Search results for: intergenerational technology learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13693

Search results for: intergenerational technology learning

12133 Automated Machine Learning Algorithm Using Recurrent Neural Network to Perform Long-Term Time Series Forecasting

Authors: Ying Su, Morgan C. Wang

Abstract:

Long-term time series forecasting is an important research area for automated machine learning (AutoML). Currently, forecasting based on either machine learning or statistical learning is usually built by experts, and it requires significant manual effort, from model construction, feature engineering, and hyper-parameter tuning to the construction of the time series model. Automation is not possible since there are too many human interventions. To overcome these limitations, this article proposed to use recurrent neural networks (RNN) through the memory state of RNN to perform long-term time series prediction. We have shown that this proposed approach is better than the traditional Autoregressive Integrated Moving Average (ARIMA). In addition, we also found it is better than other network systems, including Fully Connected Neural Networks (FNN), Convolutional Neural Networks (CNN), and Nonpooling Convolutional Neural Networks (NPCNN).

Keywords: automated machines learning, autoregressive integrated moving average, neural networks, time series analysis

Procedia PDF Downloads 105
12132 Use of Fractal Geometry in Machine Learning

Authors: Fuad M. Alkoot

Abstract:

The main component of a machine learning system is the classifier. Classifiers are mathematical models that can perform classification tasks for a specific application area. Additionally, many classifiers are combined using any of the available methods to reduce the classifier error rate. The benefits gained from the combination of multiple classifier designs has motivated the development of diverse approaches to multiple classifiers. We aim to investigate using fractal geometry to develop an improved classifier combiner. Initially we experiment with measuring the fractal dimension of data and use the results in the development of a combiner strategy.

Keywords: fractal geometry, machine learning, classifier, fractal dimension

Procedia PDF Downloads 217
12131 Implementation of Hybrid Curriculum in Canadian Dental Schools to Manage Child Abuse and Neglect

Authors: Priyajeet Kaur Kaleka

Abstract:

Introduction: A dentist is often the first responder in the battle for a patient’s healthy body and maybe the first health professional to observe signs of child abuse, be it physical, emotional, and/or sexual mistreatment. Therefore, it is an ethical responsibility for the dental clinician to detect and report suspected cases of child abuse and neglect (CAN). The main reasons for not reporting suspected cases of CAN, with special emphasis on the third: 1) Uncertainty of the diagnosis, 2) Lack of knowledge of the reporting procedure, and 3) Child abuse and neglect somewhat remained the subject of ignorance among dental professionals because of a lack of advance clinical training. Given these epidemic proportions, there is a scope of further research about dental school curriculum design. Purpose: This study aimed to assess the knowledge and attitude of dentists in Canada regarding signs and symptoms of child abuse and neglect (CAN), reporting procedures, and whether educational strategies followed by dental schools address this sensitive issue. In pursuit of that aim, this abstract summarizes the evidence related to this question. Materials and Methods: Data was collected through a specially designed questionnaire adapted and modified from the author’s previous cross-sectional study on (CAN), which was conducted in Pune, India, in 2016 and is available on the database of PubMed. Design: A random sample was drawn from the targeted population of registered dentists and dental students in Canada regarding their knowledge, professional responsibilities, and behavior concerning child abuse. Questionnaire data were distributed to 200 members. Out of which, a total number of 157 subjects were in the final sample for statistical analysis, yielding response of 78.5%. Results: Despite having theoretical information on signs and symptoms, 55% of the participants indicated they are not confident to detect child physical abuse cases. 90% of respondents believed that recognition and handling the CAN cases should be a part of undergraduate training. Only 4.5% of the participants have correctly identified all signs of abuse due to inadequate formal training in dental schools and workplaces. Although nearly 96.3% agreed that it is a dentist’s legal responsibility to report CAN, only a small percentage of the participants reported an abuse case in the past. While 72% stated that the most common factor that might prevent a dentist from reporting a case was doubt over the diagnosis. Conclusion: The goal is to motivate dental schools to deal with this critical issue and provide their students with consummate training to strengthen their capability to care for and protect children. The educational institutions should make efforts to spread awareness among dental students regarding the management and tackling of CAN. Clinical Significance: There should be modifications in the dental school curriculum focusing on problem-based learning models to assist graduates to fulfill their legal and professional responsibilities. CAN literacy should be incorporated into the dental curriculum, which will eventually benefit future dentists to break this intergenerational cycle of violence.

Keywords: abuse, child abuse and neglect, dentist knowledge, dental school curriculum, problem-based learning

Procedia PDF Downloads 200
12130 The Content-Based Classroom: Perspectives on Integrating Language and Content

Authors: Mourad Ben Bennani

Abstract:

Views of language and language learning have undergone a tremendous change over the last decades. Language is no longer seen as a set of structured rules. It is rather viewed as a tool of interaction and communication. This shift in views has resulted in change in viewing language learning, which gave birth to various approaches and methodologies of language teaching. Two of these approaches are content-based instruction and content and language integrated learning (CLIL). These are similar approaches which integrate content and foreign/second language learning through various methodologies and models as a result of different implementations around the world. This presentation deals with sociocultural view of CBI and CLIL. It also defines language and content as vital components of CBI and CLIL. Next it reviews the origins of CBI and the continuum perspectives and CLIL definitions and models featured in the literature. Finally it summarizes current aspects around research in program evaluation with a focus on the benefits and challenges of these innovative approaches for second language teaching.

Keywords: CBI, CLIL, CBI continuum, CLIL models

Procedia PDF Downloads 435
12129 Educators’ Perceived Capacity to Create Inclusive Learning Environments: Exploring Individual Competencies and District Policy

Authors: Thuy Phan, Stephanie Luallin

Abstract:

Inclusive education policies have demonstrated benefits for students with and without disabilities in the US. There are several laws that relate to inclusive education, such as 'No Child Left Behind', 'The Individuals with Disabilities Education Act'. However, the application of these inclusive education laws and policies vary per state and school district. Classroom teachers in an inclusive classroom often experience confusion as to how to apply these policies in order to create appropriate inclusive learning environments that meet the abilities and needs of their diverse student population. The study aims to investigate teachers’ perspective of their capacities to create an appropriate learning environment for their diverse student population including students with disabilities. Qualitative method is implemented in this study, using open-end interview questions to investigate teachers’ perspective of their capacities to create an appropriate inclusive learning environment for all students based on current inclusive education laws and district policies in the state of Colorado, USA. These findings may indicate a lack of confidence in teachers’ capacity to create appropriate inclusive learning environments based on laws and district policies; including challenges that classroom teachers may experience in creating inclusive learning environments. The purpose of this study is to examine the adequate preparation of classroom teachers in creating inclusive classrooms with the intent of determining implications for developing policies in inclusive education.

Keywords: educator’s capacity, inclusive education, inclusive learning environment, policy

Procedia PDF Downloads 170
12128 Using Mobile Phones for M-Learning in Higher Education: A Comparative Study

Authors: Islam Elsayed Hussein Ali, Stefan M. Wagner

Abstract:

Smartphone and tablet computers, as well as other ultra portable devices, have already gained enough critical mass to be considered mainstream devices, being present in the daily lives of millions of higher education students. Many universities throughout the world have already adopted or are planning to adopt mobile technologies in many of their courses as a better way to connect students with the subjects they are studying. These new mobile platforms allow students to access content anywhere/anytime to immerse himself/herself into that content (alone or interacting with teachers or colleagues via web communication forms) and to interact with that content in ways that were not previously possible. This paper plans to provide a thorough overview of the possibilities and consequences of m-learning in higher education environments as a gateway to ubiquitous learning – perhaps the ultimate form of learner engagement, since it allows the student to learn, access and interact with important content in any way or at any time or place he might want so the objective of the study is to examine how the usage of mobile phones for m-learning differs between heavy and light mobile phone users at TU Braunschweig. Heavy mobile phone users are hypothesized to have access to/subscribe to one type of mobile content than light mobile phone users, to have less frequent access to, subscribe to or purchase mobile content within the last year than light mobile phone users, and to pay less money for mobile learning, its content and mobile games than light mobile phone users.

Keywords: mobile learning, technologies, applications, higher education

Procedia PDF Downloads 415
12127 Unsupervised Feature Learning by Pre-Route Simulation of Auto-Encoder Behavior Model

Authors: Youngjae Jin, Daeshik Kim

Abstract:

This paper describes a cycle accurate simulation results of weight values learned by an auto-encoder behavior model in terms of pre-route simulation. Given the results we visualized the first layer representations with natural images. Many common deep learning threads have focused on learning high-level abstraction of unlabeled raw data by unsupervised feature learning. However, in the process of handling such a huge amount of data, the learning method’s computation complexity and time limited advanced research. These limitations came from the fact these algorithms were computed by using only single core CPUs. For this reason, parallel-based hardware, FPGAs, was seen as a possible solution to overcome these limitations. We adopted and simulated the ready-made auto-encoder to design a behavior model in Verilog HDL before designing hardware. With the auto-encoder behavior model pre-route simulation, we obtained the cycle accurate results of the parameter of each hidden layer by using MODELSIM. The cycle accurate results are very important factor in designing a parallel-based digital hardware. Finally this paper shows an appropriate operation of behavior model based pre-route simulation. Moreover, we visualized learning latent representations of the first hidden layer with Kyoto natural image dataset.

Keywords: auto-encoder, behavior model simulation, digital hardware design, pre-route simulation, Unsupervised feature learning

Procedia PDF Downloads 446
12126 Analysis of Suitability of Online Assessment by Maintaining Critical Thinking

Authors: Mohamed Chabi

Abstract:

The purpose of this study is to determine Whether paper assessment especially in the subject mathematics will ever be completely replaced by online assessment using Learning Management System and Content Management System such as blackboard. In the subject mathematics, the assessment is the exercise of judgment on the quality of students’ work, as a way of supporting student learning and appraising its outcomes. Testing students has moved from the traditional scribbling and sketching on paper towards working online on a screen and keyboard.

Keywords: paper assessment, online assessment, learning management system, content management system, mathematics

Procedia PDF Downloads 468
12125 Downscaling Seasonal Sea Surface Temperature Forecasts over the Mediterranean Sea Using Deep Learning

Authors: Redouane Larbi Boufeniza, Jing-Jia Luo

Abstract:

This study assesses the suitability of deep learning (DL) for downscaling sea surface temperature (SST) over the Mediterranean Sea in the context of seasonal forecasting. We design a set of experiments that compare different DL configurations and deploy the best-performing architecture to downscale one-month lead forecasts of June–September (JJAS) SST from the Nanjing University of Information Science and Technology Climate Forecast System version 1.0 (NUIST-CFS1.0) for the period of 1982–2020. We have also introduced predictors over a larger area to include information about the main large-scale circulations that drive SST over the Mediterranean Sea region, which improves the downscaling results. Finally, we validate the raw model and downscaled forecasts in terms of both deterministic and probabilistic verification metrics, as well as their ability to reproduce the observed precipitation extreme and spell indicator indices. The results showed that the convolutional neural network (CNN)-based downscaling consistently improves the raw model forecasts, with lower bias and more accurate representations of the observed mean and extreme SST spatial patterns. Besides, the CNN-based downscaling yields a much more accurate forecast of extreme SST and spell indicators and reduces the significant relevant biases exhibited by the raw model predictions. Moreover, our results show that the CNN-based downscaling yields better skill scores than the raw model forecasts over most portions of the Mediterranean Sea. The results demonstrate the potential usefulness of CNN in downscaling seasonal SST predictions over the Mediterranean Sea, particularly in providing improved forecast products.

Keywords: Mediterranean Sea, sea surface temperature, seasonal forecasting, downscaling, deep learning

Procedia PDF Downloads 76
12124 A Web Service-Based Framework for Mining E-Learning Data

Authors: Felermino D. M. A. Ali, S. C. Ng

Abstract:

E-learning is an evolutionary form of distance learning and has become better over time as new technologies emerged. Today, efforts are still being made to embrace E-learning systems with emerging technologies in order to make them better. Among these advancements, Educational Data Mining (EDM) is one that is gaining a huge and increasing popularity due to its wide application for improving the teaching-learning process in online practices. However, even though EDM promises to bring many benefits to educational industry in general and E-learning environments in particular, its principal drawback is the lack of easy to use tools. The current EDM tools usually require users to have some additional technical expertise to effectively perform EDM tasks. Thus, in response to these limitations, this study intends to design and implement an EDM application framework which aims at automating and simplify the development of EDM in E-learning environment. The application framework introduces a Service-Oriented Architecture (SOA) that hides the complexity of technical details and enables users to perform EDM in an automated fashion. The framework was designed based on abstraction, extensibility, and interoperability principles. The framework implementation was made up of three major modules. The first module provides an abstraction for data gathering, which was done by extending Moodle LMS (Learning Management System) source code. The second module provides data mining methods and techniques as services; it was done by converting Weka API into a set of Web services. The third module acts as an intermediary between the first two modules, it contains a user-friendly interface that allows dynamically locating data provider services, and running knowledge discovery tasks on data mining services. An experiment was conducted to evaluate the overhead of the proposed framework through a combination of simulation and implementation. The experiments have shown that the overhead introduced by the SOA mechanism is relatively small, therefore, it has been concluded that a service-oriented architecture can be effectively used to facilitate educational data mining in E-learning environments.

Keywords: educational data mining, e-learning, distributed data mining, moodle, service-oriented architecture, Weka

Procedia PDF Downloads 236
12123 Online-Scaffolding-Learning Tools to Improve First-Year Undergraduate Engineering Students’ Self-Regulated Learning Abilities

Authors: Chen Wang, Gerard Rowe

Abstract:

The number of undergraduate engineering students enrolled in university has been increasing rapidly recently, leading to challenges associated with increased student-instructor ratios and increased diversity in academic preparedness of the entrants. An increased student-instructor ratio makes the interaction between teachers and students more difficult, with the resulting student ‘anonymity’ known to be a risk to academic success. With increasing student numbers, there is also an increasing diversity in the academic preparedness of the students at entry to university. Conceptual understanding of the entrants has been quantified via diagnostic testing, with the results for the first-year course in electrical engineering showing significant conceptual misunderstandings amongst the entry cohort. The solution is clearly multi-faceted, but part of the solution likely involves greater demands being placed on students to be masters of their own learning. In consequence, it is highly desirable that instructors help students to develop better self-regulated learning skills. A self-regulated learner is one who is capable of setting up their own learning goals, monitoring their study processes, adopting and adjusting learning strategies, and reflecting on their own study achievements. The methods by which instructors might cultivate students’ self-regulated learning abilities is receiving increasing attention from instructors and researchers. The aim of this study was to help students understand fully their self-regulated learning skill levels and provide targeted instructions to help them improve particular learning abilities in order to meet the curriculum requirements. As a survey tool, this research applied the questionnaire ‘Motivated Strategies for Learning Questionnaire’ (MSLQ) to collect first year engineering student’s self-reported data of their cognitive abilities, motivational orientations and learning strategies. MSLQ is a widely-used questionnaire for assessment of university student’s self-regulated learning skills. The questionnaire was offered online as a part of the online-scaffolding-learning tools to develop student understanding of self-regulated learning theories and learning strategies. The online tools, which have been under development since 2015, are designed to help first-year students understand their self-regulated learning skill levels by providing prompt feedback after they complete the questionnaire. In addition, the online tool also supplies corresponding learning strategies to students if they want to improve specific learning skills. A total of 866 first year engineering students who enrolled in the first-year electrical engineering course were invited to participate in this research project. By the end of the course 857 students responded and 738 of their questionnaires were considered as valid questionnaires. Analysis of these surveys showed that 66% of the students thought the online-scaffolding-learning tools helped significantly to improve their self-regulated learning abilities. It was particularly pleasing that 16.4% of the respondents thought the online-scaffolding-learning tools were extremely effective. A current thrust of our research is to investigate the relationships between students’ self-regulated learning abilities and their academic performance. Our results are being used by the course instructors as they revise the curriculum and pedagogy for this fundamental first-year engineering course, but the general principles we have identified are applicable to most first-year STEM courses.

Keywords: academic preparedness, online-scaffolding-learning tool, self-regulated learning, STEM education

Procedia PDF Downloads 110
12122 Content Based Instruction: An Interdisciplinary Approach in Promoting English Language Competence

Authors: Sanjeeb Kumar Mohanty

Abstract:

Content Based Instruction (CBI) in English Language Teaching (ELT) basically helps English as Second Language (ESL) learners of English. At the same time, it fosters multidisciplinary style of learning by promoting collaborative learning style. It is an approach to teaching ESL that attempts to combine language with interdisciplinary learning for bettering language proficiency and facilitating content learning. Hence, the basic purpose of CBI is that language should be taught in conjunction with academic subject matter. It helps in establishing the content as well as developing language competency. This study aims at supporting the potential values of interdisciplinary approach in promoting English Language Learning (ELL) by teaching writing skills to a small group of learners and discussing the findings with the teachers from various disciplines in a workshop. The teachers who are oriented, they use the same approach in their classes collaboratively. The inputs from the learners as well as the teachers hopefully raise positive consciousness with regard to the vast benefits that Content Based Instruction can offer in advancing the language competence of the learners.

Keywords: content based instruction, interdisciplinary approach, writing skills, collaborative approach

Procedia PDF Downloads 277
12121 Digital Portfolio as Mediation to Enhance Willingness to Communicate in English

Authors: Saeko Toyoshima

Abstract:

This research will discuss if performance tasks with technology would enhance students' willingness to communicate. The present study investigated how Japanese learners of English would change their attitude to communication in their target language by experiencing a performance task, called 'digital portfolio', in the classroom, applying the concepts of action research. The study adapted questionnaires including four-Likert and open-end questions as mixed-methods research. There were 28 students in the class. Many of Japanese university students with low proficiency (A1 in Common European Framework of References in Language Learning and Teaching) have difficulty in communicating in English due to the low proficiency and the lack of practice in and outside of the classroom at secondary education. They should need to mediate between themselves in the world of L1 and L2 with completing a performance task for communication. This paper will introduce the practice of CALL class where A1 level students have made their 'digital portfolio' related to the topics of TED® (Technology, Entertainment, Design) Talk materials. The students had 'Portfolio Session' twice in one term, once in the middle, and once at the end of the course, where they introduced their portfolio to their classmates and international students in English. The present study asked the students to answer a questionnaire about willingness to communicate twice, once at the end of the first term and once at the end of the second term. The four-Likert questions were statistically analyzed with a t-test, and the answers to open-end questions were analyzed to clarify the difference between them. They showed that the students had a more positive attitude to communication in English and enhanced their willingness to communicate through the experiences of the task. It will be the implication of this paper that making and presenting portfolio as a performance task would lead them to construct themselves in English and enable them to communicate with the others enjoyably and autonomously.

Keywords: action research, digital portfoliio, computer-assisted language learning, ELT with CALL system, mixed methods research, Japanese English learners, willingness to communicate

Procedia PDF Downloads 118
12120 General Architecture for Automation of Machine Learning Practices

Authors: U. Borasi, Amit Kr. Jain, Rakesh, Piyush Jain

Abstract:

Data collection, data preparation, model training, model evaluation, and deployment are all processes in a typical machine learning workflow. Training data needs to be gathered and organised. This often entails collecting a sizable dataset and cleaning it to remove or correct any inaccurate or missing information. Preparing the data for use in the machine learning model requires pre-processing it after it has been acquired. This often entails actions like scaling or normalising the data, handling outliers, selecting appropriate features, reducing dimensionality, etc. This pre-processed data is then used to train a model on some machine learning algorithm. After the model has been trained, it needs to be assessed by determining metrics like accuracy, precision, and recall, utilising a test dataset. Every time a new model is built, both data pre-processing and model training—two crucial processes in the Machine learning (ML) workflow—must be carried out. Thus, there are various Machine Learning algorithms that can be employed for every single approach to data pre-processing, generating a large set of combinations to choose from. Example: for every method to handle missing values (dropping records, replacing with mean, etc.), for every scaling technique, and for every combination of features selected, a different algorithm can be used. As a result, in order to get the optimum outcomes, these tasks are frequently repeated in different combinations. This paper suggests a simple architecture for organizing this largely produced “combination set of pre-processing steps and algorithms” into an automated workflow which simplifies the task of carrying out all possibilities.

Keywords: machine learning, automation, AUTOML, architecture, operator pool, configuration, scheduler

Procedia PDF Downloads 57
12119 Motivating EFL Students to Speak English through Flipped Classroom Implantation

Authors: Mohamad Abdullah

Abstract:

Recent Advancements in technology have stimulated deep change in the language learning classroom. Flipped classroom as a new pedagogical method is at the center of this change. It turns the classroom into a student-centered environment and promotes interactive and autonomous learning. The present study is an attempt to examine the effectiveness of the Flipped Classroom Model (FCM) on students’ motivation level in English speaking performance. This study was carried out with 27 undergraduate female English majors who enrolled in the course of Advanced Communication Skills (ENGL 154) at Buraimi University College (BUC). Data was collected through Motivation in English Speaking Performance Questionnaire (MESPQ) which has been distributed among the participants of this study pre and post the implementation of FCM. SPSS was used for analyzing data. The Paired T-Test which was carried out on the pre-post of (MESPQ) showed a significant difference between them (p < .009) that revealed participants’ tendency to increase their motivation level in English speaking performance after the application of FCM. In addition, respondents of the current study reported positive views about the implementation of FCM.

Keywords: english speaking performance, motivation, flipped classroom model, learner-contentedness

Procedia PDF Downloads 131
12118 Improving Young Learners' Vocabulary Acquisition: A Pilot Program in a Game-Based Environment

Authors: Vasiliki Stratidou

Abstract:

Modern simulation mobile games have the potential to enhance students’ interest, motivation and creativity. Research conducted on the effectiveness of digital games for educational purposes has shown that such games are also ideal at providing an appropriate environment for language learning. The paper examines the issue of simulation mobile games in regard to the potential positive impacts on L2 vocabulary learning. Sixteen intermediate level students, aged 10-14, participated in the experimental study for four weeks. The participants were divided into experimental (8 participants) and control group (8 participants). The experimental group was planned to learn some new vocabulary words via digital games while the control group used a reading passage to learn the same vocabulary words. The study investigated the effect of mobile games as well as the traditional learning methods on Greek EFL learners’ vocabulary learning in a pre-test, an immediate post-test, and a two-week delayed retention test. A teacher’s diary and learners’ interviews were also used as tools to estimate the effectiveness of the implementation. The findings indicated that the experimental group outperformed the control group in acquiring new words through mobile games. Therefore, digital games proved to be an effective tool in learning English vocabulary.

Keywords: control group, digital games, experimental group, second language vocabulary learning, simulation games

Procedia PDF Downloads 239
12117 The Game of Dominoes as Teaching-Learning Method of Basic Concepts of Differential Calculus

Authors: Luis Miguel Méndez Díaz

Abstract:

In this article, a mathematics teaching-learning strategy will be presented, specifically differential calculus in one variable, in a fun and competitive space in which the action on the part of the student is manifested and not only the repetition of information on the part of the teacher. Said action refers to motivating, problematizing, summarizing, and coordinating a game of dominoes whose thematic cards are designed around the basic and main contents of differential calculus. The strategies for teaching this area are diverse and precisely the game of dominoes is one of the most used strategies in the practice of mathematics because it stimulates logical reasoning and mental abilities. The objective on this investigation is to identify the way in which the game of dominoes affects the learning and understanding of fundamentals concepts of differential calculus in one variable through experimentation carried out on students of the first semester of the School of Engineering and Sciences of the Technological Institute of Monterrey Campus Querétaro. Finally, the results of this study will be presented and the use of this strategy in other topics around mathematics will be recommended to facilitate logical and meaningful learning in students.

Keywords: collaborative learning, logical-mathematical intelligence, mathematical games, multiple intelligences

Procedia PDF Downloads 84
12116 A Recognition Method of Ancient Yi Script Based on Deep Learning

Authors: Shanxiong Chen, Xu Han, Xiaolong Wang, Hui Ma

Abstract:

Yi is an ethnic group mainly living in mainland China, with its own spoken and written language systems, after development of thousands of years. Ancient Yi is one of the six ancient languages in the world, which keeps a record of the history of the Yi people and offers documents valuable for research into human civilization. Recognition of the characters in ancient Yi helps to transform the documents into an electronic form, making their storage and spreading convenient. Due to historical and regional limitations, research on recognition of ancient characters is still inadequate. Thus, deep learning technology was applied to the recognition of such characters. Five models were developed on the basis of the four-layer convolutional neural network (CNN). Alpha-Beta divergence was taken as a penalty term to re-encode output neurons of the five models. Two fully connected layers fulfilled the compression of the features. Finally, at the softmax layer, the orthographic features of ancient Yi characters were re-evaluated, their probability distributions were obtained, and characters with features of the highest probability were recognized. Tests conducted show that the method has achieved higher precision compared with the traditional CNN model for handwriting recognition of the ancient Yi.

Keywords: recognition, CNN, Yi character, divergence

Procedia PDF Downloads 165
12115 A Primer to the Learning Readiness Assessment to Raise the Sharing of E-Health Knowledge amongst Libyan Nurses

Authors: Mohamed Elhadi M. Sharif, Mona Masood

Abstract:

The usage of e-health facilities is seen to be the first priority by the Libyan government. As such, this paper focuses on how the key factors or elements of working size in terms of technological availability, structural environment, and other competence-related matters may affect nurses’ sharing of knowledge in e-health. Hence, this paper investigates learning readiness assessment to raise e-health for Libyan regional hospitals by using e-health services in nursing education.

Keywords: Libyan nurses, e-learning readiness, e-health, nursing education

Procedia PDF Downloads 493
12114 Demystifying Mathematics: Handling Learning Disabilities in Mathematics Among Low Achievers in Kenyan Schools

Authors: Gladys Gakenia Njoroge

Abstract:

Mathematics is a compulsory subject in both primary and secondary schools in Kenya. However, learners’ poor performance in the subject in Kenya national examinations year in year out remains a serious concern for teachers of Mathematics, parents, curriculum developers, and the general public. This is particularly worrying because of the importance attached to the subject in national development hence the need to find out what could be affecting learning of Mathematics in Kenyan schools. The research on which this paper is based sought to examine the factors that influence performance in Mathematics in Kenyan schools; identify the characteristics of Mathematics learning disabilities; determine how the learners with such learning disabilities can be assessed and identified and interventions for these difficulties implemented. A case study was undertaken on class six learners in a primary school in Nairobi County. The tools used for the research were: classroom observations and an Individualized Education Program (IEP) developed by the teachers with the help of the researcher. This paper therefore highlights the findings from the research, discusses the implications of the findings and suggests the way forward as far as teaching, learning and assessment of Mathematics in Kenyan schools is concerned. Perhaps with the application of the right interventions, poor performance in Mathematics in the national examinations in Kenya will be a thing of the past.

Keywords: demystifying mathematics, individualized education program, learning difficulties, assessment

Procedia PDF Downloads 92
12113 Test Research on Damage Initiation and Development of a Concrete Beam Using Acoustic Emission Technology

Authors: Xiang Wang

Abstract:

In order to validate the efficiency of recognizing the damage initiation and development of a concrete beam using acoustic emission technology, a concrete beam is built and tested in the laboratory. The acoustic emission signals are analyzed based on both parameter and wave information, which is also compared with the beam deflection measured by displacement sensors. The results indicate that using acoustic emission technology can detect damage initiation and development effectively, especially in the early stage of the damage development, which can not be detected by the common monitoring technology. Furthermore, the positioning of the damage based on the acoustic emission signals can be proved to be reasonable. This job can be an important attempt for the future long-time monitoring of the real concrete structure.

Keywords: acoustic emission technology, concrete beam, parameter analysis, wave analysis, positioning

Procedia PDF Downloads 141
12112 Language Learning Strategies of Chinese Students at Suan Sunandha Rajabhat University in Thailand

Authors: Gunniga Anugkakul, Suwaree Yordchim

Abstract:

The objectives were to study language learning strategies (LLSs) employed by Chinese students, and the frequency of LLSs they used, and examine the relationship between the use of LLSs and gender. The Strategy Inventory for Language Learning (SILL) by Oxford was administered to thirty-six Chinese students at Suan Sunandha Rajabhat University in Thailand. The data obtained was analyzed using descriptive statistics and chi-square tests. Three useful findings were found on the use of LLSs reported by Chinese students. First, Chinese students used overall LLSs at a high level. Second, among the six strategy groups, Chinese students employed compensation strategy most frequently and memory strategy least frequently. Third, the research results also revealed that gender had significant effect on Chinese Student’s use of overall LLSs.

Keywords: English language, language learning strategy, Chinese students, compensation strategy

Procedia PDF Downloads 679
12111 Inclusive Education in South African Universities: Pre-Service Teachers’ Experiences

Authors: Cina Mosito, Toyin Mary Adewumi, Charlene Nissen

Abstract:

One of the goals of inclusive education is to provide learners with suitable learning environments and prospects to best attain their potential. This study sought to determine the experiences of studying inclusive education on pre-service teachers’ teaching within the South African education context. A purposeful sample comprising 6 pre-service teachers was selected from a university of technology located in the Western Cape South Africa. Data were collected using open-ended questionnaires, which were exploratory in nature and analyzed thematically. The findings supported significant proportions of experiences as self-reported by pre-service teachers. The pre-service teachers’ experiences of studying inclusive education included inclusive education as an “eye-opener” to the fact that learners experiencing various barriers to learning can be accommodated in the regular classrooms, exposure to some aspects of inclusive education, such as diversity, learners’ rights, and curriculum differentiation. It was also revealed that studying inclusive education made pre-service teachers love and enjoy teaching more. The study shows that awareness of inclusive education has influenced pre-service teachers in South African schools.

Keywords: experience, inclusive education, pre-service teacher, South Africa

Procedia PDF Downloads 206
12110 Using Machine Learning Techniques to Extract Useful Information from Dark Data

Authors: Nigar Hussain

Abstract:

It is a subset of big data. Dark data means those data in which we fail to use for future decisions. There are many issues in existing work, but some need powerful tools for utilizing dark data. It needs sufficient techniques to deal with dark data. That enables users to exploit their excellence, adaptability, speed, less time utilization, execution, and accessibility. Another issue is the way to utilize dark data to extract helpful information to settle on better choices. In this paper, we proposed upgrade strategies to remove the dark side from dark data. Using a supervised model and machine learning techniques, we utilized dark data and achieved an F1 score of 89.48%.

Keywords: big data, dark data, machine learning, heatmap, random forest

Procedia PDF Downloads 28
12109 Students’ Experiential Knowledge Production in the Teaching-Learning Process of Universities

Authors: Didiosky Benítez-Erice, Frederik Questier, Dalgys Pérez-Luján

Abstract:

This paper aims to present two models around the production of students’ experiential knowledge in the teaching-learning process of higher education: the teacher-centered production model and the student-centered production model. From a range of knowledge management and experiential learning theories, the paper elaborates into the nature of students’ experiential knowledge and proposes further adjustments of existing second-generation knowledge management theories taking into account the particularities of higher education. Despite its theoretical nature the paper can be relevant for future studies that stress student-driven improvement and innovation at higher education institutions.

Keywords: experiential knowledge, higher education, knowledge management, teaching-learning process

Procedia PDF Downloads 445
12108 Incorporating Multiple Supervised Learning Algorithms for Effective Intrusion Detection

Authors: Umar Albalawi, Sang C. Suh, Jinoh Kim

Abstract:

As internet continues to expand its usage with an enormous number of applications, cyber-threats have significantly increased accordingly. Thus, accurate detection of malicious traffic in a timely manner is a critical concern in today’s Internet for security. One approach for intrusion detection is to use Machine Learning (ML) techniques. Several methods based on ML algorithms have been introduced over the past years, but they are largely limited in terms of detection accuracy and/or time and space complexity to run. In this work, we present a novel method for intrusion detection that incorporates a set of supervised learning algorithms. The proposed technique provides high accuracy and outperforms existing techniques that simply utilizes a single learning method. In addition, our technique relies on partial flow information (rather than full information) for detection, and thus, it is light-weight and desirable for online operations with the property of early identification. With the mid-Atlantic CCDC intrusion dataset publicly available, we show that our proposed technique yields a high degree of detection rate over 99% with a very low false alarm rate (0.4%).

Keywords: intrusion detection, supervised learning, traffic classification, computer networks

Procedia PDF Downloads 350
12107 Reproduction of New Media Art Village around NTUT: Heterotopia of Visual Culture Art Education

Authors: Yu Cheng-Yu

Abstract:

‘Heterotopia’, ‘Visual Cultural Art Education’ and ‘New Media’ of these three subjects seemingly are irrelevant. In fact, there are synchronicity and intertextuality inside. In addition to visual culture, art education inspires students the ability to reflect on popular culture image through visual culture teaching strategies in school. We should get involved in the community to construct the learning environment that conveys visual culture art. This thesis attempts to probe the heterogeneity of space and value from Michel Foucault and to research sustainable development strategy in ‘New Media Art Village’ heterogeneity from Jean Baudrillard, Marshall McLuhan's media culture theory and social construction ideology. It is possible to find a new media group that can convey ‘Visual Culture Art Education’ around the National Taipei University of Technology in this commercial district that combines intelligent technology, fashion, media, entertainment, art education, and marketing network. Let the imagination and innovation of ‘New Media Art Village’ become ‘implementable’ and new media Heterotopia of inter-subjectivity with the engagement of big data and digital media. Visual culture art education will also bring aesthetics into the community by New Media Art Village.

Keywords: social construction, heterogeneity, new media, big data, visual culture art education

Procedia PDF Downloads 248
12106 Implementation of Student-Centered Learning Approach in Building Surveying Course

Authors: Amal A. Abdel-Sattar

Abstract:

The curriculum of architecture department in Prince Sultan University includes ‘Building Surveying’ course which is usually a part of civil engineering courses. As a fundamental requirement of the course, it requires a strong background in mathematics and physics, which are not usually preferred subjects to the architecture students and many of them are not giving the required and necessary attention to these courses during their preparation year before commencing their architectural study. This paper introduces the concept and the methodology of the student-centered learning approach in the course of building surveying for architects. One of the major outcomes is the improvement in the students’ involvement in the course and how this will cover and strength their analytical weak points and improve their mathematical skills. The study is conducted through three semesters with a total number of 99 students. The effectiveness of the student-centered learning approach is studied using the student survey at the end of each semester and teacher observations. This survey showed great acceptance of the students for these methods. Also, the teachers observed a great improvement in the students’ mathematical abilities and how keener they became in attending the classes which were clearly reflected on the low absence record.

Keywords: architecture, building surveying, student-centered learning, teaching and learning

Procedia PDF Downloads 252
12105 The Development of Ability in Reading Comprehension Based on Metacognitive Strategies for Mattayom 3 Students

Authors: Kanlaya Ratanasuphakarn, Suttipong Boonphadung

Abstract:

The research on the development of ability in reading comprehension based on metacognitive strategies aimed to (1) improve the students’development of ability in reading comprehension based on metacognitive strategies, (2) evaluate the students’ satisfaction on using metacognitive strategies in learning as a tool developing the ability in reading comprehension. Forty-eight of Mattayom 3 students who have enrolled in the subject of research for learning development of semester 2 in 2013 were purposively selected as the research cohort. The research tools were lesson plans for reading comprehension, pre-posttest and satisfaction questionnaire that were approved as content validity and reliability (IOC=.66-1.00,0.967). The research found that the development of ability in reading comprehension of the research samples before using metacognitive strategies in learning activities was in the normal high level. Additionally, the research discovered that the students’ satisfaction of the research cohort after applying model in learning activities appeared to be high level of satisfaction on using metacognitive strategies in learning as a tool for the development of ability in reading comprehension.

Keywords: development of ability, metacognitive strategies, satisfaction, reading comprehension

Procedia PDF Downloads 309
12104 Optical Whitening of Textiles: Teaching and Learning Materials

Authors: C. W. Kan

Abstract:

This study examines the results of optical whitening process of different textiles such as cotton, wool and polyester. The optical whitening agents used are commercially available products, and the optical whitening agents were applied to the textiles with manufacturers’ suggested methods. The aim of this study is to illustrate the proper application methods of optical whitening agent to different textiles and hence to provide guidance note to the students in learning this topic. Acknowledgment: Authors would like to thank the financial support from the Hong Kong Polytechnic University for this work.

Keywords: learning materials, optical whitening agent, wool, cotton, polyester

Procedia PDF Downloads 425