Search results for: model-free damage detection
4161 High Cycle Fatigue Analysis of a Lower Hopper Knuckle Connection of a Large Bulk Carrier under Dynamic Loading
Authors: Vaso K. Kapnopoulou, Piero Caridis
Abstract:
The fatigue of ship structural details is of major concern in the maritime industry as it can generate fracture issues that may compromise structural integrity. In the present study, a fatigue analysis of the lower hopper knuckle connection of a bulk carrier was conducted using the Finite Element Method by means of ABAQUS/CAE software. The fatigue life was calculated using Miner’s Rule and the long-term distribution of stress range by the use of the two-parameter Weibull distribution. The cumulative damage ratio was estimated using the fatigue damage resulting from the stress range occurring at each load condition. For this purpose, a cargo hold model was first generated, which extends over the length of two holds (the mid-hold and half of each of the adjacent holds) and transversely over the full breadth of the hull girder. Following that, a submodel of the area of interest was extracted in order to calculate the hot spot stress of the connection and to estimate the fatigue life of the structural detail. Two hot spot locations were identified; one at the top layer of the inner bottom plate and one at the top layer of the hopper plate. The IACS Common Structural Rules (CSR) require that specific dynamic load cases for each loading condition are assessed. Following this, the dynamic load case that causes the highest stress range at each loading condition should be used in the fatigue analysis for the calculation of the cumulative fatigue damage ratio. Each load case has a different effect on ship hull response. Of main concern, when assessing the fatigue strength of the lower hopper knuckle connection, was the determination of the maximum, i.e. the critical value of the stress range, which acts in a direction normal to the weld toe line. This acts in the transverse direction, that is, perpendicularly to the ship's centerline axis. The load cases were explored both theoretically and numerically in order to establish the one that causes the highest damage to the location examined. The most severe one was identified to be the load case induced by beam sea condition where the encountered wave comes from the starboard. At the level of the cargo hold model, the model was assumed to be simply supported at its ends. A coarse mesh was generated in order to represent the overall stiffness of the structure. The elements employed were quadrilateral shell elements, each having four integration points. A linear elastic analysis was performed because linear elastic material behavior can be presumed, since only localized yielding is allowed by most design codes. At the submodel level, the displacements of the analysis of the cargo hold model to the outer region nodes of the submodel acted as boundary conditions and applied loading for the submodel. In order to calculate the hot spot stress at the hot spot locations, a very fine mesh zone was generated and used. The fatigue life of the detail was found to be 16.4 years which is lower than the design fatigue life of the structure (25 years), making this location vulnerable to fatigue fracture issues. Moreover, the loading conditions that induce the most damage to the location were found to be the various ballasting conditions.Keywords: dynamic load cases, finite element method, high cycle fatigue, lower hopper knuckle
Procedia PDF Downloads 4184160 Suggestion of Two-Step Traction Therapy for Safer and More Effective Conservative Treatment for Low Back Pain
Authors: Won Man Park, Dae Kyung Choi, Kyungsoo Kim, Yoon Hyuk Kim
Abstract:
Traction therapy has been used in the treatment of spinal pain for decades. However, a case study reported the occurrence of large disc protrusion during motorized traction therapy. In this study, we hypothesized that additional local decompression with a global axial traction could be helpful for risk reduction of intervertebral disc damage. A validated three dimensional finite element model of the lumbar spine was used. Two-step traction therapy using the axial global traction (the first step) with 1/3 body weight and the additional local decompression (the second step) with 7 mm translation of L4 spinal bone was determined for the traction therapy. During two-step traction therapy, the sacrum was constrained in all translational directions. Reduced lordosis angle by the global axial traction recovered with the additional local decompression. Stress on fibers of the annulus fibrosus by the axial global traction decreased with the local decompression by 17%~96% in the posterior region of intervertebral disc. Stresses on ligaments except anterior longitudinal ligaments in all motion segments decreased till 4.9 mm~5.6 mm translation of L4 spinal bone. The results of this study showed that the additional local decompression is very useful for reducing risk of damage in the intervertebral disc and ligaments caused by the global axial traction force. Moreover, the local decompression could be used to enhance reduction of intradiscal pressure.Keywords: lumbar spine, traction-therapy, biomechanics, finite element analysis
Procedia PDF Downloads 4864159 An Integrated Real-Time Hydrodynamic and Coastal Risk Assessment Model
Authors: M. Reza Hashemi, Chris Small, Scott Hayward
Abstract:
The Northeast Coast of the US faces damaging effects of coastal flooding and winds due to Atlantic tropical and extratropical storms each year. Historically, several large storm events have produced substantial levels of damage to the region; most notably of which were the Great Atlantic Hurricane of 1938, Hurricane Carol, Hurricane Bob, and recently Hurricane Sandy (2012). The objective of this study was to develop an integrated modeling system that could be used as a forecasting/hindcasting tool to evaluate and communicate the risk coastal communities face from these coastal storms. This modeling system utilizes the ADvanced CIRCulation (ADCIRC) model for storm surge predictions and the Simulating Waves Nearshore (SWAN) model for the wave environment. These models were coupled, passing information to each other and computing over the same unstructured domain, allowing for the most accurate representation of the physical storm processes. The coupled SWAN-ADCIRC model was validated and has been set up to perform real-time forecast simulations (as well as hindcast). Modeled storm parameters were then passed to a coastal risk assessment tool. This tool, which is generic and universally applicable, generates spatial structural damage estimate maps on an individual structure basis for an area of interest. The required inputs for the coastal risk model included a detailed information about the individual structures, inundation levels, and wave heights for the selected region. Additionally, calculation of wind damage to structures was incorporated. The integrated coastal risk assessment system was then tested and applied to Charlestown, a small vulnerable coastal town along the southern shore of Rhode Island. The modeling system was applied to Hurricane Sandy and a synthetic storm. In both storm cases, effect of natural dunes on coastal risk was investigated. The resulting damage maps for the area (Charlestown) clearly showed that the dune eroded scenarios affected more structures, and increased the estimated damage. The system was also tested in forecast mode for a large Nor’Easters: Stella (March 2017). The results showed a good performance of the coupled model in forecast mode when compared to observations. Finally, a nearshore model XBeach was then nested within this regional grid (ADCIRC-SWAN) to simulate nearshore sediment transport processes and coastal erosion. Hurricane Irene (2011) was used to validate XBeach, on the basis of a unique beach profile dataset at the region. XBeach showed a relatively good performance, being able to estimate eroded volumes along the beach transects with a mean error of 16%. The validated model was then used to analyze the effectiveness of several erosion mitigation methods that were recommended in a recent study of coastal erosion in New England: beach nourishment, coastal bank (engineered core), and submerged breakwater as well as artificial surfing reef. It was shown that beach nourishment and coastal banks perform better to mitigate shoreline retreat and coastal erosion.Keywords: ADCIRC, coastal flooding, storm surge, coastal risk assessment, living shorelines
Procedia PDF Downloads 1164158 Efficiency on the Enteric Viral Removal in Four Potable Water Treatment Plants in Northeastern Colombia
Authors: Raquel Amanda Villamizar Gallardo, Oscar Orlando Ortíz Rodríguez
Abstract:
Enteric viruses are cosmopolitan agents present in several environments including water. These viruses can cause different diseases including gastroenteritis, hepatitis, conjunctivitis, respiratory problems among others. Although in Colombia there are not regulations concerning to routine viral analysis of drinking water, an enhanced understanding of viral pollution and resistance to treatments is desired in order to assure pure water to the population. Viral detection is often complex due to the need of specialized and time-consuming procedures. In addition, viruses are highly diluted in water which is a drawback from the analytical point of view. To this end, a fast and selective detection method for detection enteric viruses (i.e. Hepatitis A and Rotavirus) were applied. Micro- magnetic particles were functionalized with monoclonal antibodies anti-Hepatitis and anti-Rotavirus and they were used to capture, concentrate and separate whole viral particles in raw water and drinking water samples from four treatment plants identified as CAR-01, MON-02, POR-03, TON-04 and located in the Northeastern Colombia. Viruses were molecularly by using RT-PCR One Step Superscript III. Each plant was analyzed at the entry and exit points, in order to determine the initial presence and eventual reduction of Hepatitis A and Rotavirus after disinfection. The results revealed the presence of both enteric viruses in a 100 % of raw water analyzed in all plants. This represents a potential health hazard, especially for those people whose use this water for agricultural purposes. However, in drinking water analysis, enteric viruses was only positive in CAR-01, where was found the presence of Rotavirus. As a conclusion, the results confirm Rotavirus as the best indicator to evaluate the efficacy of potable treatment plant in eliminating viruses. CAR potable water plant should improve their disinfection process in order to remove efficiently enteric viruses.Keywords: drinking water, hepatitis A, rotavirus, virus removal
Procedia PDF Downloads 2334157 Spatial-Temporal Awareness Approach for Extensive Re-Identification
Authors: Tyng-Rong Roan, Fuji Foo, Wenwey Hseush
Abstract:
Recent development of AI and edge computing plays a critical role to capture meaningful events such as detection of an unattended bag. One of the core problems is re-identification across multiple CCTVs. Immediately following the detection of a meaningful event is to track and trace the objects related to the event. In an extensive environment, the challenge becomes severe when the number of CCTVs increases substantially, imposing difficulties in achieving high accuracy while maintaining real-time performance. The algorithm that re-identifies cross-boundary objects for extensive tracking is referred to Extensive Re-Identification, which emphasizes the issues related to the complexity behind a great number of CCTVs. The Spatial-Temporal Awareness approach challenges the conventional thinking and concept of operations which is labor intensive and time consuming. The ability to perform Extensive Re-Identification through a multi-sensory network provides the next-level insights – creating value beyond traditional risk management.Keywords: long-short-term memory, re-identification, security critical application, spatial-temporal awareness
Procedia PDF Downloads 1124156 Mitigating Acid Mine Drainage Pollution: A Case Study In the Witwatersrand Area of South Africa
Authors: Elkington Sibusiso Mnguni
Abstract:
In South Africa, mining has been a key economic sector since the discovery of gold in 1886 in the Witwatersrand region, where the city of Johannesburg is located. However, some mines have since been decommissioned, and the continuous pumping of acid mine drainage (AMD) also stopped causing the AMD to rise towards the ground surface. This posed a serious environmental risk to the groundwater resources and river systems in the region. This paper documents the development and extent of the environmental damage as well as the measures implemented by the government to alleviate such damage. The study will add to the body of knowledge on the subject of AMD treatment to prevent environmental degradation. The method used to gather and collate relevant data and information was the desktop study. The key findings include the social and environmental impact of the AMD, which include the pollution of water sources for domestic use leading to skin and other health problems and the loss of biodiversity in some areas. It was also found that the technical intervention of constructing a plant to pump and treat the AMD using the high-density sludge technology was the most effective short-term solution available while a long-term solution was being explored. Some successes and challenges experienced during the implementation of the project are also highlighted. The study will be a useful record of the current status of the AMD treatment interventions in the region.Keywords: acid mine drainage, groundwater resources, pollution, river systems, technical intervention, high density sludge
Procedia PDF Downloads 1864155 Change Point Detection Using Random Matrix Theory with Application to Frailty in Elderly Individuals
Authors: Malika Kharouf, Aly Chkeir, Khac Tuan Huynh
Abstract:
Detecting change points in time series data is a challenging problem, especially in scenarios where there is limited prior knowledge regarding the data’s distribution and the nature of the transitions. We present a method designed for detecting changes in the covariance structure of high-dimensional time series data, where the number of variables closely matches the data length. Our objective is to achieve unbiased test statistic estimation under the null hypothesis. We delve into the utilization of Random Matrix Theory to analyze the behavior of our test statistic within a high-dimensional context. Specifically, we illustrate that our test statistic converges pointwise to a normal distribution under the null hypothesis. To assess the effectiveness of our proposed approach, we conduct evaluations on a simulated dataset. Furthermore, we employ our method to examine changes aimed at detecting frailty in the elderly.Keywords: change point detection, hypothesis tests, random matrix theory, frailty in elderly
Procedia PDF Downloads 524154 Application of a Model-Free Artificial Neural Networks Approach for Structural Health Monitoring of the Old Lidingö Bridge
Authors: Ana Neves, John Leander, Ignacio Gonzalez, Raid Karoumi
Abstract:
Systematic monitoring and inspection are needed to assess the present state of a structure and predict its future condition. If an irregularity is noticed, repair actions may take place and the adequate intervention will most probably reduce the future costs with maintenance, minimize downtime and increase safety by avoiding the failure of the structure as a whole or of one of its structural parts. For this to be possible decisions must be made at the right time, which implies using systems that can detect abnormalities in their early stage. In this sense, Structural Health Monitoring (SHM) is seen as an effective tool for improving the safety and reliability of infrastructures. This paper explores the decision-making problem in SHM regarding the maintenance of civil engineering structures. The aim is to assess the present condition of a bridge based exclusively on measurements using the suggested method in this paper, such that action is taken coherently with the information made available by the monitoring system. Artificial Neural Networks are trained and their ability to predict structural behavior is evaluated in the light of a case study where acceleration measurements are acquired from a bridge located in Stockholm, Sweden. This relatively old bridge is presently still in operation despite experiencing obvious problems already reported in previous inspections. The prediction errors provide a measure of the accuracy of the algorithm and are subjected to further investigation, which comprises concepts like clustering analysis and statistical hypothesis testing. These enable to interpret the obtained prediction errors, draw conclusions about the state of the structure and thus support decision making regarding its maintenance.Keywords: artificial neural networks, clustering analysis, model-free damage detection, statistical hypothesis testing, structural health monitoring
Procedia PDF Downloads 2084153 Accurate Mass Segmentation Using U-Net Deep Learning Architecture for Improved Cancer Detection
Authors: Ali Hamza
Abstract:
Accurate segmentation of breast ultrasound images is of paramount importance in enhancing the diagnostic capabilities of breast cancer detection. This study presents an approach utilizing the U-Net architecture for segmenting breast ultrasound images aimed at improving the accuracy and reliability of mass identification within the breast tissue. The proposed method encompasses a multi-stage process. Initially, preprocessing techniques are employed to refine image quality and diminish noise interference. Subsequently, the U-Net architecture, a deep learning convolutional neural network (CNN), is employed for pixel-wise segmentation of regions of interest corresponding to potential breast masses. The U-Net's distinctive architecture, characterized by a contracting and expansive pathway, enables accurate boundary delineation and detailed feature extraction. To evaluate the effectiveness of the proposed approach, an extensive dataset of breast ultrasound images is employed, encompassing diverse cases. Quantitative performance metrics such as the Dice coefficient, Jaccard index, sensitivity, specificity, and Hausdorff distance are employed to comprehensively assess the segmentation accuracy. Comparative analyses against traditional segmentation methods showcase the superiority of the U-Net architecture in capturing intricate details and accurately segmenting breast masses. The outcomes of this study emphasize the potential of the U-Net-based segmentation approach in bolstering breast ultrasound image analysis. The method's ability to reliably pinpoint mass boundaries holds promise for aiding radiologists in precise diagnosis and treatment planning. However, further validation and integration within clinical workflows are necessary to ascertain their practical clinical utility and facilitate seamless adoption by healthcare professionals. In conclusion, leveraging the U-Net architecture for breast ultrasound image segmentation showcases a robust framework that can significantly enhance diagnostic accuracy and advance the field of breast cancer detection. This approach represents a pivotal step towards empowering medical professionals with a more potent tool for early and accurate breast cancer diagnosis.Keywords: mage segmentation, U-Net, deep learning, breast cancer detection, diagnostic accuracy, mass identification, convolutional neural network
Procedia PDF Downloads 844152 Genoprotective Effect of Lepidium sativum L. Seed Methanolic Extract on Cyclophosphamide-Induced DNA Damage in Mice and Characterization of Its Flavonoidal Content
Authors: Iman A. A. Kassem, Ayman A. Farghaly, Zeinab M. Hassan, Farouk R. Melek, Neveen S. Ghaly
Abstract:
Lipidium sativum L, an annual herb that grows to 50 cm, is known as an important member of family Brassicaceae. Besides its nutritional value, the seeds were widely used in folk medicine for treatment of cough, asthma, and headache. It was also reported to possess hypocholesterolemic, anti-inflammatory, antidiarrheal, antimicrobial and anticancer activities. In this study, the genoprotective properties of L. sativum seed methanolic extract (LSME) were evaluated in vivo. Three groups of mice were given LSME for five consecutive days at the three dose levels 25, 50 and 100 mg/kg b.wt. The three groups were then injected intraperitoneally with cyclophosphamide at a dose of 20 mg/kg b.wt. to induce DNA damage. A group received only cyclophosphamide (20 mg/kg b.wt.) served as control. LSME significantly inhibited the DNA aberrations in mice caused by cyclophosphamide in a dose-dependent manner in the two groups that received LSME at 50 and 100 mg/kg b.wt. dose levels. The chromosomal aberrations' inhibitory indices were calculated as 18 and 31 in mice bone marrow cells and 27 and 48 in mice spermatocytes, respectively. Phytochemical examination carried out by us revealed that flavonoids were the main chemical constituents of LSME. The major flavonoids kaempferol, kaempferol-3-O-rhamnoside, kaempferol-3-O-glucoside, quercetin, and quercetin-3-O-glucoside were isolated and characterized. It was concluded that the genoprotective effect of LSME might be attributed to the presence of flavonoids which are well-known for their antioxidant properties.Keywords: cyclophosphamide, flavonoids, genoprotective effect, Lepidium sativum
Procedia PDF Downloads 1574151 Improving the Detection of Depression in Sri Lanka: Cross-Sectional Study Evaluating the Efficacy of a 2-Question Screen for Depression
Authors: Prasad Urvashi, Wynn Yezarni, Williams Shehan, Ravindran Arun
Abstract:
Introduction: Primary health services are often the first point of contact that patients with mental illness have with the healthcare system. A number of tools have been developed to increase detection of depression in the context of primary care. However, one challenge amongst many includes utilizing these tools within the limited primary care consultation timeframe. Therefore, short questionnaires that screen for depression that are just as effective as more comprehensive diagnostic tools may be beneficial in improving detection rates of patients visiting a primary care setting. Objective: To develop and determine the sensitivity and specificity of a 2-Question Questionnaire (2-QQ) to screen for depression in in a suburban primary care clinic in Ragama, Sri Lanka. The purpose is to develop a short screening tool for depression that is culturally adapted in order to increase the detection of depression in the Sri Lankan patient population. Methods: This was a cross-sectional study involving two steps. Step one: verbal administration of 2-QQ to patients by their primary care physician. Step two: completion of the Peradeniya Depression Scale, a validated diagnostic tool for depression, the patient after their consultation with the primary care physician. The results from the PDS were then correlated to the results from the 2-QQ for each patient to determine sensitivity and specificity of the 2-QQ. Results: A score of 1/+ on the 2-QQ was most sensitive but least specific. Thus, setting the threshold at this level is effective for correctly identifying depressed patients, but also inaccurately captures patients who are not depressed. A score of 6 on the 2-QQ was most specific but least sensitive. Setting the threshold at this level is effective for correctly identifying patients without depression, but not very effective at capturing patients with depression. Discussion: In the context of primary care, it may be worthwhile setting the 2-QQ screen at a lower threshold for positivity (such as a score of 1 or above). This would generate a high test sensitivity and thus capture the majority of patients that have depression. On the other hand, by setting a low threshold for positivity, patients who do not have depression but score higher than 1 on the 2-QQ will also be falsely identified as testing positive for depression. However, the benefits of identifying patients who present with depression may outweigh the harms of falsely identifying a non-depressed patient. It is our hope that the 2-QQ will serve as a quick primary screen for depression in the primary care setting and serve as a catalyst to identify and treat individuals with depression.Keywords: depression, primary care, screening tool, Sri Lanka
Procedia PDF Downloads 2574150 Effect of Exercise Training and Dietary Silymarin on Levels of Leptin, Adiponectin, Paraoxonase and Body Composition
Authors: Alireza Barari, Saeed Shirali
Abstract:
The etiology of obesity is heterogeneous with several factors, and the pathophysiology of obesity has recently related to leptin, oxidative damage, and inflammation. Silybum marianum have a health-promoting perspective and has shown that bioactive molecules of silymarin have the antioxidant and antitumor properties and can affect secretion of hormones and enzyme activity in animal. This study aimed to evaluate the antioxidant effects and changes in hormonal levels and body composition after silymarin consumption. Forty-five healthy untrained colleges male take part in the 4-week investigation. The subjects were assigned to 5 groups: endurance training, Silymarin with endurance training, strength training with placebo, Silymarin with strength training or placebo. Body fat percentage and Blood sample analysis were measured before and after the intervention to assay leptin, adiponectin and paraoxonase in the sample of subject's serum. There was a considerable decrease in body fat percent and a significant increase in VO2 max in 'Strength training' and 'Strength training with Silymarin' groups. But, no significant changes in levels of leptin, adiponectinin, and paraoxanase (PON) that were observed between exercise and exercise with Silymarin in these groups. We observed reduction in body fat% and increase in adiponectin induced by exercise for 4 weeks in untrained healthy men. Silybin, could not effectively improve all parameters and don’t prevent the progression of cell damage by antioxidant activity of PON.Keywords: anti-inflammatory activity, antioxidant activity, silymarin, body composition, paraoxonase (PON)
Procedia PDF Downloads 2194149 Optimal Configuration for Polarimetric Surface Plasmon Resonance Sensors
Authors: Ibrahim Watad, Ibrahim Abdulhalim
Abstract:
Conventional spectroscopic surface plasmon resonance (SPR) sensors are widely used, both in fundamental research and environmental monitoring as well as healthcare diagnostics. However, they still lack the low limit of detection (LOD) and there still a place for improvement. SPR conventional sensors are based on the detection of a dip in the reflectivity spectrum which is relatively wide. To improve the performance of these sensors, many techniques and methods proposed either to reduce the width of the dip or to increase the sensitivity. Together with that, profiting from the sharp jump in the phase spectrum under SPR, several works suggested the extraction of the phase of the reflected wave. However, existing phase measurement setups are in general more complicated compared to the conventional setups, require more stability and are very sensitive to external vibrations and noises. In this study, a simple polarimetric technique for phase extraction under SPR is presented, followed by a theoretical error analysis and an experimental verification. The advantages of the proposed technique upon existing techniques will be elaborated, together with conclusions regarding the best polarimetric function, and its corresponding optimal metal layer range of thicknesses to use under the conventional Kretschmann-Raether configuration.Keywords: plasmonics, polarimetry, thin films, optical sensors
Procedia PDF Downloads 4044148 Disruption of Cancer Cell Proliferation by Magnetic Field
Authors: Ming Ze Kao
Abstract:
Static magnetic fields (SMF) are widely used in several medical applications, especially in diagnosis of tumors. However, biological effects of the SMFs on modulating cell physiology through the Lorentz force, which is highly frequency and magnitude dependent, remain to be elucidated. Specific patterns from SMFs of static MF, delivered by means of Halbach array magnets with a gradient increment of 6.857mT/mm from center to border, were found to have profound inhibitory effect on the growth rate of human cell line derived from Nasopharyngeal carcinoma patients. The SMFs, which were shown to be noncontact, selectively impact rapid dividing cells while quiescent cells stay intact. The phenomenon acts in two modes: the arrest of cell proliferation in the G2/M phase and destruction of cell mitosis in cell division. First mode is manifested by impacting the proper formation of mitotic spindle, whereas the second results in disintegration of the cancer cell. Both modes are demonstrated when SMF was applied for 24 hours to cancer cells, the results revealed that metaphase arrest during mitosis due to activation of DNA damage response (DDR), resulting in high expression of ATM-NBS1-CHEK signaling pathways and higher G2/M phase ratio compared with control group. Here, experimental data suggest that the SMFs cause activation of cell cycle checkpoints, which implies the MFs as a potential therapeutic modality as a sensitizer for radiotherapy or chemotherapy.Keywords: static magnetic field, DNA damage response, Halbach array, magnetic therapy
Procedia PDF Downloads 1144147 Modeling and Behavior of Structural Walls
Authors: Salima Djehaichia, Rachid Lassoued
Abstract:
Reinforced concrete structural walls are very efficient elements for protecting buildings against excessive early damage and against collapse under earthquake actions. It is therefore of interest to develop a numerical model which simulates the typical behavior of these units, this paper presents and describes different modeling techniques that have been used by researchers and their advantages and limitations mentioned. The earthquake of Boumerdes in 2003 has demonstrated the fragility of structures and total neglect of sismique design rules in the realization of old buildings. Significant damage and destruction of buildings caused by this earthquake are not due to the choice of type of material, but the design and the study does not congruent with seismic code requirements and bad quality of materials. For idealizing the failure of rules, a parametric study focuses on: low rate of reinforcements, type of reinforcement, resistance moderate of concrete. As an application the modeling strategy based on finite elements combined with a discretization of wall more solicited by successive thin layers. The estimated performance level achieved during a seismic action is obtained from capacity curves under incrementally increasing loads. Using a pushover analysis, a characteristic non linear force-displacement relationship can be determined. The results of numeric model are confronted with those of Algerian Para seismic Rules (RPA) in force have allowed the determination of profits in terms of displacement, shearing action, ductility.Keywords: modeling, old building, pushover analysis, structural walls
Procedia PDF Downloads 2464146 Peptide Aptasensor for Electrochemical Detection of Rheumatoid Arthritis
Authors: Shah Abbas
Abstract:
Rheumatoid arthritis is a systemic, inflammatory autoimmune disease, affecting an overall 1% of the global population. Despite being tremendous efforts by scientists, early diagnosis of RA still has not been achieved. In the current study, a Graphene oxide (GO) based electrochemical sensor has been developed for early diagnosis of RA through Cyclic voltammetry. Chitosan (CHI), a CPnatural polymer has also been incorporated along with GO in order to enhance the biocompatibility and functionalization potential of the biosensor. CCPs are known antigens for Anti Citrullinated Peptide Antibodies (ACPAs) which can be detected in serum even 14 years before the appearance of symptoms, thus they are believed to be an ideal target for the early diagnosis of RA. This study has yielded some promising results regarding the binding and detection of ACPAs through changes in the electrochemical properties of biosensing material. The cyclic voltammogram of this biosensor reflects the binding of ACPAs to the biosensor surface, due to its shifts observed in the current flow (cathodic current) as compared to the when no ACPAs bind as it is absent in RA negative patients.Keywords: rheumatoid arthritis, peptide sensor, graphene oxide, anti citrullinated peptide antibodies, cyclic voltammetry
Procedia PDF Downloads 1424145 Profit-Based Artificial Neural Network (ANN) Trained by Migrating Birds Optimization: A Case Study in Credit Card Fraud Detection
Authors: Ashkan Zakaryazad, Ekrem Duman
Abstract:
A typical classification technique ranks the instances in a data set according to the likelihood of belonging to one (positive) class. A credit card (CC) fraud detection model ranks the transactions in terms of probability of being fraud. In fact, this approach is often criticized, because firms do not care about fraud probability but about the profitability or costliness of detecting a fraudulent transaction. The key contribution in this study is to focus on the profit maximization in the model building step. The artificial neural network proposed in this study works based on profit maximization instead of minimizing the error of prediction. Moreover, some studies have shown that the back propagation algorithm, similar to other gradient–based algorithms, usually gets trapped in local optima and swarm-based algorithms are more successful in this respect. In this study, we train our profit maximization ANN using the Migrating Birds optimization (MBO) which is introduced to literature recently.Keywords: neural network, profit-based neural network, sum of squared errors (SSE), MBO, gradient descent
Procedia PDF Downloads 4754144 Degraded Document Analysis and Extraction of Original Text Document: An Approach without Optical Character Recognition
Authors: L. Hamsaveni, Navya Prakash, Suresha
Abstract:
Document Image Analysis recognizes text and graphics in documents acquired as images. An approach without Optical Character Recognition (OCR) for degraded document image analysis has been adopted in this paper. The technique involves document imaging methods such as Image Fusing and Speeded Up Robust Features (SURF) Detection to identify and extract the degraded regions from a set of document images to obtain an original document with complete information. In case, degraded document image captured is skewed, it has to be straightened (deskew) to perform further process. A special format of image storing known as YCbCr is used as a tool to convert the Grayscale image to RGB image format. The presented algorithm is tested on various types of degraded documents such as printed documents, handwritten documents, old script documents and handwritten image sketches in documents. The purpose of this research is to obtain an original document for a given set of degraded documents of the same source.Keywords: grayscale image format, image fusing, RGB image format, SURF detection, YCbCr image format
Procedia PDF Downloads 3774143 Antioxidant Mediated Neuroprotective Effects of Allium Cepa Extract Against Ischemia Reperfusion Induced Cognitive Dysfunction and Brain Damage in Mice
Authors: Jaspal Rana, Varinder Singh
Abstract:
Oxidative stress has been identified as an underlying cause of ischemia-reperfusion (IR) related cognitive dysfunction and brain damage. Therefore, antioxidant based therapies to treat IR injury are being investigated. Allium cepa L. (onion) is used as culinary medicine and is documented to have marked antioxidant effects. Hence, the present study was designed to evaluate the effect of A. cepa outer scale extract (ACE) against IR induced cognition and biochemical deficit in mice. ACE was prepared by maceration with 70% methanol and fractionated into ethylacetate and aqueous fractions. Bilateral common carotid artery occlusion for 10 min, followed by 24 h reperfusion, was used to induce cerebral IR injury. Following IR injury, ACE (100 and 200 mg/kg) was administered orally to animals for 7 days once daily. Behavioral outcomes (memory and sensorimotor functions) were evaluated using Morris water maze and neurological severity score. Cerebral infarct size, brain thiobarbituric acid reactive species, reduced glutathione, and superoxide dismutase activity were also determined. Treatment with ACE significantly ameliorated IR mediated deterioration of memory and sensorimotor functions and rose in brain oxidative stress in animals. The results of the present investigation revealed that ACE improved functional outcomes after cerebral IR injury which may be attributed to its antioxidant properties.Keywords: allium cepa, cerebral ischemia, memory, sensorimotor
Procedia PDF Downloads 1154142 Study of Atmospheric Cascades Generated by Primary Comic Rays, from Simulations in Corsika for the City of Tunja in Colombia
Authors: Tathiana Yesenia Coy Mondragón, Jossitt William Vargas Cruz, Cristian Leonardo Gutiérrez Gómez
Abstract:
The study of cosmic rays is based on two fundamental pillars: the detection of secondary cosmic rays on the Earth's surface and the detection of the source and origin of the cascade. In addition, the constant flow of RC generates a lot of interest for study due to the incidence of various natural phenomena, which makes it relevant to characterize their incidence parameters to determine their effect not only at subsoil or terrestrial surface levels but also throughout the atmosphere. To determine the physical parameters of the primary cosmic ray, the implementation of robust algorithms capable of reconstructing the cascade from the measured values is required, with a high level of reliability. Therefore, it is proposed to build a machine learning system that will be fed from the cosmic ray simulations in CORSIKA at different energies that lie in a range [10⁹-10¹²] eV. in order to generate a trained particle and pattern recognition system to obtain greater efficiency when inferring the nature of the origin of the cascade for EAS in the atmosphere considering atmospheric models.Keywords: CORSIKA, cosmic rays, eas, Colombia
Procedia PDF Downloads 814141 Remote Vital Signs Monitoring in Neonatal Intensive Care Unit Using a Digital Camera
Authors: Fatema-Tuz-Zohra Khanam, Ali Al-Naji, Asanka G. Perera, Kim Gibson, Javaan Chahl
Abstract:
Conventional contact-based vital signs monitoring sensors such as pulse oximeters or electrocardiogram (ECG) may cause discomfort, skin damage, and infections, particularly in neonates with fragile, sensitive skin. Therefore, remote monitoring of the vital sign is desired in both clinical and non-clinical settings to overcome these issues. Camera-based vital signs monitoring is a recent technology for these applications with many positive attributes. However, there are still limited camera-based studies on neonates in a clinical setting. In this study, the heart rate (HR) and respiratory rate (RR) of eight infants at the Neonatal Intensive Care Unit (NICU) in Flinders Medical Centre were remotely monitored using a digital camera applying color and motion-based computational methods. The region-of-interest (ROI) was efficiently selected by incorporating an image decomposition method. Furthermore, spatial averaging, spectral analysis, band-pass filtering, and peak detection were also used to extract both HR and RR. The experimental results were validated with the ground truth data obtained from an ECG monitor and showed a strong correlation using the Pearson correlation coefficient (PCC) 0.9794 and 0.9412 for HR and RR, respectively. The RMSE between camera-based data and ECG data for HR and RR were 2.84 beats/min and 2.91 breaths/min, respectively. A Bland Altman analysis of the data also showed a close correlation between both data sets with a mean bias of 0.60 beats/min and 1 breath/min, and the lower and upper limit of agreement -4.9 to + 6.1 beats/min and -4.4 to +6.4 breaths/min for both HR and RR, respectively. Therefore, video camera imaging may replace conventional contact-based monitoring in NICU and has potential applications in other contexts such as home health monitoring.Keywords: neonates, NICU, digital camera, heart rate, respiratory rate, image decomposition
Procedia PDF Downloads 1044140 QR Technology to Automate Health Condition Detection in Payment System: A Case Study in the Kingdom of Saudi Arabia’s Schools
Authors: Amjad Alsulami, Farah Albishri, Kholod Alzubidi, Lama Almehemadi, Salma Elhag
Abstract:
Food allergy is a common and rising problem among children. Many students have their first allergic reaction at school, one of these is anaphylaxis, which can be fatal. This study discovered that several schools' processes lacked safety regulations and information on how to handle allergy issues and chronic diseases like diabetes where students were not supervised or monitored during the cafeteria purchasing process. There is no obvious prevention or effort in academic institutions when purchasing food containing allergens or negatively impacting the health status of students who suffer from chronic diseases. Students must always be stable to reflect positively on their educational development process. To address this issue, this paper uses a business reengineering process to propose the automation of the whole food-purchasing process, which will aid in detecting and avoiding allergic occurrences and preventing any side effects from eating foods that are conflicting with students' health. This may be achieved by designing a smart card with an embedded QR code that reveals which foods cause an allergic reaction in a student. A survey was distributed to determine and examine how the cafeteria will handle allergic children and whether any management or policy is applied in the school. Also, the survey findings indicate that the integration of QR technology into the food purchasing process would improve health condition detection. The suggested system would be beneficial to all parties, the family agreed, as they would ensure that their children didn't eat foods that were bad for their health. Moreover, by analyzing and simulating the as-is process and the suggested process the results demonstrate that there is an improvement in quality and time.Keywords: QR code, smart card, food allergies, business process reengineering, health condition detection
Procedia PDF Downloads 754139 Fluorescence-Based Biosensor for Dopamine Detection Using Quantum Dots
Authors: Sylwia Krawiec, Joanna Cabaj, Karol Malecha
Abstract:
Nowadays, progress in the field of the analytical methods is of great interest for reliable biological research and medical diagnostics. Classical techniques of chemical analysis, despite many advantages, do not permit to obtain immediate results or automatization of measurements. Chemical sensors have displaced the conventional analytical methods - sensors combine precision, sensitivity, fast response and the possibility of continuous-monitoring. Biosensor is a chemical sensor, which except of conventer also possess a biologically active material, which is the basis for the detection of specific chemicals in the sample. Each biosensor device mainly consists of two elements: a sensitive element, where is recognition of receptor-analyte, and a transducer element which receives the signal and converts it into a measurable signal. Through these two elements biosensors can be divided in two categories: due to the recognition element (e.g immunosensor) and due to the transducer (e.g optical sensor). Working of optical sensor is based on measurements of quantitative changes of parameters characterizing light radiation. The most often analyzed parameters include: amplitude (intensity), frequency or polarization. Changes in the optical properties one of the compound which reacts with biological material coated on the sensor is analyzed by a direct method, in an indirect method indicators are used, which changes the optical properties due to the transformation of the testing species. The most commonly used dyes in this method are: small molecules with an aromatic ring, like rhodamine, fluorescent proteins, for example green fluorescent protein (GFP), or nanoparticles such as quantum dots (QDs). Quantum dots have, in comparison with organic dyes, much better photoluminescent properties, better bioavailability and chemical inertness. These are semiconductor nanocrystals size of 2-10 nm. This very limited number of atoms and the ‘nano’-size gives QDs these highly fluorescent properties. Rapid and sensitive detection of dopamine is extremely important in modern medicine. Dopamine is very important neurotransmitter, which mainly occurs in the brain and central nervous system of mammals. Dopamine is responsible for the transmission information of moving through the nervous system and plays an important role in processes of learning or memory. Detection of dopamine is significant for diseases associated with the central nervous system such as Parkinson or schizophrenia. In developed optical biosensor for detection of dopamine, are used graphene quantum dots (GQDs). In such sensor dopamine molecules coats the GQD surface - in result occurs quenching of fluorescence due to Resonance Energy Transfer (FRET). Changes in fluorescence correspond to specific concentrations of the neurotransmitter in tested sample, so it is possible to accurately determine the concentration of dopamine in the sample.Keywords: biosensor, dopamine, fluorescence, quantum dots
Procedia PDF Downloads 3644138 Records of Lepidopteron Borers (Lepidoptera) on Stored Seeds of Indian Himalayan Conifers
Authors: Pawan Kumar, Pitamber Singh Negi
Abstract:
Many of the regeneration failures in conifers are often being attributed to heavy insect attack and pathogens during the period of seed formation and under storage conditions. Conifer berries and seed insects occur throughout the known range of the hosts and also limit the production of seed for nursery stock. On occasion, even entire seed crops are lost due to insect attacks. The berry and seeds of both the species have been found to be infected with insects. Recently, heavy damage to the berry and seeds of Juniper and Chilgoza Pine was observed in the field as well as in stored conditions, leading to reduction in the viability of seeds to germinate. Both the species are under great threat and regeneration of the species is very low. Due to lack of adequate literature, the study on the damage potential of seed insects was urgently required to know the exact status of the insect-pests attacking seeds/berries of both the pine species so as to develop pest management practices against the insect pests attack. As both the species are also under threat and are fighting for survival, so the study is important to develop management practices for the insect-pests of seeds/berries of Juniper and Chilgoza pine so as to evaluate in the nursery, as these species form major vegetation of their distribution zones. A six-year study on the management of insect pests of seeds of Chilgoza revealed that seeds of this species are prone to insect pests mainly borers. During present investigations, it was recorded that cones of are heavily attacked only by Dioryctria abietella (Lepidoptera: Pyralidae) in natural conditions, but seeds which are economically important are heavily infected, (sometimes up to 100% damage was also recorded) by insect borer, Plodia interpunctella (Lepidoptera: Pyralidae) and is recorded for the first time ‘to author’s best knowledge’ infesting the stored Chilgoza seeds. Similarly, Juniper berries and seeds were heavily attacked only by a single borer, Homaloxestis cholopis (Lepidoptera: Lecithoceridae) recorded as a new report in natural habitat as well as in stored conditions. During the present investigation details of insect pest attack on Juniper and Chilgoza pine seeds and berries was observed and suitable management practices were also developed to contain the insect-pests attack.Keywords: borer, chilgozapine, cones, conifer, Lepidoptera, juniper, management, seed
Procedia PDF Downloads 1484137 Molecularly Imprinted Nanoparticles (MIP NPs) as Non-Animal Antibodies Substitutes for Detection of Viruses
Authors: Alessandro Poma, Kal Karim, Sergey Piletsky, Giuseppe Battaglia
Abstract:
The recent increasing emergency threat to public health of infectious influenza diseases has prompted interest in the detection of avian influenza virus (AIV) H5N1 in humans as well as animals. A variety of technologies for diagnosing AIV infection have been developed. However, various disadvantages (costs, lengthy analyses, and need for high-containment facilities) make these methods less than ideal in their practical application. Molecularly Imprinted Polymeric Nanoparticles (MIP NPs) are suitable to overcome these limitations by having high affinity, selectivity, versatility, scalability and cost-effectiveness with the versatility of post-modification (labeling – fluorescent, magnetic, optical) opening the way to the potential introduction of improved diagnostic tests capable of providing rapid differential diagnosis. Here we present our first results in the production and testing of MIP NPs for the detection of AIV H5N1. Recent developments in the solid-phase synthesis of MIP NPs mean that for the first time a reliable supply of ‘soluble’ synthetic antibodies can be made available for testing as potential biological or diagnostic active molecules. The MIP NPs have the potential to detect viruses that are widely circulating in farm animals and indeed humans. Early and accurate identification of the infectious agent will expedite appropriate control measures. Thus, diagnosis at an early stage of infection of a herd or flock or individual maximizes the efficiency with which containment, prevention and possibly treatment strategies can be implemented. More importantly, substantiating the practicability’s of these novel reagents should lead to an initial reduction and eventually to a potential total replacement of animals, both large and small, to raise such specific serological materials.Keywords: influenza virus, molecular imprinting, nanoparticles, polymers
Procedia PDF Downloads 3624136 Simplifying Seismic Vulnerability Analysis for Existing Reinforced Concrete Buildings
Authors: Maryam Solgi, Behzad Shahmohammadi, Morteza Raissi Dehkordi
Abstract:
One of the main steps for seismic retrofitting of buildings is to determine the vulnerability of structures. While current procedures for evaluating existing buildings are complicated, and there is no limitation between short, middle-high, and tall buildings. This research utilizes a simplified method for assessing structures, which is adequate for existing reinforced concrete buildings. To approach this aim, Simple Lateral Mechanisms Analysis (SLaMA) procedure proposed by NZSEE (New Zealand Society for Earthquake Engineering) has been carried out. In this study, three RC moment-resisting frame buildings are determined. First, these buildings have been evaluated by inelastic static procedure (Pushover) based on acceptance criteria. Then, Park-Ang Damage Index is determined for the whole members of each building by Inelastic Time History Analysis. Next, the Simple Lateral Mechanisms Analysis procedure, a hand method, is carried out to define the capacity of structures. Ultimately, existing procedures are compared with Peak Ground Acceleration caused to fail (PGAfail). The results of this comparison emphasize that the Pushover procedure and SLaMA method define a greater value of PGAfail than the Park-Ang Damage model.Keywords: peak ground acceleration caused to fail, reinforced concrete moment-frame buildings, seismic vulnerability analysis, simple lateral mechanisms analysis
Procedia PDF Downloads 934135 High Rise Building Vibration Control Using Tuned Mass Damper
Authors: T. Vikneshvaran, A. Aminudin, U. Alyaa Hashim, Waziralilah N. Fathiah, D. Shakirah Shukor
Abstract:
This paper presents the experimental study conducted on a structure of three-floor height building model. Most vibrations are undesirable and can cause damages to the buildings, machines and people all around us. The vibration wave from earthquakes, construction and winds have high potential to bring damage to the buildings. Excessive vibrations can result in structural and machinery failures. This failure is related to the human life and environment around it. The effect of vibration which causes failure and damage to the high rise buildings can be controlled in real life by implementing tuned mass damper (TMD) into the structure of the buildings. This research aims to study the effect and performance improvement achieved by applying TMD into the building structure. A structure model of three degrees of freedom (3DOF) is designed to demonstrate the performance of TMD to the designed model. The model designed is the physical representation of actual building structure in real life. It is constructed at a reduced scale and will be used for the experiment. Thus, the result obtained will be more accurate to compared with the real life effect. Based on the result from experimental study, by applying TMD to the structure model, the forces of vibration and the displacement mode of the building reduced. Thus, the reduced in vibration of the building helps to maintain the good condition of the building.Keywords: degrees-of-freedom, displacement mode, natural frequency, tuned mass damper
Procedia PDF Downloads 3404134 A Simple Colorimetric Assay for Paraquat Detection Using Negatively Charged Silver Nanopaticles
Authors: Weena Siangphro, Orawon Chailapakul, Kriangsak Songsrirote
Abstract:
A simple, rapid, sensitive, and economical method based on colorimetry for the determination of paraquat, a widely used herbicide, was developed. Citrate-coated silver nanoparticles (AgNPs) were synthesized as colorimetric probe. The mechanism of the assay is related to aggregation of negatively charged AgNPs induced by positively-charged paraquat resulting from coulombic attraction which causes the color change from deep greenish yellow to pale yellow upon the concentrations of paraquat. Silica gel was exploited as paraquat adsorbent for purification and pre-concentration prior to the direct determination with negatively charged AgNPs without elution step required. The validity of the proposed approach was evaluated by spiking standard paraquat in water and plant samples. Recoveries of paraquat in water samples were 93.6-95.4%, while those in plant samples were 86.6-89.5% by using the optimized extraction procedure. The absorbance of AgNPs at 400 nm was linearly related to the concentration of paraquat over the range of 0.05-50 mg/L with detection limits of 0.05 ppm for water samples, and 0.10 ppm for plant samples.Keywords: colorimetric assay, paraquat, silica gel, silver nanoparticles
Procedia PDF Downloads 2384133 Early Diagnosis of Myocardial Ischemia Based on Support Vector Machine and Gaussian Mixture Model by Using Features of ECG Recordings
Authors: Merve Begum Terzi, Orhan Arikan, Adnan Abaci, Mustafa Candemir
Abstract:
Acute myocardial infarction is a major cause of death in the world. Therefore, its fast and reliable diagnosis is a major clinical need. ECG is the most important diagnostic methodology which is used to make decisions about the management of the cardiovascular diseases. In patients with acute myocardial ischemia, temporary chest pains together with changes in ST segment and T wave of ECG occur shortly before the start of myocardial infarction. In this study, a technique which detects changes in ST/T sections of ECG is developed for the early diagnosis of acute myocardial ischemia. For this purpose, a database of real ECG recordings that contains a set of records from 75 patients presenting symptoms of chest pain who underwent elective percutaneous coronary intervention (PCI) is constituted. 12-lead ECG’s of the patients were recorded before and during the PCI procedure. Two ECG epochs, which are the pre-inflation ECG which is acquired before any catheter insertion and the occlusion ECG which is acquired during balloon inflation, are analyzed for each patient. By using pre-inflation and occlusion recordings, ECG features that are critical in the detection of acute myocardial ischemia are identified and the most discriminative features for the detection of acute myocardial ischemia are extracted. A classification technique based on support vector machine (SVM) approach operating with linear and radial basis function (RBF) kernels to detect ischemic events by using ST-T derived joint features from non-ischemic and ischemic states of the patients is developed. The dataset is randomly divided into training and testing sets and the training set is used to optimize SVM hyperparameters by using grid-search method and 10fold cross-validation. SVMs are designed specifically for each patient by tuning the kernel parameters in order to obtain the optimal classification performance results. As a result of implementing the developed classification technique to real ECG recordings, it is shown that the proposed technique provides highly reliable detections of the anomalies in ECG signals. Furthermore, to develop a detection technique that can be used in the absence of ECG recording obtained during healthy stage, the detection of acute myocardial ischemia based on ECG recordings of the patients obtained during ischemia is also investigated. For this purpose, a Gaussian mixture model (GMM) is used to represent the joint pdf of the most discriminating ECG features of myocardial ischemia. Then, a Neyman-Pearson type of approach is developed to provide detection of outliers that would correspond to acute myocardial ischemia. Neyman – Pearson decision strategy is used by computing the average log likelihood values of ECG segments and comparing them with a range of different threshold values. For different discrimination threshold values and number of ECG segments, probability of detection and probability of false alarm values are computed, and the corresponding ROC curves are obtained. The results indicate that increasing number of ECG segments provide higher performance for GMM based classification. Moreover, the comparison between the performances of SVM and GMM based classification showed that SVM provides higher classification performance results over ECG recordings of considerable number of patients.Keywords: ECG classification, Gaussian mixture model, Neyman–Pearson approach, support vector machine
Procedia PDF Downloads 1624132 Windstorm Risk Assessment for Offshore Wind Farms in the North Sea
Authors: Paul Buchana, Patrick E. Mc Sharry
Abstract:
In 2017 there will be about 38 wind farms in the North Sea belonging to 5 different countries. The North Sea is ideal for offshore wind power generation and is thus attractive to offshore wind energy developers and investors. With concerns about the potential for offshore wind turbines to sustain substantial damage as a result of extreme weather conditions, particularly windstorms, this poses a unique challenge to insurers and reinsurers as to adequately quantify the risk and offer appropriate insurance cover for these assets. The need to manage this risk also concerns regulators, who provide the oversight needed to ensure that if a windstorm or a series of storms occur in this area over a one-year time frame, the insurers of these assets in the EU remain solvent even after meeting consequent damage costs. In this paper, using available European windstorm data for the past 33 years and actual wind farm locations together with information pertaining to each of the wind farms (number of turbines, total capacity and financial value), we present a Monte Carlo simulation approach to assess the number of turbines that would be buckled in each of the wind farms using maximum wind speeds reaching each of them. These wind speeds are drawn from historical windstorm data. From the number of turbines buckled, associated financial loss and output capacity can be deduced. The results presented in this paper are targeted towards offshore wind energy developers, insurance and reinsurance companies and regulators.Keywords: catastrophe modeling, North Sea wind farms, offshore wind power, risk analysis
Procedia PDF Downloads 299