:

A growing body of data reveals that the membrane cholesterol molecules can alter the signaling pathways of living cells. However, the understanding about how membrane cholesterol modulates receptor proteins is still lacking. Single-molecule tracking can effectively probe into the microscopic environments and thermal fluctuations of receptor proteins in a living cell. In this study we applies single-molecule optical tracking on ligand-induced dimerization process of EGFRs in the plasma membranes of two cancer cell lines (HeLa and A431) and one normal endothelial cell line (MCF12A). We tracked individual EGFR and dual receptors, diffusing in a correlated manner in the plasma membranes of live cells. We developed an energetic model by integrating the generalized Langevin equation with the Cahn-Hilliard equation to help extracting important information from single-molecule trajectories. From the study, we discovered that ligand-bound EGFRs move from non-raft areas into lipid raft domains. This ligand-induced motion is a common behavior in both cancer and normal cells. By manipulating the total amount of membrane cholesterol with methyl-β-cyclodextrin and the local concentration of membrane cholesterol with nystatin, we further found that the amount of cholesterol can affect the stability of EGFR dimers. The EGFR dimers in the plasma membrane of normal cells are more sensitive to the local concentration changes of cholesterol than EGFR dimers in the cancer cells. Our method successfully captures dynamic interactions of receptors at the single-molecule level and provides insight into the functional architecture of both the diffusing EGFR molecules and their local cellular environment.

Keywords: membrane proteins, single-molecule tracking, Cahn-Hilliard equation, EGFR dimers

Procedia PDF Downloads 395
3241 High-Tech Based Simulation and Analysis of Maximum Power Point in Energy System: A Case Study Using IT Based Software Involving Regression Analysis

Authors: Enemeri George Uweiyohowo

Abstract:

Improved achievement with respect to output control of photovoltaic (PV) systems is one of the major focus of PV in recent times. This is evident to its low carbon emission and efficiency. Power failure or outage from commercial providers, in general, does not promote development to public and private sector, these basically limit the development of industries. The need for a well-structured PV system is of importance for an efficient and cost-effective monitoring system. The purpose of this paper is to validate the maximum power point of an off-grid PV system taking into consideration the most effective tilt and orientation angles for PV's in the southern hemisphere. This paper is based on analyzing the system using a solar charger with MPPT from a pulse width modulation (PWM) perspective. The power conditioning device chosen is a solar charger with MPPT. The practical setup consists of a PV panel that is set to an orientation angle of 0∘N, with a corresponding tilt angle of 36∘, 26∘ and 16∘. Preliminary results include regression analysis (normal probability plot) showing the maximum power point in the system as well the best tilt angle for maximum power point tracking.

Keywords: poly-crystalline PV panels, information technology (IT), maximum power point tracking (MPPT), pulse width modulation (PWM)

Procedia PDF Downloads 188
3240 Arithmetic Operations in Deterministic P Systems Based on the Weak Rule Priority

Authors: Chinedu Peter, Dashrath Singh

Abstract:

Membrane computing is a computability model which abstracts its structures and functions from the biological cell. The main ingredient of membrane computing is the notion of a membrane structure, which consists of several cell-like membranes recurrently placed inside a unique skin membrane. The emergence of several variants of membrane computing gives rise to the notion of a P system. The paper presents a variant of P systems for arithmetic operations on non-negative integers based on the weak priorities for rule application. Consequently, we obtain deterministic P systems. Two membranes suffice. There are at most four objects for multiplication and five objects for division throughout the computation processes. The model is simple and has a potential for possible extension to non-negative integers and real numbers in general.

Keywords: P system, binary operation, determinism, weak rule priority

Procedia PDF Downloads 432