Search results for: contact angle
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3015

Search results for: contact angle

1455 Design of Semi-Automatic Vent and Flash Remover

Authors: Inba Blesso P., Senthil Kumar P.

Abstract:

The main consideration of any tire manufacturing process is wear resistance. One of the factors that cause tire wear is improper removal of vent and flash from the tire surface. The contact point between tyre surface and vent is highly supposed to wear. When the vehicle running at higher speed with heavy load, the tire vent and flash is wearing initially and it makes few of the tire surface material to wear along with it. Hence, provision must be given to efficient removal vent and flash thereby tire wear. Human efforts in trimming of tire vent results in time consuming and inaccurate output. Hence, this lead to the reduction in production rate and profit. Thus, the development of automated system can helps to attain minimum time consumption and provide a possible way to get the profitable production. Semi-automated system that employs Pneumatic actuators and sequencing circuits are focused in this study. By implementing this, one can achieve the accurate results with reduction in time and profitable output.

Keywords: tire manufacturing, pneumatic system, vent and flash removal, engineering and technology

Procedia PDF Downloads 379
1454 Mannequin Evaluation of 3D-Printed Intermittent Oro-Esophageal Tube Guide for Dysphagia

Authors: Yujin Jeong, Youkyung Son, Myounghwan Choi, Sanghyub Lee, Sangyeol Lee, Changho Hwang, Kyo-in Koo

Abstract:

Dysphasia is difficulty in swallowing food because of oral cavity impairments induced by stroke, muscle damage, tumor. Intermittent oro-esophageal (IOE) tube feeding is one of the well-known feeding methods for the dysphasia patients. However, it is hard to insert at the proper position in esophagus. In this study, we design and fabricate the IOE tube guide using 3-dimensional (3D) printer. The printed IOE tube is tested in a mannequin (Airway Management Trainer, Co., Ltd., Copenhagen, Denmark) mimicking human’s esophagus. The gag reflex point is measured as the design point in the mannequin. To avoid the gag reflex, we design various shapes of IOE tube guide. One structure is separated into three parts; biting part, part through oral cavity, connecting part to oro-esophageal. We designed 6 types of IOE tube guide adjusting length and angle of these three parts. To evaluate the IOE tube guide, it is inserted in the mannequin, and through the inserted guide, an endoscopic camera successfully arrived at the oro-esophageal. We had planned to apply this mannequin-based design experience to patients in near future.

Keywords: dysphagia, feeding method, IOE tube guide, 3-D printer

Procedia PDF Downloads 433
1453 Study of Bolt Inclination in a Composite Single Bolted Joint

Authors: Faci Youcef, Ahmed Mebtouche, Djillali Allou, Maalem Badredine

Abstract:

The inclination of the bolt in a fastened joint of composite material during a tensile test can be influenced by several parameters, including material properties, bolt diameter and length, the type of composite material being used, the size and dimensions of the bolt, bolt preload, surface preparation, the design and configuration of the joint, and finally testing conditions. These parameters should be carefully considered and controlled to ensure accurate and reliable results during tensile testing of composite materials with fastened joints. Our work focuses on the effect of the stacking sequence and the geometry of specimens. An experimental test is carried out to obtain the inclination of a bolt during a tensile test of a composite material using acoustic emission and digital image correlation. Several types of damage were obtained during the load. Digital image correlation techniques permit the obtaining of the inclination of bolt angle value during tensile test. We concluded that the inclination of the bolt during a tensile test of a composite material can be related to the damage that occurs in the material. It can cause stress concentrations and localized deformation in the material, leading to damage such as delamination, fiber breakage, matrix cracking, and other forms of failure.

Keywords: damage, inclination, analyzed, carbon

Procedia PDF Downloads 56
1452 Animal Modes of Surgical or Other External Causes of Trauma Wound Infection

Authors: Ojoniyi Oluwafeyekikunmi Okiki

Abstract:

Notwithstanding advances in disturbing wound care and control, infections remain a main motive of mortality, morbidity, and financial disruption in tens of millions of wound sufferers around the sector. Animal models have become popular gear for analyzing a big selection of outside worrying wound infections and trying out new antimicrobial techniques. This evaluation covers experimental infections in animal models of surgical wounds, pores and skin abrasions, burns, lacerations, excisional wounds, and open fractures. Animal modes of external stressful wound infections stated via extraordinary investigators vary in animal species used, microorganism traces, the quantity of microorganisms carried out, the dimensions of the wounds, and, for burn infections, the period of time the heated object or liquid is in contact with the skin. As antibiotic resistance continues to grow, new antimicrobial procedures are urgently needed. Those have to be examined using popular protocols for infections in external stressful wounds in animal models.

Keywords: surgical wounds, animals, wound infections, burns, wound models, colony-forming gadgets, lacerated wounds

Procedia PDF Downloads 6
1451 Optimizing the Efficiency of Measuring Instruments in Ouagadougou-Burkina Faso

Authors: Moses Emetere, Marvel Akinyemi, S. E. Sanni

Abstract:

At the moment, AERONET or AMMA database shows a large volume of data loss. With only about 47% data set available to the scientist, it is evident that accurate nowcast or forecast cannot be guaranteed. The calibration constants of most radiosonde or weather stations are not compatible with the atmospheric conditions of the West African climate. A dispersion model was developed to incorporate salient mathematical representations like a Unified number. The Unified number was derived to describe the turbulence of the aerosols transport in the frictional layer of the lower atmosphere. Fourteen years data set from Multi-angle Imaging SpectroRadiometer (MISR) was tested using the dispersion model. A yearly estimation of the atmospheric constants over Ouagadougou using the model was obtained with about 87.5% accuracy. It further revealed that the average atmospheric constant for Ouagadougou-Niger is a_1 = 0.626, a_2 = 0.7999 and the tuning constants is n_1 = 0.09835 and n_2 = 0.266. Also, the yearly atmospheric constants affirmed the lower atmosphere of Ouagadougou is very dynamic. Hence, it is recommended that radiosonde and weather station manufacturers should constantly review the atmospheric constant over a geographical location to enable about eighty percent data retrieval.

Keywords: aerosols retention, aerosols loading, statistics, analytical technique

Procedia PDF Downloads 312
1450 Voltage Sag Characteristics during Symmetrical and Asymmetrical Faults

Authors: Ioannis Binas, Marios Moschakis

Abstract:

Electrical faults in transmission and distribution networks can have great impact on the electrical equipment used. Fault effects depend on the characteristics of the fault as well as the network itself. It is important to anticipate the network’s behavior during faults when planning a new equipment installation, as well as troubleshooting. Moreover, working backwards, we could be able to estimate the characteristics of the fault when checking the perceived effects. Different transformer winding connections dominantly used in the Greek power transfer and distribution networks and the effects of 1-phase to neutral, phase-to-phase, 2-phases to neutral and 3-phase faults on different locations of the network were simulated in order to present voltage sag characteristics. The study was performed on a generic network with three steps down transformers on two voltage level buses (one 150 kV/20 kV transformer and two 20 kV/0.4 kV). We found that during faults, there are significant changes both on voltage magnitudes and on phase angles. The simulations and short-circuit analysis were performed using the PSCAD simulation package. This paper presents voltage characteristics calculated for the simulated network, with different approaches on the transformer winding connections during symmetrical and asymmetrical faults on various locations.

Keywords: Phase angle shift, power quality, transformer winding connections, voltage sag propagation

Procedia PDF Downloads 138
1449 GSM and GPS Based Smart Helmet System for Sudden Accidental Rescue Operation

Authors: A. B. M. Aftabuzzaman, Md. Mahin Hossain, Md. Ifran Sharif Imthi, Md. Razu Ahmed, A. Z. M. Imran

Abstract:

The goals of the study are to develop a safety system that is combined with a smart helmet to reduce the likelihood of two-wheeler bike accidents and cases of drunk driving. The smart helmet and the limit switch both verify when a biker is wearing a helmet. The presence of alcohol in the rider's breath is detected using alcohol sensors. The bike remains turned off if the rider is not wearing a helmet or if the rider's breath contains alcohol. The bike will not start until the rider is wearing a helmet and there is no alcoholic substance present, indicating that the bike rider has not consumed alcohol. When the rider faces in an accident, instantly the smart helmet hits the ground and respective sensors detect the movement and tilt of the protective helmet and instantly sending the information about the location of accident to the rider's relatives and the crisis contact numbers which are introduced in the smart helmet respective device. So this project finding will ensure safe bike journey and improve safe commercial bike services in Bangladesh.

Keywords: smart helmet, GSM, GPS, bike, biker accident

Procedia PDF Downloads 104
1448 Numerical Investigations on the Coanda Effect

Authors: Florin Frunzulica, Alexandru Dumitrache, Octavian Preotu

Abstract:

The Coanda effect consists of the tendency of a jet to remain attached to a sufficiently long/large convex surface. Flows deflected by a curved surface have caused great interest during last fifty years a major interest in the study of this phenomenon is caused by the possibility of using this effect to aircraft with short take-off and landing, for thrust vectoring. It is also used in applications involving mixing two of more fluids, noise attenuation, ventilation, etc. The paper proposes the numerical study of an aerodynamic configuration that can passively amplify the Coanda effect. On a wing flaps with predetermined configuration, a channel is applied between two particular zones, a low-pressure one and a high-pressure another one, respectively. The secondary flow through this channel yields a gap between the jet and the convex surface, maintaining the jet attached on a longer distance. The section altering-based active control of the secondary flow through the channel controls the attachment of the jet to the surface and automatically controls the deviation angle of the jet. The numerical simulations have been performed in Ansys Fluent for a series of wing flaps-channel configurations with varying jet velocity. The numerical results are in good agreement with experimental results.

Keywords: blowing jet, CFD, Coanda effect, circulation control

Procedia PDF Downloads 344
1447 A Systamatic Review on Experimental, FEM Analysis and Simulation of Metal Spinning Process

Authors: Amol M. Jadhav, Sharad S. Chudhari, S. S. Khedkar

Abstract:

This review presents a through survey of research paper work on the experimental analysis, FEM Analysis & simulation of the metal spinning process. In this literature survey all the papers being taken from Elsevier publication and most of the from journal of material processing technology. In a last two decade or so, metal spinning process gradually used as chip less formation for the production of engineering component in a small to medium batch quantities. The review aims to provide include into the experimentation, FEM analysis of various components, simulation of metal spinning process and act as guide for research working on metal spinning processes. The review of existing work has several gaps in current knowledge of metal spinning processes. The evaluation of experiment is thickness strain, the spinning force, the twisting angle, the surface roughness of the conventional & shear metal spinning process; the evaluation of FEM of metal spinning to path definition with sufficient fine mesh to capture behavior of work piece; The evaluation of feed rate of roller, direction of roller,& type of roller stimulated. The metal spinning process has the more flexible to produce a wider range of product shape & to form more challenge material.

Keywords: metal spinning, FEM analysis, simulation of metal spinning, mechanical engineering

Procedia PDF Downloads 385
1446 Adsorption of Iodine from Aqueous Solution on Modified Silica Gel with Cyclodextrin Derivatives

Authors: Raied, Badr Al-Fulaiti, E. I. El-Shafey

Abstract:

Cyclodextrin (CD) derivatives (αCD, βCD, ϒCD and hp-βCD) were successfully immobilized on silica gel surface via epichlorohydrin as a cross linker. The ratio of silica to CD was optimized in preliminary experiments based on best performance of iodine adsorption capacity. Selected adsorbents with ratios of silica to CD derivatives, in this study, include Si-αCD (3:2), Si-βCD (4:1), Si-ϒCD (4:1) and Si-hp-βCD (4:1). The adsorption of iodine (I2/KI) solution was investigated in terms of initial pH, contact time, iodine concentration and temperature. No significant variations was noticed for iodine adsorption at different pH values, thus, initial pH 6 was selected for further studies. Equilibrium adsorption was reached faster on Si-hp-βCD than other adsorbents with kinetic adsorption data fitting well pseudo second order model. Activation energy (Ea) was found to be in the range of 12.7 - 23.4 kJ/mol. Equilibrium adsorption data were found to fit well the Langmuir adsorption model with lower uptake as temperature rises. Iodine uptake follows the order: Si-hp-βCD (714 mg/g) >Si-αCD (625 mg/g) >Si-βCD (555.6 mg/g)> Si-ϒCD (435 mg/g). Thermodynamic study showed that iodine adsorption is exothermic and spontaneous. Adsorbents reuse exhibited excellent performance for iodine adsorption with a decrease in iodine uptake of ~ 2- 4 % in the third adsorption cycle.

Keywords: adsorption, iodine, silica, cyclodextrin, functionalization, epichlorohydrin

Procedia PDF Downloads 130
1445 Physical and Mechanical Characterization of Limestone in the Quarry of Meftah (Algeria)

Authors: Khaled Benyounes

Abstract:

Determination of the rock mechanical properties such as unconfined compressive strength UCS, Young’s modulus E, and tensile strength by the Brazilian test Rtb is considered to be the most important component in drilling and mining engineering project. Research related to establishing correlation between strength and physical parameters of rocks has always been of interest to mining and reservoir engineering. For this, many rock blocks of limestone were collected from the quarry located in Meftah (Algeria), the cores were crafted in the laboratory using a core drill. This work examines the relationships between mechanical properties and some physical properties of limestone. Many empirical equations are established between UCS and physical properties of limestone (such as dry bulk density, velocity of P-waves, dynamic Young’s modulus, alteration index, and total porosity). Other correlations, UCS - tensile strength, dynamic Young’s modulus - static Young’s modulus have been find. Based on the Mohr-Coulomb failure criterion, we were able to establish mathematical relationships that will allow estimating the cohesion and internal friction angle from UCS and indirect tensile strength. Results from this study can be useful for mining industry for resolve range of geomechanical problems such as slope stability.

Keywords: limestone, mechanical strength, Young’s modulus, porosity

Procedia PDF Downloads 635
1444 Influence of Inertial Forces of Large Bearings Utilized in Wind Energy Assemblies

Authors: S. Barabas, F. Sarbu, B. Barabas, A. Fota

Abstract:

Main objective of this paper is to establish a link between inertial forces of the bearings used in construction of wind power plant and its behavior. Using bearings with lower inertial forces has the immediate effect of decreasing inertia rotor system, with significant results in increased energy efficiency, due to decreased friction forces between rollers and raceways. The FEM analysis shows the appearance of uniform contact stress at the ends of the rollers, demonstrated the necessity of production of low mass bearings. Favorable results are expected in the economic field, by reducing material consumption and by increasing the durability of bearings. Using low mass bearings with hollow rollers instead of solid rollers has an impact on working temperature, on vibrations and noise which decrease. Implementation of types of hollow rollers of cylindrical tubular type, instead of expensive rollers with logarithmic profile, will bring significant inertial forces decrease with large benefits in behavior of wind power plant.

Keywords: inertial forces, Von Mises stress, hollow rollers, wind turbine

Procedia PDF Downloads 353
1443 Fatigue Life Estimation Using N-Code for Drive Shaft of Passenger Vehicle

Authors: Tae An Kim, Hyo Lim Kang, Hye Won Han, Seung Ho Han

Abstract:

The drive shaft of passenger vehicle has its own function such as transmitting the engine torque from the gearbox and differential gears to the wheels. It must also compensate for all variations in angle or length resulting from manoeuvring and deflection for perfect synchronization between joints. Torsional fatigue failures occur frequently at the connection parts of the spline joints in the end of the drive shaft. In this study, the fatigue life of a drive shaft of passenger vehicle was estimated by using the finite element analysis. A commercial software of n-Code was applied under twisting load conditions, i.e. 0~134kgf•m and 0~188kgf•m, in which the shear strain range-fatigue life relationship considering Signed Shear method, Smith-Watson-Topper equation, Neuber-Hoffman Seeger method, size sensitivity factor and surface roughness effect was taken into account. The estimated fatigue life was verified by a twisting load test of the real drive shaft in a test rig. (Human Resource Training Project for Industry Matched R & D, KIAT, N036200004).

Keywords: drive shaft, fatigue life estimation, passenger vehicle, shear strain range-fatigue life relationship, torsional fatigue failure

Procedia PDF Downloads 274
1442 Production and Investigation of Ceramic-Metal Composite from Electroless Ni Plated AlN and Al Powders

Authors: Ahmet Yönetken

Abstract:

Al metal matrix composites reinforced with AlN have been fabricated by Tube furnace sintering at various temperatures. A uniform nickel layer on Al(%1AlN)%19Ni, Al(%2AlN)%18Ni, Al(%3AlN)%17Ni, Al(%4AlN)%16Ni, Al(%5AlN)%15Ni powders were deposited prior to sintering using electroless plating technique, allowing closer surface contact than can be achieved using conventional methods such as mechanical alloying. A composite consisting of quaternary additions, a ceramic phase, AlN, within a matrix of Al, AlN, Ni has been prepared at the temperature range between 550°C and 650°C under Ar shroud. X-Ray diffraction, SEM (Scanning Electron Microscope) density, and hardness measurements were employed to characterize the properties of the specimens. Experimental results carried out for 650°C suggest that the best properties as comprehension strength σmax and hardness 681.51(HV) were obtained at 650°C, and the tube furnace sintering of electroless Al plated (%5AlN)%15Ni powders is a promising technique to produce ceramic reinforced Al (%5AlN)%15Ni composites.

Keywords: electroless nickel plating, ceramic-metal composites, powder metallurgy, sintering

Procedia PDF Downloads 236
1441 Removal of Lead from Aqueous Solutions by Biosorption on Pomegranate Skin: Kinetics, Equilibrium and Thermodynamics

Authors: Y. Laidani, G. Henini, S. Hanini, A. Labbaci, F. Souahi

Abstract:

In this study, pomegranate skin, a material suitable for the conditions in Algeria, was chosen as adsorbent material for removal of lead in an aqueous solution. Biosorption studies were carried out under various parameters such as mass adsorbent particle, pH, contact time, the initial concentration of metal, and temperature. The experimental results show that the percentage of biosorption increases with an increase in the biosorbent mass (0.25 g, 0.035 mg/g; 1.25 g, 0.096 mg/g). The maximum biosorption occurred at pH value of 8 for the lead. The equilibrium uptake was increased with an increase in the initial concentration of metal in solution (Co = 4 mg/L, qt = 1.2 mg/g). Biosorption kinetic data were properly fitted with the pseudo-second-order kinetic model. The best fit was obtained by the Langmuir model with high correlation coefficients (R2 > 0.995) and a maximum monolayer adsorption capacity of 0.85 mg/g for lead. The adsorption of the lead was exothermic in nature (ΔH° = -17.833 kJ/mol for Pb (II). The reaction was accompanied by a decrease in entropy (ΔS° = -0.056 kJ/K. mol). The Gibbs energy (ΔG°) increased from -1.458 to -0.305 kJ/mol, respectively for Pb (II) when the temperature was increased from 293 to 313 K.

Keywords: biosorption, Pb (+II), pomegranate skin, wastewater

Procedia PDF Downloads 269
1440 Investigating Factors Impacting Student Motivation in Classroom Use of Digital Games

Authors: Max Neu

Abstract:

A large variety of studies on the utilization of games in classroom settings promote positive effects on students motivation for learning. Still, most of those studies rarely can give any specifics about the factors that might lead to changes in students motivation. The undertaken study has been conducted in tandem with the development of a highly classroom-optimized serious game, with the intent of providing a subjectively positive initial contact with the subject of political participation and to enable the development of personal motivation towards further engagement with the topic. The goal of this explorative study was to Identify the factors that influence students motivation towards the subject when serious games are being used in classroom education. Therefor, students that have been exposed to a set of classes in which a classroom optimized serious game has been used. Afterwards, a selection of those have been questioned in guided interviews that have been evaluated through Qualitative Content Analysis. The study indicates that at least 23 factors in the categories, mechanics, content and context potentially influence students motivation to engage with the classes subject. The conclusions are of great value for the further production of classroom games as well as curricula involving digital games in general.

Keywords: formal education, games in classroom, motivation, political education

Procedia PDF Downloads 108
1439 Influence of Preheating Self-Adhesive Cements on the Degree of Conversion, Cell Migration and Cell Viability in NIH/3T3

Authors: Celso Afonso Klein Jr., Henrique Cantarelli, Fernando Portella, Keiichi Hosaka, Eduardo Reston, Fabricio Collares, Roberto Zimmer

Abstract:

TTo evaluate the influence of preheating self-adhesive cement at 39ºC on cell migration, cytotoxicity and degree of conversion. RelyX U200, Set PP and MaxCem Elite were subjected to a degree of conversion analysis (FTIR-ATR). For the cytotoxicity analysis, extracts (24 h and 7 days) were placed in contact with NIH/3T3 cells. For cell migration, images were captured of each sample until the possible closure of the cleft occurred. In the results of the degree of conversion, preheating did not improve the conversion of cement. For the MTT, preheating did not improve the results within 24 hours. However, it generated positive results within 7 days for the Set PP resin cement. For cell migration, high rates of cell death were found in all groups. It is concluded that preheating at 39ºC caused a positive effect only in increasing the cell viability of the Set PP resin cement and that both materials analyzed are highly cytotoxic.

Keywords: dental cements, resin cements, degree of conversion, cytotoxicity, cell migration assays

Procedia PDF Downloads 70
1438 An Investigation on the Removal of Synthetic Dyes from Aqueous Solution by a Functional Polymer

Authors: Ali Kara, Asim Olgun, Sevgi Sozugecer, Sahin Ozel, Kubra Nur Yildiz, P. Sevinç, Abdurrahman Kuresh, Guliz Turhan, Duygu Gulgun

Abstract:

The synthetic dyes, one of the most hazardous chemical compound classes, are important potential water pollutions since their presence in water bodies reduces light penetration, precluding the photosynthesis of aqueous flora and causing various diseases. Some the synthetic dyes are highly toxic and/or carcinogenic, and their biodegradation can produce even more toxic aromatic amines. The adsorption procedure is one of the most effective means of removing synthetic dye pollutants, and has been described in a number of previous studies by using the functional polymers. In this study, we investigated the removal of synthetic dyes from aqueous solution by using a functional polymer as an adsorbent material. The effect of initial solution concentration, pH, and contact time on the adsorption capacity of the adsorbent were studied in details. The results showed that functional polymer has a potential to be used as cost-effective and efficient adsorbent for the treatment of aqueous solutions from textile industries.

Keywords: functional polymers, synhetic dyes, adsorption, physicochemical parameters

Procedia PDF Downloads 180
1437 Statistical Variability of Soil Parameters within the Copper Belt Region of the Democratic Republic of the Congo

Authors: Stephan P. Barkhuizen, Deon Greyling, Ryan J. Miller

Abstract:

The accurate determination of the engineering parameters of soil is necessary for the design of geotechnical structures, such as Tailings Storage Facilities. The shear strength and saturated permeability of soil and tailings samples obtained from 14 sites located in the copper belt in the Democratic Republic of the Congo have been tested at six commercial soil laboratories in South Africa. This study compiles a database of the test results proved by the soil laboratories. The samples have been categorised into clay, silt, and sand, based on the Unified Soil Classification System, with tailings kept separate. The effective friction angle (Φ’) and cohesion (c’) were interpreted from the stress paths, in s’:t space, obtained from triaxial tests. The minimum, lower quartile, median, upper quartile, and maximum values for Φ’,c’, and saturated hydraulic conductivity (k) have been determined for the soil sample. The objective is to provide statistics of the measured values of the engineering properties for the TSF borrow material, foundation soils and tailings of this region.

Keywords: Democratic Republic of the Congo, laboratory test work, soil engineering parameter variation, tailings storage facilities

Procedia PDF Downloads 63
1436 Adsorption Isotherm, Kinetic and Mechanism Studies of Some Substituted Phenols from Aqueous Solution by Jujuba Seeds Activated Carbon

Authors: O. Benturki, A. Benturki

Abstract:

Activated carbon was prepared from Jujube seeds by chemical activation with potassium hydroxide (KOH), followed by pyrolysis at 800°C. Batch studies were conducted for kinetic, thermodynamic and equilibrium studies on the adsorption of phenol (P) and 2-4 dichlorophenol (2-4 DCP) from aqueous solution, than the adsorption capacities followed the order of 2-4 dichlorophenol > phenol. The operating variables studied were initial phenols concentration, contact time, temperature and solution pH. Results show that the pH value of 7 is favorable for the adsorption of phenols. The sorption data have been analyzed using Langmuir and Freundlich isotherms. The isotherm data followed Langmuir Model. The adsorption processes conformed to the pseudo-second-order rate kinetics. Thermodynamic parameters such as enthalpy, entropy and Gibb’s free energy changes were also calculated and it was found that the sorption of phenols by Jujuba seeds activated carbon was a spontaneous process The maximum adsorption efficiency of phenol and 2-4 dichlorophenol was 142.85 mg.g−1 and 250 mg.g−1, respectively.

Keywords: activated carbon, adsorption, isotherms, Jujuba seeds, phenols, langmuir

Procedia PDF Downloads 311
1435 Investigation of Several Parameters on Local Scour around Inclined Dual Bridge Piers

Authors: Murat Çeşme

Abstract:

For a bridge engineer to ensure a safe footing design, it is very important to estimate the maximum scour depth around the piers as accurately as possible. Many experimental studies have been performed by several investigators to obtain information about scouring mechanism. In order to examine the effect of inclination of dual bridge piers on scour depth under clear-water conditions for various uniform flow depths, an experimental research on scaled dual bridge piers has been carried over in METU Hydromechanics Lab. Dimensional and non-dimensional curves were developed and presented to show the variation of scour depth with respect to various parameters such as footing angle with the vertical, flow depth and footing dimensions. Results of the study were compared to those obtained from a similar study performed with single inclined piers to see the effect of the second pier on scour depths. Useful equations for the design engineers were developed based on multiple regression analyses to be used for predicting local scour depths around inclined piers in uniform and non-uniform sediments.

Keywords: experimental research, inclined dual bridge piers, footing safety, scour depth, clear water condition

Procedia PDF Downloads 97
1434 T-S Fuzzy Modeling Based on Power Coefficient Limit Nonlinearity Applied to an Isolated Single Machine Load Frequency Deviation Control

Authors: R. S. Sheu, H. Usman, M. S. Lawal

Abstract:

Takagi-Sugeno (T-S) fuzzy model based control of a load frequency deviation in a single machine with limit nonlinearity on power coefficient is presented in the paper. Two T-S fuzzy rules with only rotor angle variable as input in the premise part, and linear state space models in the consequent part involving characteristic matrices determined from limits set on the power coefficient constant are formulated, state feedback control gains for closed loop control was determined from the formulated Linear Matrix Inequality (LMI) with eigenvalue optimization scheme for asymptotic and exponential stability (speed of esponse). Numerical evaluation of the closed loop object was carried out in Matlab. Simulation results generated of both the open and closed loop system showed the effectiveness of the control scheme in maintaining load frequency stability.

Keywords: T-S fuzzy model, state feedback control, linear matrix inequality (LMI), frequency deviation control

Procedia PDF Downloads 396
1433 Flow Separation Control on an Aerofoil Using Grooves

Authors: Neel K. Shah

Abstract:

Wind tunnel tests have been performed at The University of Manchester to investigate the impact of surface grooves of a trapezoidal planform on flow separation on a symmetrical aerofoil. A spanwise array of the grooves has been applied around the maximum thickness location of the upper surface of an NACA-0015 aerofoil. The aerofoil has been tested in a two-dimensional set-up in a low-speed wind tunnel at an angle of attack (AoA) of 3° and a chord-based Reynolds number (Re) of ~2.7 x 105. A laminar separation bubble developed on the aerofoil at low AoA. It has been found that the grooves shorten the streamwise extent of the separation bubble by shedding a pair of counter-rotating vortices. However, the increase in leading-edge suction due to the shorter bubble is not significant since the creation of the grooves results in a decrease of surface curvature and an increase in blockage (increase in surface pressure). Additionally, the increased flow mixing by the grooves thickens the boundary layer near the trailing edge of the aerofoil also contributes to this limitation. As a result of these competing effects, the improvement in the pressure-lift and pressure-drag coefficients are small, i.e., by ~1.30% and ~0.30%, respectively, at 3° AoA. Crosswire anemometry shows that the grooves increase turbulence intensity and Reynolds stresses in the wake, thus indicating an increase in viscous drag.

Keywords: aerofoil flow control, flow separation, grooves, vortices

Procedia PDF Downloads 314
1432 The Ductile Fracture of Armor Steel Targets Subjected to Ballistic Impact and Perforation: Calibration of Four Damage Criteria

Authors: Imen Asma Mbarek, Alexis Rusinek, Etienne Petit, Guy Sutter, Gautier List

Abstract:

Over the past two decades, the automotive, aerospace and army industries have been paying an increasing attention to Finite Elements (FE) numerical simulations of the fracture process of their structures. Thanks to the numerical simulations, it is nowadays possible to analyze several problems involving costly and dangerous extreme loadings safely and at a reduced cost such as blast or ballistic impact problems. The present paper is concerned with ballistic impact and perforation problems involving ductile fracture of thin armor steel targets. The target fracture process depends usually on various parameters: the projectile nose shape, the target thickness and its mechanical properties as well as the impact conditions (friction, oblique/normal impact...). In this work, the investigations are concerned with the normal impact of a conical head-shaped projectile on thin armor steel targets. The main aim is to establish a comparative study of four fracture criteria that are commonly used in the fracture process simulations of structures subjected to extreme loadings such as ballistic impact and perforation. Usually, the damage initiation results from a complex physical process that occurs at the micromechanical scale. On a macro scale and according to the following fracture models, the variables on which the fracture depends are mainly the stress triaxiality ƞ, the strain rate, temperature T, and eventually the Lode angle parameter Ɵ. The four failure criteria are: the critical strain to failure model, the Johnson-Cook model, the Wierzbicki model and the Modified Hosford-Coulomb model MHC. Using the SEM, the observations of the fracture facies of tension specimen and of armor steel targets impacted at low and high incident velocities show that the fracture of the specimens is a ductile fracture. The failure mode of the targets is petalling with crack propagation and the fracture facies are covered with micro-cavities. The parameters of each ductile fracture model have been identified for three armor steels and the applicability of each criterion was evaluated using experimental investigations coupled to numerical simulations. Two loading paths were investigated in this study, under a wide range of strain rates. Namely, quasi-static and intermediate uniaxial tension and quasi-static and dynamic double shear testing allow covering various values of stress triaxiality ƞ and of the Lode angle parameter Ɵ. All experiments were conducted on three different armor steel specimen under quasi-static strain rates ranging from 10-4 to 10-1 1/s and at three different temperatures ranging from 297K to 500K, allowing drawing the influence of temperature on the fracture process. Intermediate tension testing was coupled to dynamic double shear experiments conducted on the Hopkinson tube device, allowing to spot the effect of high strain rate on the damage evolution and the crack propagation. The aforementioned fracture criteria are implemented into the FE code ABAQUS via VUMAT subroutine and they were coupled to suitable constitutive relations allow having reliable results of ballistic impact problems simulation. The calibration of the four damage criteria as well as a concise evaluation of the applicability of each criterion are detailed in this work.

Keywords: armor steels, ballistic impact, damage criteria, ductile fracture, SEM

Procedia PDF Downloads 312
1431 The Continuously Supported Infinity Rail Subjected to a Moving Complex Bogie System

Authors: Vladimir Stojanović, Marko D. Petković

Abstract:

The vibration of a complex bogie system that moves on along the high order shear deformable beam on a viscoelastic foundation is studied. The complex bogie system has been modeled by elastically connected rigid bars on an identical supports. Elastic coupling between bars is introduced to simulate rigidly or flexibly (transversal or/and rotational) connection. Identical supports are modeled as a system of attached spring and dashpot to the bar on one side and interact with the beam through the concentrated mass on the other side. It is assumed that the masses and the beam are always in contact. New analytically determined critical velocity of the system is presented. It is analyzed the case when the complex bogie system exceeds the minimum phase velocity of waves in the beam when the vibration of the system may become unstable. Effect of an elastic coupling between bars on the stability of the system has been analyzed. The instability regions are found for the complex bogie system by applying the principle of the argument and D-decomposition method.

Keywords: Reddy-Bickford beam, D-decomposition method, principle of argument, critical velocity

Procedia PDF Downloads 304
1430 Design, Fabrication and Analysis of Molded and Direct 3D-Printed Soft Pneumatic Actuators

Authors: N. Naz, A. D. Domenico, M. N. Huda

Abstract:

Soft Robotics is a rapidly growing multidisciplinary field where robots are fabricated using highly deformable materials motivated by bioinspired designs. The high dexterity and adaptability to the external environments during contact make soft robots ideal for applications such as gripping delicate objects, locomotion, and biomedical devices. The actuation system of soft robots mainly includes fluidic, tendon-driven, and smart material actuation. Among them, Soft Pneumatic Actuator, also known as SPA, remains the most popular choice due to its flexibility, safety, easy implementation, and cost-effectiveness. However, at present, most of the fabrication of SPA is still based on traditional molding and casting techniques where the mold is 3d printed into which silicone rubber is cast and consolidated. This conventional method is time-consuming and involves intensive manual labour with the limitation of repeatability and accuracy in design. Recent advancements in direct 3d printing of different soft materials can significantly reduce the repetitive manual task with an ability to fabricate complex geometries and multicomponent designs in a single manufacturing step. The aim of this research work is to design and analyse the Soft Pneumatic Actuator (SPA) utilizing both conventional casting and modern direct 3d printing technologies. The mold of the SPA for traditional casting is 3d printed using fused deposition modeling (FDM) with the polylactic acid (PLA) thermoplastic wire. Hyperelastic soft materials such as Ecoflex-0030/0050 are cast into the mold and consolidated using a lab oven. The bending behaviour is observed experimentally with different pressures of air compressor to ensure uniform bending without any failure. For direct 3D-printing of SPA fused deposition modeling (FDM) with thermoplastic polyurethane (TPU) and stereolithography (SLA) with an elastic resin are used. The actuator is modeled using the finite element method (FEM) to analyse the nonlinear bending behaviour, stress concentration and strain distribution of different hyperelastic materials after pressurization. FEM analysis is carried out using Ansys Workbench software with a Yeon-2nd order hyperelastic material model. FEM includes long-shape deformation, contact between surfaces, and gravity influences. For mesh generation, quadratic tetrahedron, hybrid, and constant pressure mesh are used. SPA is connected to a baseplate that is in connection with the air compressor. A fixed boundary is applied on the baseplate, and static pressure is applied orthogonally to all surfaces of the internal chambers and channels with a closed continuum model. The simulated results from FEM are compared with the experimental results. The experiments are performed in a laboratory set-up where the developed SPA is connected to a compressed air source with a pressure gauge. A comparison study based on performance analysis is done between FDM and SLA printed SPA with the molded counterparts. Furthermore, the molded and 3d printed SPA has been used to develop a three-finger soft pneumatic gripper and has been tested for handling delicate objects.

Keywords: finite element method, fused deposition modeling, hyperelastic, soft pneumatic actuator

Procedia PDF Downloads 89
1429 Simulation of Kinetic Friction in L-Bending of Sheet Metals

Authors: Maziar Ramezani, Thomas Neitzert, Timotius Pasang

Abstract:

This paper aims at experimental and numerical investigation of springback behavior of sheet metals during L-bending process with emphasis on Stribeck-type friction modeling. The coefficient of friction in Stribeck curve depends on sliding velocity and contact pressure. The springback behavior of mild steel and aluminum alloy 6022-T4 sheets was studied experimentally and using numerical simulations with ABAQUS software with two types of friction model: Coulomb friction and Stribeck friction. The influence of forming speed on springback behavior was studied experimentally and numerically. The results showed that Stribeck-type friction model has better results in predicting springback in sheet metal forming. The FE prediction error for mild steel and 6022-T4 AA is 23.8%, 25.5% respectively, using Coulomb friction model and 11%, 13% respectively, using Stribeck friction model. These results show that Stribeck model is suitable for simulation of sheet metal forming especially at higher forming speed.

Keywords: friction, L-bending, springback, Stribeck curves

Procedia PDF Downloads 490
1428 Evaluation of Geomechanical and Geometrical Parameters’ Effects on Hydro-Mechanical Estimation of Water Inflow into Underground Excavations

Authors: M. Mazraehli, F. Mehrabani, S. Zare

Abstract:

In general, mechanical and hydraulic processes are not independent of each other in jointed rock masses. Therefore, the study on hydro-mechanical coupling of geomaterials should be a center of attention in rock mechanics. Rocks in their nature contain discontinuities whose presence extremely influences mechanical and hydraulic characteristics of the medium. Assuming this effect, experimental investigations on intact rock cannot help to identify jointed rock mass behavior. Hence, numerical methods are being used for this purpose. In this paper, water inflow into a tunnel under significant water table has been estimated using hydro-mechanical discrete element method (HM-DEM). Besides, effects of geomechanical and geometrical parameters including constitutive model, friction angle, joint spacing, dip of joint sets, and stress factor on the estimated inflow rate have been studied. Results demonstrate that inflow rates are not identical for different constitutive models. Also, inflow rate reduces with increased spacing and stress factor.

Keywords: distinct element method, fluid flow, hydro-mechanical coupling, jointed rock mass, underground excavations

Procedia PDF Downloads 165
1427 Photocatalytic Degradation of Acid Dye Over Ag, Loaded ZnO Under UV/Solar Light

Authors: Farida Kaouah, Wassila Hachi, Lamia Brahmi, Chahida Ousselah, Salim Boumaza, Mohamed Trari

Abstract:

The feasibility of using solar irradiation instead of UV light in photocatalysis is a promising approach for water treatment. In this study, photocatalytic degradation of a widely used textile dye, Acid Blue 25 (AB25), with noble metal loaded ZnO photocatalyst (Ag/ZnO), was investigated in aqueous suspension under solar light. The results showed that the deposition of Ag as a noble metal onto the ZnO surface, improved the photodegradation of AB25. . The effect of different parameters such as catalyst dose, initial dye concentration, and contact time was optimized and the optimal degradation of AB25 (97%) was achieved for initial AB25 concentration of 24 mg L−1 an catalyst dose of 1 g L−1 at natural pH (5.42) after 180 min. The kinetic studies were achieved and revealed that the photocatalytic degradation process obeyed to Langmuir–Hinshelwood model and followed a pseudo-first order rate expression. This work envisages the great potential that sunlight photocatalysis has in the degradation of dyes from wastewater

Keywords: acid dye, photocatalytic degradation, sunlight, zinc oxide, noble metal, Langmuir–Hinshelwood model

Procedia PDF Downloads 109
1426 Modeling Studies on the Elevated Temperatures Formability of Tube Ends Using RSM

Authors: M. J. Davidson, N. Selvaraj, L. Venugopal

Abstract:

The elevated temperature forming studies on the expansion of thin walled tubes have been studied in the present work. The influence of process parameters namely the die angle, the die ratio and the operating temperatures on the expansion of tube ends at elevated temperatures is carried out. The range of operating parameters have been identified by perfoming extensive simulation studies. The hot forming parameters have been evaluated for AA2014 alloy for performing the simulation studies. Experimental matrix has been developed from the feasible range got from the simulation results. The design of experiments is used for the optimization of process parameters. Response Surface Method’s (RSM) and Box-Behenken design (BBD) is used for developing the mathematical model for expansion. Analysis of variance (ANOVA) is used to analyze the influence of process parameters on the expansion of tube ends. The effect of various process combinations of expansion are analyzed through graphical representations. The developed model is found to be appropriate as the coefficient of determination value is very high and is equal to 0.9726. The predicted values are found to coincide well with the experimental results, within acceptable error limits.

Keywords: expansion, optimization, Response Surface Method (RSM), ANOVA, bbd, residuals, regression, tube

Procedia PDF Downloads 508