Search results for: modular buildings
438 Horizontal Stress Magnitudes Using Poroelastic Model in Upper Assam Basin, India
Authors: Jenifer Alam, Rima Chatterjee
Abstract:
Upper Assam sedimentary basin is one of the oldest commercially producing basins of India. Being in a tectonically active zone, estimation of tectonic strain and stress magnitudes has vast application in hydrocarbon exploration and exploitation. This East North East –West South West trending shelf-slope basin encompasses the Bramhaputra valley extending from Mikir Hills in the southwest to the Naga foothills in the northeast. Assam Shelf lying between the Main Boundary Thrust (MBT) and Naga Thrust area is comparatively free from thrust tectonics and depicts normal faulting mechanism. The study area is bounded by the MBT and Main Central Thrust in the northwest. The Belt of Schuppen in the southeast, is bordered by Naga and Disang thrust marking the lower limit of the study area. The entire Assam basin shows low-level seismicity compared to other regions of northeast India. Pore pressure (PP), vertical stress magnitude (SV) and horizontal stress magnitudes have been estimated from two wells - N1 and T1 located in Upper Assam. N1 is located in the Assam gap below the Bramhaputra river while T1, lies in the Belt of Schuppen. N1 penetrates geological formations from top Alluvial through Dhekiajuli, Girujan, Tipam, Barail, Kopili, Sylhet and Langpur to the granitic basement while T1 in trusted zone crosses through Girujan Suprathrust, Tipam Suprathrust, Barail Suprathrust to reach Naga Thrust. Normal compaction trend is drawn through shale points through both wells for estimation of PP using the conventional Eaton sonic equation with an exponent of 1.0 which is validated with Modular Dynamic Tester and mud weight. Observed pore pressure gradient ranges from 10.3 MPa/km to 11.1 MPa/km. The SV has a gradient from 22.20 to 23.80 MPa/km. Minimum and maximum horizontal principal stress (Sh and SH) magnitudes under isotropic conditions are determined using poroelastic model. This approach determines biaxial tectonic strain utilizing static Young’s Modulus, Poisson’s Ratio, SV, PP, leak off test (LOT) and SH derived from breakouts using prior information on unconfined compressive strength. Breakout derived SH information is used for obtaining tectonic strain due to lack of measured SH data from minifrac or hydrofracturing. Tectonic strain varies from 0.00055 to 0.00096 along x direction and from -0.0010 to 0.00042 along y direction. After obtaining tectonic strains at each well, the principal horizontal stress magnitudes are calculated from linear poroelastic model. The magnitude of Sh and SH gradient in normal faulting region are 12.5 and 16.0 MPa/km while in thrust faulted region the gradients are 17.4 and 20.2 MPa/km respectively. Model predicted Sh and SH matches well with the LOT data and breakout derived SH data in both wells. It is observed from this study that the stresses SV>SH>Sh prevailing in the shelf region while near the Naga foothills the regime changes to SH≈SV>Sh area corresponds to normal faulting regime. Hence this model is a reliable tool for predicting stress magnitudes from well logs under active tectonic regime in Upper Assam Basin.Keywords: Eaton, strain, stress, poroelastic model
Procedia PDF Downloads 214437 Reading the Interior Furnishings of the Houses through Turkish Films in the 1980's
Authors: Dicle Aydın, Tuba Bulbul Bahtiyar, Esra Yaldız
Abstract:
Housing offers a confirmed space for individuals. In the sense of interior decoration design, housing is a kind of typology in which user’s profile and individual preferences are considered as primary determinants. In Turkish society, the transition from traditional residences to apartment buildings brings the change in interior fittings depending upon the location of houses in its wake. The social status of the users in the residence and the differences of their everyday life can be represented more evident in these interior fittings. Hence, space becomes a tool to carry the information of users and the act. From this aspect, space as a concrete tool also enables a multidirectional communication with the cinema which reflects the social, cultural and economic changes of the society. While space takes a virtual or real part of the cinema, architecture discipline has also been influenced by cinematic phenomenas in its own practice. The subject of the movie and its content commune with the space, therefore, the design of the space is formed to support the subject. The purpose of this study is to analyze the space through motion pictures that convey the information of social life with an objective perspective. In addition, this study aims to determine the space, fittings and the use of fittings with respect to the social status of users. Morever, three films in 1980s in which Kemal Sunal, protagonist of the scripts that reflect society in many ways, performed are examined in this study. Movie sets are considered in many ways. For instance, in one of these movies, different houses from an apartment are analyzed vis a vis the perspective of the study.Keywords: housing, interior, furniture, furnishing, user
Procedia PDF Downloads 202436 An Investigation into the Gaps in Green Building Education and Training Offerings in Nigeria
Authors: Adebayo A. Abimbola, Anifowose O. Joseph, Olanrewaju S. Taiwo
Abstract:
Green building (GB) practices have the potential to save energy, save money, and improve the quality of human habitat. They can also contribute to water conservation, more efficient use of raw materials, and ecosystem health around the globe. The Intergovernmental Panel on Climate Change (IPCC) singled out the building sector as having the most cost-effective opportunities for reducing carbon emissions—in fact, many building-related opportunities are cost-neutral, or even cost-positive, to the building owner. These benefits have made green building practices the fastest-growing trend in the building industry, but they still represent only a fraction of new construction, and the enormous stock of existing buildings has barely been touched at all. To effectively deliver the kind of (GB) that can become a force for positive change at global, regional and local scales, all workforce sectors need new skills that are both technical and interpersonal in nature. A prominent bottleneck is seen to be education and training. This paper investigates the major gaps in current GB education and training offerings in Nigeria. A questionnaire survey was developed to capture the perception of construction professionals and academics in relevant professions regarding the significance of the identified gaps as it affects GB education and training. Based on Likert scale ranking, research result shows that perception of training in specific technical fields and financial benefits and evaluation are identified as the top gaps in GB training and education offerings. The paper concludes with suggestions and actions that can enhance capabilities of the GB workforce in Nigeria.Keywords: education and training, gaps, green building, workforce
Procedia PDF Downloads 318435 Influence of Foundation Size on Seismic Response of Mid-rise Buildings Considering Soil-Structure-Interaction
Authors: Quoc Van Nguyen, Behzad Fatahi, Aslan S. Hokmabadi
Abstract:
Performance based seismic design is a modern approach to earthquake-resistant design shifting emphasis from “strength” to “performance”. Soil-Structure Interaction (SSI) can influence the performance level of structures significantly. In this paper, a fifteen storey moment resisting frame sitting on a shallow foundation (footing) with different sizes is simulated numerically using ABAQUS software. The developed three dimensional numerical simulation accounts for nonlinear behaviour of the soil medium by considering the variation of soil stiffness and damping as a function of developed shear strain in the soil elements during earthquake. Elastic-perfectly plastic model is adopted to simulate piles and structural elements. Quiet boundary conditions are assigned to the numerical model and appropriate interface elements, capable of modelling sliding and separation between the foundation and soil elements, are considered. Numerical results in terms of base shear, lateral deformations, and inter-storey drifts of the structure are compared for the cases of soil-structure interaction system with different foundation sizes as well as fixed base condition (excluding SSI). It can be concluded that conventional design procedures excluding SSI may result in aggressive design. Moreover, the size of the foundation can influence the dynamic characteristics and seismic response of the building due to SSI and should therefore be given careful consideration in order to ensure a safe and cost effective seismic design.Keywords: soil-structure-interaction, seismic response, shallow foundation, abaqus, rayleigh damping
Procedia PDF Downloads 506434 Analyzing the Effect of Materials’ Selection on Energy Saving and Carbon Footprint: A Case Study Simulation of Concrete Structure Building
Authors: M. Kouhirostamkolaei, M. Kouhirostami, M. Sam, J. Woo, A. T. Asutosh, J. Li, C. Kibert
Abstract:
Construction is one of the most energy consumed activities in the urban environment that results in a significant amount of greenhouse gas emissions around the world. Thus, the impact of the construction industry on global warming is undeniable. Thus, reducing building energy consumption and mitigating carbon production can slow the rate of global warming. The purpose of this study is to determine the amount of energy consumption and carbon dioxide production during the operation phase and the impact of using new shells on energy saving and carbon footprint. Therefore, a residential building with a re-enforced concrete structure is selected in Babolsar, Iran. DesignBuilder software has been used for one year of building operation to calculate the amount of carbon dioxide production and energy consumption in the operation phase of the building. The primary results show the building use 61750 kWh of energy each year. Computer simulation analyzes the effect of changing building shells -using XPS polystyrene and new electrochromic windows- as well as changing the type of lighting on energy consumption reduction and subsequent carbon dioxide production. The results show that the amount of energy and carbon production during building operation has been reduced by approximately 70% by applying the proposed changes. The changes reduce CO2e to 11345 kg CO2/yr. The result of this study helps designers and engineers to consider material selection’s process as one of the most important stages of design for improving energy performance of buildings.Keywords: construction materials, green construction, energy simulation, carbon footprint, energy saving, concrete structure, designbuilder
Procedia PDF Downloads 198433 Application of Value Engineering Approach for Improving the Quality and Productivity of Ready-Mixed Concrete Used in Construction and Hydraulic Projects
Authors: Adel Mohamed El-Baghdady, Walid Sayed Abdulgalil, Ahmad Asran, Ibrahim Nosier
Abstract:
This paper studies the effectiveness of applying value engineering to actual concrete mixtures. The study was conducted in the State of Qatar on a number of strategic construction projects with international engineering specifications for the 2022 World Cup projects. The study examined the concrete mixtures of Doha Metro project and the development of KAHRAMAA’s (Qatar Electricity and Water Company) Abu Funtas Strategic Desalination Plant, in order to generally improve the quality and productivity of ready-mixed concrete used in construction and hydraulic projects. The application of value engineering to such concrete mixtures resulted in the following: i) improving the quality of concrete mixtures and increasing the durability of buildings in which they are used; ii) reducing the waste of excess materials of concrete mixture, optimizing the use of resources, and enhancing sustainability; iii) reducing the use of cement, thus reducing CO₂ emissions which ensures the protection of environment and public health; iv) reducing actual costs of concrete mixtures and, in turn, reducing the costs of construction projects; and v) increasing the market share and competitiveness of concrete producers. This research shows that applying the methodology of value engineering to ready-mixed concrete is an effective way to save around 5% of the total cost of concrete mixtures supplied to construction and hydraulic projects, improve the quality according to the technical requirements and as per the standards and specifications for ready-mixed concrete, improve the environmental impact, and promote sustainability.Keywords: value management, cost of concrete, performance, optimization, sustainability, environmental impact
Procedia PDF Downloads 353432 Evaluation of the Efficiency of Nanomaterials in the Consolidation of Limestone
Authors: Mohamed Saad Gad Elzoghby
Abstract:
Nanomaterials are widely used nowadays for the consolidation of degraded archaeological limestone. It’s one of the most predominant stones in monumental buildings and statuary works. It is exposed to different weathering processes that cause degradation and the presence of deterioration pattern as cracks, fissures, and granular disintegration. Nanomaterials have been applied to limestone consolidation. Among these nanomaterials are nanolimes, i.e., dispersions of lime nanoparticles in alcohols, and nano-silica, i.e., dispersions of silica nanoparticles in water, promising consolidating products for limestone. It was investigated and applied to overcome the disadvantages of traditional consolidation materials such as lime water, water glass, and paraliod. So, researchers investigated and tested the effectiveness of nanomaterials as consolidation materials for limestone. The present study includes an evaluation of some nanomaterials in consolidation limestone stone in comparison with traditional consolidants. These consolidation materials are nano calcium hydroxide nanolime, and nanosilica. The latter is known commercially as Nano Estel and the former Known as Nanorestore compared to traditional consolidants Wacker OH (ethyl silicate) and Paraloid B72 (a copolymer of ethyl methacrylate and methyl acrylate). The study evaluated the consolidation effectiveness of nanomaterials and traditional consolidants by using followed methods, characterization of physical properties of stone, scanning electron microscopy (SEM), X-ray diffractometry, Fourier transforms infrared spectroscopy, and mechanical properties. The study confirmed that nanomaterials were better in the distribution and encapsulation of calcite grains in limestone, and traditional materials were better in improving the physical properties of limestone. It demonstrated that good results could be achieved through mixtures of nanomaterials and traditional consolidants.Keywords: nanomaterials, limestone, consolidation, evaluation, weathering, nanolime, nanosilica, scanning electron microscope
Procedia PDF Downloads 81431 Methods Employed to Mitigate Wind Damage on Ancient Egyptian Architecture
Authors: Hossam Mohamed Abdelfattah Helal Hegazi
Abstract:
Winds and storms are considered crucial weathering factors, representing primary causes of destruction and erosion for all materials on the Earth's surface. This naturally includes historical structures, with the impact of winds and storms intensifying their deterioration, particularly when carrying high-hardness sand particles during their passage across the ground. Ancient Egyptians utilized various methods to prevent wind damage to their ancient architecture throughout the ancient Egyptian periods . One of the techniques employed by ancient Egyptians was the use of clay or compacted earth as a filling material between opposing walls made of stone, bricks, or mud bricks. The walls made of reeds or woven tree branches were covered with clay to prevent the infiltration of winds and rain, enhancing structural integrity, this method was commonly used in hollow layers . Additionally, Egyptian engineers innovated a type of adobe brick with uniformly leveled sides, manufactured from dried clay. They utilized stone barriers, constructed wind traps, and planted trees in rows parallel to the prevailing wind direction. Moreover, they employed receptacles to drain rainwater resulting from wind-loaded rain and used mortar to fill gaps in roofs and structures. Furthermore, proactive measures such as the removal of sand from around historical and archaeological buildings were taken to prevent adverse effectsKeywords: winds, storms, weathering, destruction, erosion, materials, Earth's surface, historical structures, impact
Procedia PDF Downloads 62430 Evaluation of Pile Performance in Different Layers of Soil
Authors: Orod Zarrin, Mohesn Ramezan Shirazi, Hassan Moniri
Abstract:
The use of pile foundations technique is developed to support structures and buildings on soft soil. The most important dynamic load that can affect the pile structure is earthquake vibrations. Pile foundations during earthquake excitation indicate that piles are subject to damage by affecting the superstructure integrity and serviceability. During an earthquake, two types of stresses can damage the pile head, inertial load that is caused by superstructure and deformation which caused by the surrounding soil. Soil deformation and inertial load are associated with the acceleration developed in an earthquake. The acceleration amplitude at the ground surface depends on the magnitude of earthquakes, soil properties and seismic source distance. According to the investigation, the damage is between the liquefiable and non-liquefiable layers and also soft and stiff layers. This damage crushes the pile head by increasing the inertial load which is applied by the superstructure. On the other hand, the cracks on the piles due to the surrounding soil are directly related to the soil profile and causes cracks from small to large. However, the large cracks reason have been listed such as liquefaction, lateral spreading, and inertial load. In the field of designing, elastic response of piles is always a challenge for designer in liquefaction soil, by allowing deflection at top of piles. Moreover, absence of plastic hinges in piles should be insured, because the damage in the piles is not observed directly. In this study, the performance and behavior of pile foundations during liquefaction and lateral spreading are investigated. In addition, emphasize on the soil behavior in the liquefiable and non-liquefiable layers by different aspect of piles damage such as ranking, location and degree of damage are going to discuss.Keywords: pile, earthquake, liquefaction, non-liquefiable, damage
Procedia PDF Downloads 301429 Hourly Solar Radiations Predictions for Anticipatory Control of Electrically Heated Floor: Use of Online Weather Conditions Forecast
Authors: Helene Thieblemont, Fariborz Haghighat
Abstract:
Energy storage systems play a crucial role in decreasing building energy consumption during peak periods and expand the use of renewable energies in buildings. To provide a high building thermal performance, the energy storage system has to be properly controlled to insure a good energy performance while maintaining a satisfactory thermal comfort for building’s occupant. In the case of passive discharge storages, defining in advance the required amount of energy is required to avoid overheating in the building. Consequently, anticipatory supervisory control strategies have been developed forecasting future energy demand and production to coordinate systems. Anticipatory supervisory control strategies are based on some predictions, mainly of the weather forecast. However, if the forecasted hourly outdoor temperature may be found online with a high accuracy, solar radiations predictions are most of the time not available online. To estimate them, this paper proposes an advanced approach based on the forecast of weather conditions. Several methods to correlate hourly weather conditions forecast to real hourly solar radiations are compared. Results show that using weather conditions forecast allows estimating with an acceptable accuracy solar radiations of the next day. Moreover, this technique allows obtaining hourly data that may be used for building models. As a result, this solar radiation prediction model may help to implement model-based controller as Model Predictive Control.Keywords: anticipatory control, model predictive control, solar radiation forecast, thermal storage
Procedia PDF Downloads 271428 Evaluation of the Efficiency of Nanomaterials in Consolidation of Limestone
Authors: Mohamed Saad Gad Eloghby
Abstract:
Nanomaterials are widely used nowadays for the consolidation of degraded archaeological limestone. It’s one of the most predominant stones in monumental buildings and statuary works. Exposure to different weathering processes caused degradation and the presence of deterioration pattern as cracks, fissures, and granular disintegration. Nanomaterials have been applied to limestone consolidation. Among these nanomaterials are nanolimes, i.e., dispersions of lime nanoparticles in alcohols and nanosilica, i.e., dispersions of silica nanoparticles in water promising consolidating products for limestone. It was investigated and applied to overcome the disadvantages of traditional consolidation materials such as lime water, water glass and paraliod. So, researchers investigated and tested the effectiveness of nanomaterials as consolidation materials for limestone. The present study includes the evaluation of some nano materials in consolidation limestone stone in comparison with traditional consolidantes. These consolidation materials are nano calcium hydroxide nanolime and nanosilica. The latter is known commercially as Nano Estel and the former is known as Nanorestore compared to traditional consolidantes Wacker OH (ethyl silicate) and Paraloid B72 (a copolymer of ethyl methacrylate and methyl acrylate). The study evaluated the consolidation effectiveness of nanomaterials and traditional consolidantes by using followed methods, Characterization of physical properties of stone, Scanning electron microscopy (SEM), X-ray diffractometry, Fourier transform infrared spectroscopy and Mechanical properties. The study confirmed that nanomaterials were better in the distribution and encapsulation of calcite grains in limestone, and traditional materials were better in improving the physical properties of limestone. It demonstrated that good results can be achieved through mixtures of nanomaterials and traditional consolidants.Keywords: nanomaterials, limestone, consolidation, evaluation, weathering, nanolime, nanosilica, scanning electron microscope
Procedia PDF Downloads 74427 Application of Numerical Modeling and Field Investigations for Groundwater Recharge Characterization at Abydos Archeological Site, Sohag, Egypt
Authors: Sherif A. Abu El-Magd, Ahmed M. Sefelnasr, Ahmed M. Masoud
Abstract:
Groundwater modeling is the way and tool for assessing and managing groundwater resources efficiently. The present work was carried out in the ancient Egyptian archeological site (Abydos) fromDynastyIandII.Theareaislocated about 13km west of the River Nilecourse, Upper Egypt. The main problem in this context is that the ground water level rise threatens and damages fragile carvings and paintings of the ancient buildings. The main objective of the present work is to identify the sources of the groundwater recharge in the site, further more, equally important there is to control the ground water level rise. Numerical modeling combined with field water level measurements was implemented to understand the ground water recharge sources. However, building a conceptual model was an important step in the groundwater modeling to phase to satisfy the modeling objectives. Therefore, boreholes, crosssections, and a high-resolution digital elevation model were used to construct the conceptual model. To understand the hydrological system in the site, the model was run under both steady state and transient conditions. Then, the model was calibrated agains the observation of the water level measurements. Finally, the results based on the modeling indicated that the groundwater recharge is originating from an indirect flow path mainly from the southeast. Besides, there is a hydraulic connection between the surface water and groundwater in the study site. The decision-makers and archeologyists could consider the present work to understand the behavior of groundwater recharge and water table level rise.Keywords: numerical modeling, archeological site, groundwater recharge, egypt
Procedia PDF Downloads 123426 Environmental Decision Making Model for Assessing On-Site Performances of Building Subcontractors
Authors: Buket Metin
Abstract:
Buildings cause a variety of loads on the environment due to activities performed at each stage of the building life cycle. Construction is the first stage that affects both the natural and built environments at different steps of the process, which can be defined as transportation of materials within the construction site, formation and preparation of materials on-site and the application of materials to realize the building subsystems. All of these steps require the use of technology, which varies based on the facilities that contractors and subcontractors have. Hence, environmental consequences of the construction process should be tackled by focusing on construction technology options used in every step of the process. This paper presents an environmental decision-making model for assessing on-site performances of subcontractors based on the construction technology options which they can supply. First, construction technologies, which constitute information, tools and methods, are classified. Then, environmental performance criteria are set forth related to resource consumption, ecosystem quality, and human health issues. Finally, the model is developed based on the relationships between the construction technology components and the environmental performance criteria. The Fuzzy Analytical Hierarchy Process (FAHP) method is used for weighting the environmental performance criteria according to environmental priorities of decision-maker(s), while the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method is used for ranking on-site environmental performances of subcontractors using quantitative data related to the construction technology components. Thus, the model aims to provide an insight to decision-maker(s) about the environmental consequences of the construction process and to provide an opportunity to improve the overall environmental performance of construction sites.Keywords: construction process, construction technology, decision making, environmental performance, subcontractor
Procedia PDF Downloads 247425 Assessing the Impacts of Urbanization on Urban Precincts: A Case of Golconda Precinct, Hyderabad
Authors: Sai AKhila Budaraju
Abstract:
Heritage sites are an integral part of cities and carry a sense of identity to the cities/ towns, but the process of urbanization is a carrying potential threat for the loss of these heritage sites/monuments. Both Central and State Governments listed the historic Golconda fort as National Important Monument and the Heritage precinct with eight heritage-listed buildings and two historical sites respectively, for conservation and preservation, due to the presence of IT Corridor 6kms away accommodating more people in the precinct is under constant pressure. The heritage precinct possesses high property values, being a prime location connecting the IT corridor and CBD (central business district )areas. The primary objective of the study was to assess and identify the factors that are affecting the heritage precinct through Mapping and documentation, Identifying and assessing the factors through empirical analysis, Ordinal regression analysis and Hedonic Pricing Model. Ordinal regression analysis was used to identify the factors that contribute to the changes in the precinct due to urbanization. Hedonic Pricing Model was used to understand and establish a relation whether the presence of historical monuments is also a contributing factor to the property value and to what extent this influence can contribute. The above methods and field visit indicates the Physical, socio-economic factors and the neighborhood characteristics of the precinct contributing to the property values. The outturns and the potential elements derived from the analysis of the Development Control Rules were derived as recommendations to Integrate both Old and newly built environments.Keywords: heritage planning, heritage conservation, hedonic pricing model, ordinal regression analysis
Procedia PDF Downloads 193424 Modeling and Numerical Simulation of Heat Transfer and Internal Loads at Insulating Glass Units
Authors: Nina Penkova, Kalin Krumov, Liliana Zashcova, Ivan Kassabov
Abstract:
The insulating glass units (IGU) are widely used in the advanced and renovated buildings in order to reduce the energy for heating and cooling. Rules for the choice of IGU to ensure energy efficiency and thermal comfort in the indoor space are well known. The existing of internal loads - gage or vacuum pressure in the hermetized gas space, requires additional attention at the design of the facades. The internal loads appear at variations of the altitude, meteorological pressure and gas temperature according to the same at the process of sealing. The gas temperature depends on the presence of coatings, coating position in the transparent multi-layer system, IGU geometry and space orientation, its fixing on the facades and varies with the climate conditions. An algorithm for modeling and numerical simulation of thermal fields and internal pressure in the gas cavity at insulating glass units as function of the meteorological conditions is developed. It includes models of the radiation heat transfer in solar and infrared wave length, indoor and outdoor convection heat transfer and free convection in the hermetized gas space, assuming the gas as compressible. The algorithm allows prediction of temperature and pressure stratification in the gas domain of the IGU at different fixing system. The models are validated by comparison of the numerical results with experimental data obtained by Hot-box testing. Numerical calculations and estimation of 3D temperature, fluid flow fields, thermal performances and internal loads at IGU in window system are implemented.Keywords: insulating glass units, thermal loads, internal pressure, CFD analysis
Procedia PDF Downloads 273423 Internet of Things as a Source of Opportunities for Entrepreneurs
Authors: Svetlana Gudkova
Abstract:
The Internet of Things experiences a rapid growth bringing inevitable changes into many spheres of human activities. As the Internet has changed the social and business landscape, IoT as its extension, can bring much more profound changes in economic value creation and competitiveness of the economies. It has been already recognized as the next industrial revolution. However, the development of IoT is in a great extent stimulated by the entrepreneurial activity. To expand and reach its full potential it requires proactive entrepreneurs, who explore the potential and create innovative ideas pushing the boundaries of IoT technologies' application further. The goal of the research is to analyze, how entrepreneurs utilize the opportunities created by IoT and how do they stimulate the development of IoT through discovering of new ways of generating economic value and creating opportunities, which attract other entrepreneurs. The qualitative research methods have been applied to prepare the case studies. Entrepreneurs are recognized as an engine of economic growth. They introduce innovative products and services into the market through the creation of a new combination of the existing resources and utilizing new knowledge. Entrepreneurs not only create economic value but what is more important, they challenge the existing business models and invent new ways of value creation. Through identification and exploitation of entrepreneurial opportunities, they create new opportunities for other entrepreneurs. It makes the industry more attractive to other profit/innovation-driven start-ups. IoT creates numerous opportunities for entrepreneurs in the different industries. Smart cities, healthcare, manufacturing, retail, agriculture, smart vehicles and smart buildings benefit a lot from IoT-based breakthrough innovations introduced by entrepreneurs. They reinvented successfully the business models and created new entrepreneurial opportunities for other start-ups to introduce next innovations.Keywords: entrepreneurship, internet of things, breakthrough innovations, start-ups
Procedia PDF Downloads 200422 Application of Grey Theory in the Forecast of Facility Maintenance Hours for Office Building Tenants and Public Areas
Authors: Yen Chia-Ju, Cheng Ding-Ruei
Abstract:
This study took case office building as subject and explored the responsive work order repair request of facilities and equipment in offices and public areas by gray theory, with the purpose of providing for future related office building owners, executive managers, property management companies, mechanical and electrical companies as reference for deciding and assessing forecast model. Important conclusions of this study are summarized as follows according to the study findings: 1. Grey Relational Analysis discusses the importance of facilities repair number of six categories, namely, power systems, building systems, water systems, air conditioning systems, fire systems and manpower dispatch in order. In terms of facilities maintenance importance are power systems, building systems, water systems, air conditioning systems, manpower dispatch and fire systems in order. 2. GM (1,N) and regression method took maintenance hours as dependent variables and repair number, leased area and tenants number as independent variables and conducted single month forecast based on 12 data from January to December 2011. The mean absolute error and average accuracy of GM (1,N) from verification results were 6.41% and 93.59%; the mean absolute error and average accuracy of regression model were 4.66% and 95.34%, indicating that they have highly accurate forecast capability.Keywords: rey theory, forecast model, Taipei 101, office buildings, property management, facilities, equipment
Procedia PDF Downloads 444421 Deriving Framework for Slum Rehabilitation through Environmental Perspective: Case of Mumbai
Authors: Ashwini Bhosale, Yogesh Patil
Abstract:
Urban areas are extremely complicated environmental settings, where health and well-being of an individual and population are governed by a large number of bio-physical, socio-economical, and inclusive aspects. Although poverty and slums are the prime issues under UN-HABITAT agenda of environmental sustainability, slums, the inevitable part of urban environment, have not accounted for inclusive city planning. Developing nations, where about 60 % of world slum population resides, are increasingly under pressure to uplift the urban poor, particularly slum dwellers. From a point of advantage, these new slum redevelopment projects have succeeded in providing legitimized and more permanent and stable shelter for the low income people, as well as individualized sanitation and water supply. However, they unfortunately follow the “one type fits all" approach and exhibit no response to the climatic design needs on Mumbai. The thesis focuses on the study of environmental perspectives in the context of Daylight, natural ventilation and social aspects in the design process of Slum-Rehabilitation schemes (SRS) – case of Mumbai. It attempts to investigate into Indian approaches about SRS and concludes upon strategies to be incorporated in SRS to improve the overall SRS environment. The main objectives of this work have been to identify and study the spatial configuration and possibilities of daylight and natural ventilation in Slum Rehabilitated buildings. The performance of the proposed method was evaluated by comparison with the daylight luminance simulated by lighting software, namely ECOTECT, and with measurements under real skies whereas for the ventilation study purpose, software named FLOW DESIGN was used.Keywords: urban environment, slum-rehabilitation, daylight, natural-ventilation, architectural consequences
Procedia PDF Downloads 387420 SkyCar Rapid Transit System: An Integrated Approach of Modern Transportation Solutions in the New Queen Elizabeth Quay, Perth, Western Australia
Authors: Arfanara Najnin, Michael W. Roach, Jr., Dr. Jianhong Cecilia Xia
Abstract:
The SkyCar Rapid Transit System (SRT) is an innovative intelligent transport system for the sustainable urban transport system. This system will increase the urban area network connectivity and decrease urban area traffic congestion. The SRT system is designed as a suspended Personal Rapid Transit (PRT) system that travels under a guideway 5m above the ground. A driver-less passenger is via pod-cars that hang from slender beams supported by columns that replace existing lamp posts. The beams are setup in a series of interconnecting loops providing non-stop travel from beginning to end to assure journey time. The SRT forward movement is effected by magnetic motors built into the guideway. Passenger stops are at either at line level 5m above the ground or ground level via a spur guideway that curves off the main thoroughfare. The main objective of this paper is to propose an integrated Automated Transit Network (ATN) technology for the future intelligent transport system in the urban built environment. To fulfil the objective a 4D simulated model in the urban built environment has been proposed by using the concept of SRT-ATN system. The methodology for the design, construction and testing parameters of a Technology Demonstrator (TD) for proof of concept and a Simulator (S) has been demonstrated. The completed TD and S will provide an excellent proving ground for the next development stage, the SRT Prototype (PT) and Pilot System (PS). This paper covered by a 4D simulated model in the virtual built environment is to effectively show how the SRT-ATN system works. OpenSim software has been used to develop the model in a virtual environment, and the scenario has been simulated to understand and visualize the proposed SkyCar Rapid Transit Network model. The SkyCar system will be fabricated in a modular form which is easily transported. The system would be installed in increasingly congested city centers throughout the world, as well as in airports, tourist resorts, race tracks and other special purpose for the urban community. This paper shares the lessons learnt from the proposed innovation and provides recommendations on how to improve the future transport system in urban built environment. Safety and security of passengers are prime factors to be considered for this transit system. Design requirements to meet the safety needs to be part of the research and development phase of the project. Operational safety aspects would also be developed during this period. The vehicles, the track and beam systems and stations are the main components that need to be examined in detail for safety and security of patrons. Measures will also be required to protect columns adjoining intersections from errant vehicles in vehicular traffic collisions. The SkyCar Rapid Transit takes advantage of all current disruptive technologies; batteries, sensors and 4G/5G communication and solar energy technologies which will continue to reduce the costs and make the systems more profitable. SkyCar's energy consumption is extremely low compared to other transport systems.Keywords: SkyCar, rapid transit, Intelligent Transport System (ITS), Automated Transit Network (ATN), urban built environment, 4D Visualization, smart city
Procedia PDF Downloads 216419 Automation of Embodied Energy Calculations for Buildings through Building Information Modelling
Authors: Ahmad Odeh
Abstract:
Researchers are currently more concerned about the calculations of energy at the operational stage, mainly due to its larger environmental impact, but the fact remains, embodied energies represent a substantial contributor unaccounted for in the overall energy computation method. The calculation of materials’ embodied energy during the construction stage is complicated. This is due to the various factors involved. The equipment used, fuel needed, and electricity required for each type of materials varies with location and thus the embodied energy will differ for each project. Moreover, the method used in manufacturing, transporting and putting in place will have significant influence on the materials’ embodied energy. This anomaly has made it difficult to calculate or even bench mark the usage of such energies. This paper presents a model aimed at calculating embodied energies based on such variabilities. It presents a systematic approach that uses an efficient method of calculation to provide a new insight for the selection of construction materials. The model is developed in a BIM environment. The quantification of materials’ energy is determined over the three main stages of their lifecycle: manufacturing, transporting and placing. The model uses three major databases each of which contains set of the construction materials that are most commonly used in building projects. The first dataset holds information about the energy required to manufacture any type of materials, the second includes information about the energy required for transporting the materials while the third stores information about the energy required by machinery to place the materials in their intended locations. Through geospatial data analysis, the model automatically calculates the distances between the suppliers and construction sites and then uses dataset information for energy computations. The computational sum of all the energies is automatically calculated and then the model provides designers with a list of usable equipment along with the associated embodied energies.Keywords: BIM, lifecycle energy assessment, building automation, energy conservation
Procedia PDF Downloads 189418 Performance Investigation of Silica Gel Fluidized Bed
Authors: Sih-Li Chen, Chih-Hao Chen, Chi-Tong Chan
Abstract:
Poor ventilation and high carbon dioxide (CO2) concentrations lead to the formation of sick buildings. This problem cannot simply be resolved by introducing fresh air from outdoor environments because this creates extra loads on indoor air-conditioning systems. Desiccants are widely used in air conditioning systems in tropical and subtropical regions with high humidity to reduce the latent heat load from fresh air. Desiccants are usually used as a packed-bed type, which is low cost, to combine with air-conditioning systems. Nevertheless, the pressure drop of a packed bed is too high, and the heat of adsorption caused by the adsorption process lets the temperature of the outlet air increase, bringing about an extra heat load, so the high pressure drop and the increased temperature of the outlet air are energy consumption sources needing to be resolved. For this reason, the gas-solid fluidised beds that have high heat and mass transfer rates, uniform properties and low pressure drops are very suitable for use in air-conditioning systems.This study experimentally investigates the performance of silica gel fluidized bed device which applying to an air conditioning system. In the experiments, commercial silica gel particles were filled in the two beds and to form a fixed packed bed and a fluidized bed. The results indicated that compared to the fixed packed bed device, the total adsorption and desorption by amounts of fluidized bed for 40 minutes increased 20.6% and 19.9% respectively when the bed height was 10 cm and superficial velocity was set to 2 m/s. In addition, under this condition, the pressure drop and outlet air temperature raise were reduced by 36.0% and 30.0%. Given the above results, application of the silica gel fluidized bed to air conditioning systems has great energy-saving potential.Keywords: fluidized bed, packed bed, silica gel, adsorption, desorption, pressure drop
Procedia PDF Downloads 535417 Visual Simulation for the Relationship of Urban Fabric
Authors: Ting-Yu Lin, Han-Liang Lin
Abstract:
This article is about the urban form of visualization by Cityengine. City is composed of different domains, and each domain has its own fabric because of arrangement. For example, a neighborhood unit contains fabrics such as schools, street networks, residential and commercial spaces. Therefore, studying urban morphology can help us understand the urban form in planning process. Streets, plots, and buildings seem as urban fabrics, and they configure urban form. Traditionally, urban morphology usually discussed single parameter, which is building type, ignoring other parameters such as streets and plots. However, urban space is three-dimensional, instead of two-dimensional. People perceive urban space by their visualization. Therefore, using visualization can fill the gap between two dimensions and three dimensions. Hence, the study of urban morphology will strengthen the understanding of whole appearance of a city. Cityengine is a software which can edit, analyze and monitor the data and visualize the result for GIS, a common tool to analyze data and display the map for urban plan and urban design. Cityengine can parameterize the data of streets, plots and building types and visualize the result in three-dimensional way. The research will reappear the real urban form by visualizing. We can know whether the urban form can be parameterized and the parameterized result can match the real urban form. Then, visualizing the result by software in three dimension to analyze the rule of urban form. There will be three stages of the research. It will start with a field survey of Tainan East District in Taiwan to conclude the relationships between urban fabrics of street networks, plots and building types. Second, to visualize the relationship, it will turn the relationship into codes which Cityengine can read. Last, Cityengine will automatically display the result by visualizing.Keywords: Cityengine, urban fabric, urban morphology, visual simulation
Procedia PDF Downloads 298416 Bio-Inspired Design Approach Analysis: A Case Study of Antoni Gaudi and Santiago Calatrava
Authors: Marzieh Imani
Abstract:
Antoni Gaudi and Santiago Calatrava have reputation for designing bio-inspired creative and technical buildings. Even though they have followed different independent approaches towards design, the source of bio-inspiration seems to be common. Taking a closer look at their projects reveals that Calatrava has been influenced by Gaudi in terms of interpreting nature and applying natural principles into the design process. This research firstly discusses the dialogue between Biomimicry and architecture. This review also explores human/nature discourse during the history by focusing on how nature revealed itself to the fine arts. This is explained by introducing naturalism and romantic style in architecture as the outcome of designers’ inclination towards nature. Reviewing the literature, theoretical background and practical illustration of nature have been included. The most dominant practical aspects of imitating nature are form and function. Nature has been reflected in architectural science resulted in shaping different architectural styles such as organic, green, sustainable, bionic, and biomorphic. By defining a set of common aspects of Gaudi and Calatrava‘s design approach and by considering biomimetic design categories (organism, ecosystem, and behaviour as the main division and form, function, process, material, and construction as subdivisions), Gaudi’s and Calatrava’s project have been analysed. This analysis explores if their design approaches are equivalent or different. Based on this analysis, Gaudi’s architecture can be recognised as biomorphic while Calatrava’s projects are literally biomimetic. Referring to these architects, this review suggests a new set of principles by which a bio-inspired project can be determined either biomorphic or biomimetic.Keywords: biomimicry, Calatrava, Gaudi, nature
Procedia PDF Downloads 288415 Continuity of Place-Identity: Identifying Regional Components of Kerala Architecture through 1805-1950
Authors: Manoj K. Kumar, Deepthi Bathala
Abstract:
Man has the need to know and feel as a part of the historical continuum and it is this continuum that reinforces his identity. Architecture and the built environment contribute to this identity as established by the various identity theories exploring the relationship between the two. Architecture which is organic has been successful in maintaining a continuum of identity until the advent of globalization when the world saw a drastic shift to architecture of ‘placelessness’. The answer to the perfect synthesis of ‘universalization’ and ‘regionalism’ is an ongoing quest. However, history has established a smooth transition from vernacular to colonial to modern unlike the architecture of today. The traditional Kerala architecture has evolved from the tropical climate, geography, local needs, materials, skills and foreign influences. It is unique in contrast to the architecture of the neighboring states as a result of the geographical barriers however influenced by the architecture of the Orient due to trade relations. Through 1805 to 1950, the European influence on the architecture of Kerala resulted in the emergence of the colonial style which managed to establish a continuum of the traditional architecture. The paper focuses on the identification of the components of architecture that established the continuity of place-identity in the architecture of Kerala and examines the transition from the traditional Kerala architecture to colonial architecture during the colonial period. Visual surveys based on the principles of urban design, cognitive mapping, typology analysis followed by the strong understanding of the morphological and built environment along with the matrix method are the research tools used. The understanding of these components of continuity can be useful in creating buildings which people can relate to in the present day. South-Asia shares the history of colonialism and the understanding of these components can pave the way for further research on how to establish a regional identity in the era of globalization.Keywords: colonial, identity, place, regional
Procedia PDF Downloads 408414 Flirting with Ephemerality and the Daily Production of the Fleeting City
Authors: Rafael Martinez
Abstract:
Our view of cities is dominated by the built environment. Buildings, streets, avenues, bridges, flyovers, and so on virtually exclude anything not fixed, permanently alterable or indefinitely temporal. Yet, city environments can also be shaped by temporally produced structures which, regardless of their transience, act as thresholds separating or segregating people and spaces. Academic works on cities conceptualize them, whether temporary or permanent, as tangible environments. This paper considers the idea of the ephemeral city, a city purposely produced and lived in as an impermanent, fluid and transitional environment resulting from an alignment of different forces. In particular, the paper proposes to observe how certain performative practices inform the emergence of ephemeral spaces in the city’s daily life. With Singapore as its backdrop and focusing foreign workers, the paper aims at documenting how everyday life practices, such as flirting, result in production of transitional space, informed by semiotic blurs, and yet material, perceptible, human and tangible for some. In this paper, it is argued that flirting for Singapore's foreign workers entails skillful understanding of what is proposed as the 'flirting cartography.' Thus, spatially, flirtation becomes not only a matter to be taken for granted but also a form of producing a fleeting space that requires deployment of various techniques drawn upon a particular knowledge. The paper is based upon a performative methodology which seeks to understand the praxis and rationale of the ephemerality of some spaces produced by foreign workers within this cosmopolitan city. By resorting to this methodological approach, the paper aims to establish the connection between the visibility gained by usually marginalized populations through their ephemeral reclamation of public spaces in the city.Keywords: ephemeral, flirting, Singapore, space
Procedia PDF Downloads 107413 Geometry, the language of Manifestation of Tabriz School’s Mystical Thoughts in Architecture (Case Study: Dome of Soltanieh)
Authors: Lida Balilan, Dariush Sattarzadeh, Rana Koorepaz
Abstract:
In the Ilkhanid era, the mystical school of Tabriz manifested itself as an art school in various aspects, including miniatures, architecture, urban planning and design, simultaneously with the expansion of the many sciences of its time. In this era, mysticism, both in form and in poetry and prose, as well as in works of art reached its peak. Mysticism, as an inner belief and thought, brought the audience to the artistic and aesthetical view using allegorical and symbolic expression of the religion and had a direct impact on the formation of the intellectual and cultural layers of the society. At the same time, Mystic school of Tabriz could create a symbolic and allegorical language to create magnificent works of architecture with the expansion of science in various fields and using various sciences such as mathematics, geometry, science of numbers and by Abjad letters. In this era, geometry is the middle link between mysticism and architecture and it is divided into two categories, including intellectual and sensory geometry and based on its function. Soltaniyeh dome is one of the prominent buildings of the Tabriz school with the shrine land use. In this article, information is collected using a historical-interpretive method and the results are analyzed using an analytical-comparative method. The results of the study suggest that the designers and builders of the Soltaniyeh dome have used shapes, colors, numbers, letters and words in the form of motifs, geometric patterns as well as lines and writings in levels and layers ranging from plans to decorations and arrays for architectural symbolization and encryption to express and transmit mystical ideas.Keywords: geometry, Tabriz school, mystical thoughts, dome of Soltaniyeh
Procedia PDF Downloads 86412 Developing Indoor Enhanced Bio Composite Vertical Smart Farming System for Climbing Food Plant
Authors: S. Mokhtar, R. Ibrahim, K. Abdan, A. Rashidi
Abstract:
The population in the world are growing in very fast rate. It is expected that urban growth and development would create serious questions of food production and processing, transport, and consumption. Future smart green city policies are emerging to support new ways of visualizing, organizing and managing the city and its flows towards developing more sustainable cities in ensuring food security while maintaining its biodiversity. This is a survey paper analyzing the feasibility of developing a smart vertical farming system for climbing food plant to meet the need of food consumption in urban cities with an alternative green material. This paper documents our investigation on specific requirement for farming high valued climbing type food plant suitable for vertical farming, development of appropriate biocomposite material composition, and design recommendations for developing a new smart vertical farming system inside urban buildings. Results include determination of suitable specific climbing food plant species and material manufacturing processes for reinforcing natural fiber for biocomposite material. The results are expected to become recommendations for developing alternative structural materials for climbing food plant later on towards the development of the future smart vertical farming system. This paper contributes to supporting urban farming in cities and promotes green materials for preserving the environment. Hence supporting efforts in food security agenda especially for developing nations.Keywords: biocomposite, natural reinforce fiber, smart farming, vertical farming
Procedia PDF Downloads 165411 Utilization of Manila Clam Shells (Venerupis Philippinarum) and Raffia Palm Fiber (Raphia Farinifera) as an Additive in Producing Concrete Roof Tiles
Authors: Sofina Faith C. Navarro, Luke V. Subala, Rica H. Gatus, Alfonzo Ramon DG. Burguete
Abstract:
Roof tiles, as integral components of buildings, play a crucial role in protecting structures from many things. The study focuses on the production of sustainable roof tiles that address the waste disposal challenges associated with Manila clam shells and mitigate the environmental impact of conventional roof tile materials. Various concentrations of roof tiles are developed, incorporating different proportions of powdered clam shell that contains calcium carbonate and shredded raffia palm fiber. Subsequently, the roof tiles are cast using standard methods and transported to the University of the Philippines Institute of Civil Engineering (UP-ICE) for flexural strength testing. In conclusion, the research aimed to assess the flexural durability of concrete roof tiles with varying concentrations of Raffia Palm Fiber and Manila Clam Shells additives. The findings indicate notable differences in maximum load capacities among the specimens, with C3.1 emerging as the concentration with the highest load-bearing capacity at 313.59729 N. This concentration, with a flexural strength of 2.15214, is identified as the most durable option, with a slightly heavier weight of 1.10 kg. On the other hand, C2.2, with a flexural strength of 0.366 and a weight of 0.80 kg, is highlighted for its impressive durability performance while maintaining a lighter composition. Therefore, for the production of concrete roof tile, C3.1 is recommended for optimal durability, while C2.2 is suggested as a preferable option considering both durability and lightweight characteristics.Keywords: raffia palm fiber, flexural strength, lightweightness, Manila Clam Shells
Procedia PDF Downloads 61410 Utilization of Manila Clam Shells (Venerupis Philippinarum) and Raffia Palm Fiber (Raphia Farinifera) as an Additive in Producing Concrete Roof Tiles
Authors: Alfonzo Ramon Burguete, Rica Gatus, Sofina Faith Navarro, Luke Subala
Abstract:
Roof tiles, as integral components of buildings, play a crucial role in protecting structures from many things. The study focuses on the production of sustainable roof tiles that address the waste disposal challenges associated with Manila clam shells and mitigate the environmental impact of conventional roof tile materials. Various concentrations of roof tiles are developed, incorporating different proportions of powdered clam shell that contains calcium carbonate and shredded raffia palm fiber. Subsequently, the roof tiles are cast using standard methods and transported to the University of the Philippines Institute of Civil Engineering (UP-ICE) for flexural strength testing. In conclusion, the research aimed to assess the flexural durability of concrete roof tiles with varying concentrations of Raffia Palm Fiber and Manila Clam Shells additives. The findings indicate notable differences in maximum load capacities among the specimens, with C3.1 emerging as the concentration with the highest load-bearing capacity at 313.59729 N. This concentration, with a flexural strength of 2.15214, is identified as the most durable option, with a slightly heavier weight of 1.10 kg. On the other hand, C2.2, with a flexural strength of 0.366 and a weight of 0.80 kg, is highlighted for its impressive durability performance while maintaining a lighter composition. Therefore, for the production of concrete roof tile C3.1 is recommended for optimal durability, while C2.2 is suggested as a preferable option considering both durability and lightweight characteristics.Keywords: manila clam shells, raffia palm fiber, flexural strength, lightweightness
Procedia PDF Downloads 62409 House Facades and Emotions: Exploring the Psychological Impact of Architectural Features
Authors: Nour Tawil, Sandra Weber, Kirsten K. Roessler, Martin Mau, Simone Kuhn
Abstract:
The link between “quality” residential environments and human health and well-being has long been proposed. While the physical properties of a sound environment have been fairly defined, little focus has been given to the psychological impact of architectural elements. Recently, studies have investigated the response to architectural parameters, using measures of physiology, brain activity, and emotion. Results showed different aspects of interest: detailed and open versus blank and closed facades, patterns in perceiving different elements, and a visual bias for capturing faces in buildings. However, in the absence of a consensus on methodologies, the available studies remain unsystematic and face many limitations regarding the underpinning psychological mechanisms. To bridge some of these gaps, an online study was launched to investigate design features that influence the aesthetic judgement and emotional evaluation of house facades, using a well-controlled stimulus set of Canadian houses. A methodical modelling of design features will be performed to extract both high and low level image properties, in addition to segmentation of layout-related features. 300 participants from Canada, Denmark, and Germany will rate the images on twelve psychological dimensions representing appealing aspects of a house. Subjective ratings are expected to correlate with specific architectural elements while controlling for typicality and familiarity, and other individual differences. With the lack of relevant studies, this research aims to identify architectural elements of beneficial qualities that can inform design strategies for optimized residential spaces.Keywords: architectural elements, emotions, psychological response, residential facades.
Procedia PDF Downloads 230