Search results for: ABC-VED inventory classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2911

Search results for: ABC-VED inventory classification

1351 Self-Supervised Learning for Hate-Speech Identification

Authors: Shrabani Ghosh

Abstract:

Automatic offensive language detection in social media has become a stirring task in today's NLP. Manual Offensive language detection is tedious and laborious work where automatic methods based on machine learning are only alternatives. Previous works have done sentiment analysis over social media in different ways such as supervised, semi-supervised, and unsupervised manner. Domain adaptation in a semi-supervised way has also been explored in NLP, where the source domain and the target domain are different. In domain adaptation, the source domain usually has a large amount of labeled data, while only a limited amount of labeled data is available in the target domain. Pretrained transformers like BERT, RoBERTa models are fine-tuned to perform text classification in an unsupervised manner to perform further pre-train masked language modeling (MLM) tasks. In previous work, hate speech detection has been explored in Gab.ai, which is a free speech platform described as a platform of extremist in varying degrees in online social media. In domain adaptation process, Twitter data is used as the source domain, and Gab data is used as the target domain. The performance of domain adaptation also depends on the cross-domain similarity. Different distance measure methods such as L2 distance, cosine distance, Maximum Mean Discrepancy (MMD), Fisher Linear Discriminant (FLD), and CORAL have been used to estimate domain similarity. Certainly, in-domain distances are small, and between-domain distances are expected to be large. The previous work finding shows that pretrain masked language model (MLM) fine-tuned with a mixture of posts of source and target domain gives higher accuracy. However, in-domain performance of the hate classifier on Twitter data accuracy is 71.78%, and out-of-domain performance of the hate classifier on Gab data goes down to 56.53%. Recently self-supervised learning got a lot of attention as it is more applicable when labeled data are scarce. Few works have already been explored to apply self-supervised learning on NLP tasks such as sentiment classification. Self-supervised language representation model ALBERTA focuses on modeling inter-sentence coherence and helps downstream tasks with multi-sentence inputs. Self-supervised attention learning approach shows better performance as it exploits extracted context word in the training process. In this work, a self-supervised attention mechanism has been proposed to detect hate speech on Gab.ai. This framework initially classifies the Gab dataset in an attention-based self-supervised manner. On the next step, a semi-supervised classifier trained on the combination of labeled data from the first step and unlabeled data. The performance of the proposed framework will be compared with the results described earlier and also with optimized outcomes obtained from different optimization techniques.

Keywords: attention learning, language model, offensive language detection, self-supervised learning

Procedia PDF Downloads 107
1350 Optimal Mother Wavelet Function for Shoulder Muscles of Upper Limb Amputees

Authors: Amanpreet Kaur

Abstract:

Wavelet transform (WT) is a powerful statistical tool used in applied mathematics for signal and image processing. The different mother, wavelet basis function, has been compared to select the optimal wavelet function that represents the electromyogram signal characteristics of upper limb amputees. Four different EMG electrode has placed on different location of shoulder muscles. Twenty one wavelet functions from different wavelet families were investigated. These functions included Daubechies (db1-db10), Symlets (sym1-sym5), Coiflets (coif1-coif5) and Discrete Meyer. Using mean square error value, the significance of the mother wavelet functions has been determined for teres, pectorals, and infraspinatus around shoulder muscles. The results show that the best mother wavelet is the db3 from the Daubechies family for efficient classification of the signal.

Keywords: Daubechies, upper limb amputation, shoulder muscles, Symlets, Coiflets

Procedia PDF Downloads 238
1349 Analysis of Spatial and Temporal Data Using Remote Sensing Technology

Authors: Kapil Pandey, Vishnu Goyal

Abstract:

Spatial and temporal data analysis is very well known in the field of satellite image processing. When spatial data are correlated with time, series analysis it gives the significant results in change detection studies. In this paper the GIS and Remote sensing techniques has been used to find the change detection using time series satellite imagery of Uttarakhand state during the years of 1990-2010. Natural vegetation, urban area, forest cover etc. were chosen as main landuse classes to study. Landuse/ landcover classes within several years were prepared using satellite images. Maximum likelihood supervised classification technique was adopted in this work and finally landuse change index has been generated and graphical models were used to present the changes.

Keywords: GIS, landuse/landcover, spatial and temporal data, remote sensing

Procedia PDF Downloads 433
1348 Assessment of Potential Spontaneous Plants Seed Dispersal in Camels and Small Ruminants Faeces

Authors: H. Trabelsi, A. Chehma, I. Benseddik

Abstract:

Animals can play an important role in the seed dispersal cycle through the active or passive uptake of seeds and the subsequent external (epizoochory) or internal transport (endozoochory) of seeds. In Algeria, small ruminants and camels are generally conducted in extensive livestock exploiting the Saharan and steppe rangelands. To get an idea on the ecological potential role of these animals in the spontaneous plants proliferation, we propose to make a study of seeds dispersal and germination possibilities by camel faeces compared to those of small ruminants. Manual faeces decortication of the two animals categories has allowed to inventory 72 seed which 71% are in good condition, while 29% of the seeds that are encountered are partially altered and could not be identified. The species that have been identified, from small ruminants dung are weeds of cultures, while those identified from camel dung are spontaneous plants of Saharan rangeland. Concerning germination in the laboratory, only 3 species seeds were germinated from camel feces, whose germination rate varies from 25% to 100%. Contrary to Sheep-Goat feces, a single species germinated with 71%. The three months seed germination in greenhouse allowed to identify 10 species belonging to 4 botanical families (5 species from small ruminants dung and 3 species from Camel dung). In general, the results show the positive effect played by two animals categories for plants seed dispersal with the camel particularity for spontaneous plants due to its capacity to cover long distances in different rangeland types.

Keywords: Algeria, camel, endozoochory, seeds, sheep-goat, rangeland

Procedia PDF Downloads 314
1347 Diagnosis of Diabetes Using Computer Methods: Soft Computing Methods for Diabetes Detection Using Iris

Authors: Piyush Samant, Ravinder Agarwal

Abstract:

Complementary and Alternative Medicine (CAM) techniques are quite popular and effective for chronic diseases. Iridology is more than 150 years old CAM technique which analyzes the patterns, tissue weakness, color, shape, structure, etc. for disease diagnosis. The objective of this paper is to validate the use of iridology for the diagnosis of the diabetes. The suggested model was applied in a systemic disease with ocular effects. 200 subject data of 100 each diabetic and non-diabetic were evaluated. Complete procedure was kept very simple and free from the involvement of any iridologist. From the normalized iris, the region of interest was cropped. All 63 features were extracted using statistical, texture analysis, and two-dimensional discrete wavelet transformation. A comparison of accuracies of six different classifiers has been presented. The result shows 89.66% accuracy by the random forest classifier.

Keywords: complementary and alternative medicine, classification, iridology, iris, feature extraction, disease prediction

Procedia PDF Downloads 408
1346 Causal Relation Identification Using Convolutional Neural Networks and Knowledge Based Features

Authors: Tharini N. de Silva, Xiao Zhibo, Zhao Rui, Mao Kezhi

Abstract:

Causal relation identification is a crucial task in information extraction and knowledge discovery. In this work, we present two approaches to causal relation identification. The first is a classification model trained on a set of knowledge-based features. The second is a deep learning based approach training a model using convolutional neural networks to classify causal relations. We experiment with several different convolutional neural networks (CNN) models based on previous work on relation extraction as well as our own research. Our models are able to identify both explicit and implicit causal relations as well as the direction of the causal relation. The results of our experiments show a higher accuracy than previously achieved for causal relation identification tasks.

Keywords: causal realtion extraction, relation extracton, convolutional neural network, text representation

Procedia PDF Downloads 736
1345 Changes in EEG and Emotion Regulation in the Course of Inward-Attention Meditation Training

Authors: Yuchien Lin

Abstract:

This study attempted to investigate the changes in electroencephalography (EEG) and emotion regulation following eight-week inward-attention meditation training program. The subjects were 24 adults without meditation experiences divided into meditation and control groups. The quantitatively analyzed changes in psychophysiological parameters during inward-attention meditation, and evaluated the emotion scores assessed by the State-Trait Anxiety Inventory (STAI), the Positive and Negative Affect Schedule (PANAS), and the Emotion Regulation Scale (ERS). The results were found: (1) During meditation, significant EEG increased for theta-band activity in the frontal and the bilateral temporal areas, for alpha-band activity in the left and central frontal areas, and for gamma-band activity in the left frontal and the left temporal areas. (2) The meditation group had significantly higher positive affect in posttest than in pretest. (3) There was no significant difference in the changes of EEG spectral characteristics and emotion scores in posttest and pretest for the control group. In the present study, a unique meditative concentration task with a constant level of moderate mental effort focusing on the center of brain was used, so as to enhance frontal midline theta, alpha, and gamma-band activity. These results suggest that this mental training allows individual reach a specific mental state of relaxed but focused awareness. The gamma-band activity, in particular, enhanced over left frontoparietal area may suggest that inward-attention meditation training involves temporal integrative mechanisms and may induce short-term and long-term emotion regulation abilities.

Keywords: meditation, EEG, emotion regulation, gamma activity

Procedia PDF Downloads 216
1344 Research on Urban Thermal Environment Climate Map Based on GIS: Taking Shapingba District, Chongqing as an Example

Authors: Zhao Haoyue

Abstract:

Due to the combined effects of climate change, urban expansion, and population growth, various environmental issues, such as urban heat islands and pollution, arise. Therefore, reliable information on urban environmental climate is needed to address and mitigate the negative effects. The emergence of urban climate maps provides a practical basis for urban climate regulation and improvement. This article takes Shapingba District, Chongqing City, as an example to study the construction method of urban thermal environment climate maps based on GIS spatial analysis technology. The thermal load, ventilation potential analysis map, and thermal environment comprehensive analysis map were obtained. Based on the classification criteria obtained from the climate map, corresponding protection and planning mitigation measures have been proposed.

Keywords: urban climate, GIS, heat island analysis, urban thermal environment

Procedia PDF Downloads 114
1343 Decision Trees Constructing Based on K-Means Clustering Algorithm

Authors: Loai Abdallah, Malik Yousef

Abstract:

A domain space for the data should reflect the actual similarity between objects. Since objects belonging to the same cluster usually share some common traits even though their geometric distance might be relatively large. In general, the Euclidean distance of data points that represented by large number of features is not capturing the actual relation between those points. In this study, we propose a new method to construct a different space that is based on clustering to form a new distance metric. The new distance space is based on ensemble clustering (EC). The EC distance space is defined by tracking the membership of the points over multiple runs of clustering algorithm metric. Over this distance, we train the decision trees classifier (DT-EC). The results obtained by applying DT-EC on 10 datasets confirm our hypotheses that embedding the EC space as a distance metric would improve the performance.

Keywords: ensemble clustering, decision trees, classification, K nearest neighbors

Procedia PDF Downloads 191
1342 Using AI for Analysing Political Leaders

Authors: Shuai Zhao, Shalendra D. Sharma, Jin Xu

Abstract:

This research uses advanced machine learning models to learn a number of hypotheses regarding political executives. Specifically, it analyses the impact these powerful leaders have on economic growth by using leaders’ data from the Archigos database from 1835 to the end of 2015. The data is processed by the AutoGluon, which was developed by Amazon. Automated Machine Learning (AutoML) and AutoGluon can automatically extract features from the data and then use multiple classifiers to train the data. Use a linear regression model and classification model to establish the relationship between leaders and economic growth (GDP per capita growth), and to clarify the relationship between their characteristics and economic growth from a machine learning perspective. Our work may show as a model or signal for collaboration between the fields of statistics and artificial intelligence (AI) that can light up the way for political researchers and economists.

Keywords: comparative politics, political executives, leaders’ characteristics, artificial intelligence

Procedia PDF Downloads 86
1341 Transarterial Chemoembolization (TACE) in Hepatocellular Carcinoma (HCC)

Authors: Ilirian Laçi, Alketa Spahiu

Abstract:

Modality of treatment in hepatocellular carcinoma (HCC) patients depends on the stage of the disease. The Barcelona Clinic Liver Cancer Classification (BCLC) is the preferred staging system. There are many patients initially present with intermediate-stage disease. For these patients, transarterial chemoembolization (TACE) is the treatment of choice. The differences in individual factors that are not captured by the BCLC framework, such as the tumor growth pattern, degree of hypervascularity, and vascular supply, complicate further evaluation of these patients. Because of these differences, not all patients benefit equally from TACE. Several tools have been devised to aid the decision-making process, which have shown promising initial results but have failed external evaluation and have not been translated to the clinic aspects. Criteria for treatment decisions in daily clinical practice are needed in all stages of the disease.

Keywords: hepatocellular carcinoma, transarterial chemoembolization, TACE, liver

Procedia PDF Downloads 98
1340 Modeling of Geotechnical Data Using GIS and Matlab for Eastern Ahmedabad City, Gujarat

Authors: Rahul Patel, S. P. Dave, M. V Shah

Abstract:

Ahmedabad is a rapidly growing city in western India that is experiencing significant urbanization and industrialization. With projections indicating that it will become a metropolitan city in the near future, various construction activities are taking place, making soil testing a crucial requirement before construction can commence. To achieve this, construction companies and contractors need to periodically conduct soil testing. This study focuses on the process of creating a spatial database that is digitally formatted and integrated with geotechnical data and a Geographic Information System (GIS). Building a comprehensive geotechnical Geo-database involves three essential steps. Firstly, borehole data is collected from reputable sources. Secondly, the accuracy and redundancy of the data are verified. Finally, the geotechnical information is standardized and organized for integration into the database. Once the Geo-database is complete, it is integrated with GIS. This integration allows users to visualize, analyze, and interpret geotechnical information spatially. Using a Topographic to Raster interpolation process in GIS, estimated values are assigned to all locations based on sampled geotechnical data values. The study area was contoured for SPT N-Values, Soil Classification, Φ-Values, and Bearing Capacity (T/m2). Various interpolation techniques were cross-validated to ensure information accuracy. The GIS map generated by this study enables the calculation of SPT N-Values, Φ-Values, and bearing capacities for different footing widths and various depths. This approach highlights the potential of GIS in providing an efficient solution to complex phenomena that would otherwise be tedious to achieve through other means. Not only does GIS offer greater accuracy, but it also generates valuable information that can be used as input for correlation analysis. Furthermore, this system serves as a decision support tool for geotechnical engineers. The information generated by this study can be utilized by engineers to make informed decisions during construction activities. For instance, they can use the data to optimize foundation designs and improve site selection. In conclusion, the rapid growth experienced by Ahmedabad requires extensive construction activities, necessitating soil testing. This study focused on the process of creating a comprehensive geotechnical database integrated with GIS. The database was developed by collecting borehole data from reputable sources, verifying its accuracy and redundancy, and organizing the information for integration. The GIS map generated by this study is an efficient solution that offers greater accuracy and generates valuable information that can be used as input for correlation analysis. It also serves as a decision support tool for geotechnical engineers, allowing them to make informed decisions during construction activities.

Keywords: arcGIS, borehole data, geographic information system (GIS), geo-database, interpolation, SPT N-value, soil classification, φ-value, bearing capacity

Procedia PDF Downloads 70
1339 Determining the Prevalence and Correlates of Depression among Transgenders of a Developing Country

Authors: Usama Bin Zubair, Muhammad Azeem

Abstract:

Introduction: Depression has been one of the most commonly diagnosed mental health disorders in Pakistan. A Census conducted by the government of Pakistan in 2017 showed that more than 10000 trans-genders live in Pakistan. HIV, illicit substance use and mental health issues, including depression, have been the main health problems faced by them. Trans-gender population has been suffering from depressive illness more than normal population all over the world. Aim: To assess the prevalence of depression among the transgender population and analyze the relationship of socio-demographic factors with depression. Subjects and Methods: The sample population comprised of one hundred and forty-two transgender people of Rawalpindi and Islamabad. Beck depressive inventory II (BDI-II) was used to record the presence and severity of the depressive symptoms. Depressive symptoms were categorized as mild, moderate and severe. Relationship of the age, smoking, family income, illicit substance use and education were studied with the presence of depressive symptoms among these transgender people of twin cities of Pakistan. Results: A total of 142 transgender people were included in the final analysis. The mean age of the study participants was 39.55 ± 6.18. Out of these, 45.1% had no depressive symptoms while 31.7% had mild, 12.7% had moderate and 10.6% had severe depressive symptomatology. After applying the binary logistic regression, we found that the presence of depressive symptoms had a significant association with illicit substance use among the target population. Conclusion: This study showed a high prevalence of depressive symptoms among the transgender population in the twin cities of Pakistan. Use of illicit substances like tobacco, cannabis, opiates, and alcohol should be discouraged to prevent mental health problems.

Keywords: depression, transgender, prevalence, sociodemographic factors

Procedia PDF Downloads 122
1338 Classification of Contexts for Mentioning Love in Interviews with Victims of the Holocaust

Authors: Marina Yurievna Aleksandrova

Abstract:

Research of the Holocaust retains value not only for history but also for sociology and psychology. One of the most important fields of study is how people were coping during and after this traumatic event. The aim of this paper is to identify the main contexts of the topic of love and to determine which contexts are more characteristic for different groups of victims of the Holocaust (gender, nationality, age). In this research, transcripts of interviews with Holocaust victims that were collected during 1946 for the "Voices of the Holocaust" project were used as data. Main contexts were analyzed with methods of network analysis and latent semantic analysis and classified by gender, age, and nationality with random forest. The results show that love is articulated and described significantly differently for male and female informants, nationality is shown results with lower values of quality metrics, as well as the age.

Keywords: Holocaust, latent semantic analysis, network analysis, text-mining, random forest

Procedia PDF Downloads 182
1337 Implementation of Lean Tools (Value Stream Mapping and ECRS) in an Oil Refinery

Authors: Ronita Singh, Yaman Pattanaik, Soham Lalwala

Abstract:

In today’s highly competitive business environment, every organization is striving towards lean manufacturing systems to achieve lower Production Lead Times, lower costs, less inventory and overall improvement in supply chains efficiency. Based on the similar idea, this paper presents the practical application of Value Stream Mapping (VSM) tool and ECRS (Eliminate, Combine, Reduce, and Simplify) technique in the receipt section of the material management center of an oil refinery. A value stream is an assortment of all actions (value added as well as non-value added) that are required to bring a product through the essential flows, starting with raw material and ending with the customer. For drawing current state value stream mapping, all relevant data of the receipt cycle has been collected and analyzed. Then analysis of current state map has been done for determining the type and quantum of waste at every stage which helped in ascertaining as to how far the warehouse is from the concept of lean manufacturing. From the results achieved by current VSM, it was observed that the two processes- Preparation of GRN (Goods Receipt Number) and Preparation of UD (Usage Decision) are both bottle neck operations and have higher cycle time. This root cause analysis of various types of waste helped in designing a strategy for step-wise implementation of lean tools. The future state thus created a lean flow of materials at the warehouse center, reducing the lead time of the receipt cycle from 11 days to 7 days and increasing overall efficiency by 27.27%.

Keywords: current VSM, ECRS, future VSM, receipt cycle, supply chain, VSM

Procedia PDF Downloads 318
1336 Video Based Ambient Smoke Detection By Detecting Directional Contrast Decrease

Authors: Omair Ghori, Anton Stadler, Stefan Wilk, Wolfgang Effelsberg

Abstract:

Fire-related incidents account for extensive loss of life and material damage. Quick and reliable detection of occurring fires has high real world implications. Whereas a major research focus lies on the detection of outdoor fires, indoor camera-based fire detection is still an open issue. Cameras in combination with computer vision helps to detect flames and smoke more quickly than conventional fire detectors. In this work, we present a computer vision-based smoke detection algorithm based on contrast changes and a multi-step classification. This work accelerates computer vision-based fire detection considerably in comparison with classical indoor-fire detection.

Keywords: contrast analysis, early fire detection, video smoke detection, video surveillance

Procedia PDF Downloads 447
1335 Landscape Planning And Development Of Integrated Farming Based On Low External Input Sustainable Agriculture (LEISA) In Pangulah Village, Karawang County, West Java, Indonesia

Authors: Eduwin Eko Franjaya, Yesi Hendriani Supartoyo

Abstract:

Integrated farming with LEISA concept as one of the systems or sustainable farming techniques in agriculture has provided opportunities to increase farmers' income. This system also has a positive impact on the environment. However, the development of integrated farming is still on a small scale/site scale. Development on a larger scale is necessary considering to the number of potential resources in the village that can be integrated each other. The aim of this research is to develop an integrated farming landscape on small scale that has been done in previous study, into the village scale. The method used in this study follows the rules of scientific planning in landscape architecture. The initial phase begins with an inventory of the existing condition of the village, by conducting a survey. The second stage is analysis of potential and constraints in the village based on the results of a survey that has been done before. The next stage is concept-making that consists of basic concept, design concept, and development concept. The basic concept is integrated farming based on LEISA. The design concept is based on commodities that are developed in the village. The development concept consists of space concept, circulation concept, the concept of vegetation and commodities, and the concept of the production system. The last stage is planning process which produces Site Plan based on LEISA on village scale. Site Plan is also the end product of this research. The results of this research are expected to increase the income and welfare of the farmers in the village, and can be develop into a tourism area of integrated farming.

Keywords: integrated farming, LEISA, site plan, sustainable agriculture

Procedia PDF Downloads 456
1334 The Study of Hydro Physical Complex Characteristic of Clay Soil-Ground of Colchis Lowland

Authors: Paata Sitchinava

Abstract:

It has been studied phenomena subjected on the water physical (hydrophysical, mineralogy containing, specific hydrophysical) class of heavy clay soils of the Colchis lowland, according to various categories and forms of the porous water, which will be the base of the distributed used methods of the engineering practice and reclamation effectiveness evaluation. According to of clay grounds data, it has been chosen three research bases section in the central part of lowland, where has implemented investigation works by using a special program. It has been established, that three of cuts are somewhat identical, and by morphological grounds separated layers are the difference by Gallic quality. It has been implemented suitable laboratory experimental research at the samples taken from the cuts, at the base of these created classification mark of physical-technical characteristic, which is the base of suitable calculation of hydrophysical researches.

Keywords: Colchis lowland, drainage, water, soil-ground

Procedia PDF Downloads 180
1333 An Approach Based on Statistics and Multi-Resolution Representation to Classify Mammograms

Authors: Nebi Gedik

Abstract:

One of the significant and continual public health problems in the world is breast cancer. Early detection is very important to fight the disease, and mammography has been one of the most common and reliable methods to detect the disease in the early stages. However, it is a difficult task, and computer-aided diagnosis (CAD) systems are needed to assist radiologists in providing both accurate and uniform evaluation for mass in mammograms. In this study, a multiresolution statistical method to classify mammograms as normal and abnormal in digitized mammograms is used to construct a CAD system. The mammogram images are represented by wave atom transform, and this representation is made by certain groups of coefficients, independently. The CAD system is designed by calculating some statistical features using each group of coefficients. The classification is performed by using support vector machine (SVM).

Keywords: wave atom transform, statistical features, multi-resolution representation, mammogram

Procedia PDF Downloads 223
1332 Enhancing National Integrity through Teaching Secular Perspectives in Medieval Indian History Curricula: A Secular Paradigms

Authors: Deepak Deshpande, Vikas Minchekar

Abstract:

Day by day in modern India communal forces became stronger and stronger. Each and every caste group trying to show their strength through massive marches. Such kind of marches or ralliesruinous national integrity in India. To test this assumption present investigation has been carried out. This research was undertaken by using survey techniques. The study has been carried out in two phases. In the first stage, the students’ attitudes were collected while in the second phase the views of the members of the historical association were collected. The social dominance orientation scale and sources of social dominance inventory have been administered on 200 college students belonging to Maratha caste. Analyzed data revealed ahigh level of social dominance in Maratha caste students. Approximately, 80 percent students have reported that they have learned such dominance from the medieval history. The other sources disappear very less prominent. These results and present Indian social situation have been communicated with the members of the historical association of India. The majority members of this association agreed with this reality. The consensus also received on that Maratha caste person experiencing dominance due to the misinterpretation of the King Shivaji Empire; synchronize by politicians. The survey monkey app was used through electronic mail to collect the views on ‘The attitude towards the modification of curricula questionnaire’. The maximum number of members of the historical association agreed to employ to teach the medieval Indian history accordingly the secular perspectives.

Keywords: social dominance orientation, secular perceptive, national integrity, Maratha caste and medieval Indian history

Procedia PDF Downloads 262
1331 The UAV Feasibility Trajectory Prediction Using Convolution Neural Networks

Authors: Adrien Marque, Daniel Delahaye, Pierre Maréchal, Isabelle Berry

Abstract:

Wind direction and uncertainty are crucial in aircraft or unmanned aerial vehicle trajectories. By computing wind covariance matrices on each spatial grid point, these spatial grids can be defined as images with symmetric positive definite matrix elements. A data pre-processing step, a specific convolution, a specific max-pooling, and a specific flatten layers are implemented to process such images. Then, the neural network is applied to spatial grids, whose elements are wind covariance matrices, to solve classification problems related to the feasibility of unmanned aerial vehicles based on wind direction and wind uncertainty.

Keywords: wind direction, uncertainty level, unmanned aerial vehicle, convolution neural network, SPD matrices

Procedia PDF Downloads 56
1330 A Study on the Ideal and Actual Coping Responses of Public and Private College School Teachers on Job-Related Stress

Authors: Zaralyn Bernardo, Dante Boac, Annabelle Del Rosario

Abstract:

Professional individuals who are in a primary role to impart learning with the new generation are alarmingly tend to have a vast decrease in their workforce due to stress at work. Thus, the study used mixed method research design to explore the ideal and actual coping patterns of college school teachers, both private and public, using Coping Response Inventory-Adult (CRI-Adult). It was suggested that in order for coping to be effective there must be a congruence or good match between coping efforts and preferred coping style. Results basically provided the same information on sources of teacher stress. However, workload and low salary were more likely heightened, for public and private school, respectively. There is also a significant difference between the ideal and actual coping style of college school teachers. Though the public school teachers leaned towards problem-focused as their ideal way of coping, both public and private teachers are somewhat inclined to use emotion-focused coping in actual situation. Results of FGD identified the factors that contribute to the incongruence or mismatch in their preferred style of coping and actual efforts to cope. Identified factors based on thematic analysis (TA) are clustered into themes such as affectivity and rehearsal of the preferred coping responses, sensitivity to pressure impairs coping efficacy, seeking for social acceptance and approval, indefinite appraisal of perceived stress, emotional dysregulation, and impulsivity, immediate desire to terminate negative emotion and adversity. Most of the factors somewhat provide partial elucidation on the engagement of the respondents on emotion-focused coping.

Keywords: coping responses subtypes, appraisal, teacher stress, ideal and actual coping

Procedia PDF Downloads 167
1329 Performance Prediction Methodology of Slow Aging Assets

Authors: M. Ben Slimene, M.-S. Ouali

Abstract:

Asset management of urban infrastructures faces a multitude of challenges that need to be overcome to obtain a reliable measurement of performances. Predicting the performance of slowly aging systems is one of those challenges, which helps the asset manager to investigate specific failure modes and to undertake the appropriate maintenance and rehabilitation interventions to avoid catastrophic failures as well as to optimize the maintenance costs. This article presents a methodology for modeling the deterioration of slowly degrading assets based on an operating history. It consists of extracting degradation profiles by grouping together assets that exhibit similar degradation sequences using an unsupervised classification technique derived from artificial intelligence. The obtained clusters are used to build the performance prediction models. This methodology is applied to a sample of a stormwater drainage culvert dataset.

Keywords: artificial Intelligence, clustering, culvert, regression model, slow degradation

Procedia PDF Downloads 112
1328 A Study of Effective Stereo Matching Method for Long-Wave Infrared Camera Module

Authors: Hyun-Koo Kim, Yonghun Kim, Yong-Hoon Kim, Ju Hee Lee, Myungho Song

Abstract:

In this paper, we have described an efficient stereo matching method and pedestrian detection method using stereo types LWIR camera. We compared with three types stereo camera algorithm as block matching, ELAS, and SGM. For pedestrian detection using stereo LWIR camera, we used that SGM stereo matching method, free space detection method using u/v-disparity, and HOG feature based pedestrian detection. According to testing result, SGM method has better performance than block matching and ELAS algorithm. Combination of SGM, free space detection, and pedestrian detection using HOG features and SVM classification can detect pedestrian of 30m distance and has a distance error about 30 cm.

Keywords: advanced driver assistance system, pedestrian detection, stereo matching method, stereo long-wave IR camera

Procedia PDF Downloads 415
1327 Callous-Unemotional Traits in Preschoolers: Distinct Associations with Empathy Subcomponents

Authors: E. Stylianopoulou, A. K. Fanti

Abstract:

Object: Children scoring high on Callous-Unemotional traits (CU traits) exhibit lack of empathy. More specifically, children scoring high on CU traits appear to exhibit deficits on affective empathy or deficits in other constructs. However, little is known about cognitive empathy, and it's relation with CU traits in preschoolers. Despite the fact that empathy is measurable at a very young age, relatively less study has focused on empathy in preschoolers than older children with CU traits. The present study examines the cognitive and affective empathy in preschoolers with CU traits. The aim was to examine the differences between cognitive and affective empathy in those individuals. Based on previous research in children with CU traits, it was hypothesized that preschoolers scoring high in CU traits will show deficits in both cognitive and affective empathy; however, more deficits will be detected in affective empathy rather than cognitive empathy. Method: The sample size was 209 children, of which 109 were male, and 100 were female between the ages of 3 and 7 (M=4.73, SD=0.71). From those participants, only 175 completed all the items. The Inventory of Callous-Unemotional traits was used to measure CU traits. Moreover, the Griffith Empathy Measure (GEM) Affective Scale and the Griffith Empathy Measure (GEM) Cognitive Scale was used to measure Affective and Cognitive empathy, respectively. Results: Linear Regression was applied to examine the preceding hypotheses. The results showed that generally, there was a moderate negative association between CU traits and empathy, which was significant. More specifically, it has been found that there was a significant and negative moderate relation between CU traits and cognitive empathy. Surprisingly, results indicated that there was no significant relation between CU traits and affective empathy. Conclusion: The current findings support that preschoolers show deficits in understanding others emotions, indicating a significant association between CU traits and cognitive empathy. However, such a relation was not found between CU traits and affective empathy. The current results raised the importance that there is a need for focusing more on cognitive empathy in preschoolers with CU traits, a component that seems to be underestimated till now.

Keywords: affective empathy, callous-unemotional traits, cognitive empathy, preschoolers

Procedia PDF Downloads 153
1326 Random Access in IoT Using Naïve Bayes Classification

Authors: Alhusein Almahjoub, Dongyu Qiu

Abstract:

This paper deals with the random access procedure in next-generation networks and presents the solution to reduce total service time (TST) which is one of the most important performance metrics in current and future internet of things (IoT) based networks. The proposed solution focuses on the calculation of optimal transmission probability which maximizes the success probability and reduces TST. It uses the information of several idle preambles in every time slot, and based on it, it estimates the number of backlogged IoT devices using Naïve Bayes estimation which is a type of supervised learning in the machine learning domain. The estimation of backlogged devices is necessary since optimal transmission probability depends on it and the eNodeB does not have information about it. The simulations are carried out in MATLAB which verify that the proposed solution gives excellent performance.

Keywords: random access, LTE/LTE-A, 5G, machine learning, Naïve Bayes estimation

Procedia PDF Downloads 146
1325 The Effects of Parents’ Personality Traits and Family Variables on Aggressive Behavior in Children from the State of Kuwait

Authors: Eisa Al-Balhan

Abstract:

This study explores the effects of parents’ personality and family variables on aggressive behavior in children from the State of Kuwait. The sample of 117children aged between 6 and 10 years (M=7.79 years, SD =1.4 years),117 fathers, and 117mothers from Kuwait. The following tools were used: a) the Aggressive Behavior Scale for Children (ABSC), b) the Personality Scales Inventory (PSI), and c) the Family Climate Scale (FCS). The results show that there were significant differences between children with highly aggressive behavior and those with low aggressive behavior for most of the personality traits of the father and mother, as well as most of the family climate and its different dimensions according to the father’s knowledge and the mother’s knowledge. Furthermore, there was a significant difference between males and females in the total score of aggressive behavior, verbal aggression, physical aggression, self-aggression, and aggression toward others, with higher scores occurring among males. Most of the correlations of the children’s aggressive behavior were with the personality traits of the father. The personality traits of the mother, family climate, and most of its different dimensions according to the father's and mother's knowledge had significant negative correlations with the child's aggression. There was no effect of the mother's and father's education levels on their child’s aggressive behavior. There was a significant difference between normal families and separated families in the total score of aggressive behavior, verbal aggression, and self-aggression, with a higher score occurring among separated families, and there was no significant difference between the two groups in physical aggression and aggression towards others.

Keywords: aggressive behavior, personality traits of parents, family variables, parents

Procedia PDF Downloads 121
1324 Curriculum for the Manufacturing and Engineering Course Programs in Industries

Authors: Muhammad Yasir Latif

Abstract:

Industrial Engineering and Management (IEM) is a continuous, adaptable, and dynamic branch of engineering. The purpose of this study is to use a knowledge-based course classification method to investigate four IEM educational programs in Europe. Furthermore, the relative weight of each sector was determined using the credit value of the courses. IEM-specific locations and pooled areas were the two related kinds of areas that were used. The results show that, among the four program curricula, Production Management is the specific area with the largest weight, while the specialism field of IEM has a similar weight. This method has proved to be useful for curriculum analysis. The results show that one characteristic of IEM curriculum programs is diversity in the knowledge domains related to IEM specialism. The research also highlights the importance of an organized structure for defining IEM applications, allowing benchmarking efforts, and promoting communication between academics and the IEM community.

Keywords: industrial engineering and management, knowledge areas, curriculum analysis, community

Procedia PDF Downloads 23
1323 The Interconnection between Curriculum Development and ICT

Authors: Hanane Sarnou, Sabri Koç

Abstract:

In this paper, the interconnection between curriculum development for basic education and the use of information and communication technologies (ICTs) in the classroom referring to the Licence, Master's and Doctorate (LMD) benefits under such link will be presented and analysed. This study seeks to achieve to what extent LMD, competency-based approach (CBA) and ICTs use are interrelated. Likewise, the data collected from the responses of our teachers and learners who are concerned with LMD impact on their learning and teaching through interviews will be discussed, analysed, and classified. This paper is divided into two sections. The first section is about the curriculum development for basic education and its relation with higher education under the LMD and its link with ICTs in the university while the second section is about the classification of learners’ and teachers’ positive/negative responses concerning their positive or negative attitudes towards the ICT integration. The focus will be on the positive aspects of students’ expectations, opinions and assumptions regarding the integration of ICTs into the classroom under LMD and CBA.

Keywords: LMD system, CBA approach, curriculum development, ICT

Procedia PDF Downloads 418
1322 The Impact of Continuous Exercise on Depression Levels Among Young Female Athletes in Hamadan Province, Iran

Authors: Mahboubeh Varmaziar

Abstract:

Depression is a significant public health concern affecting people of all ages and genders. Physical activity has been shown to have a positive effect on mental health, particularly in alleviating symptoms of depression. This study aims to explore the impact of continuous exercise on depression levels among young female athletes in Hamadan Province, Iran. In this randomized controlled trial, 72 women aged 20 to 35 years attending sports centers in Hamadan Province were selected through convenient sampling and randomly assigned to either the control or experimental group. The experimental group participated in a continuous exercise program consisting of 20 sessions over six weeks, with each session lasting 30 minutes. In contrast, the control group maintained their usual daily activities at the sports center. Both groups completed demographic and Beck Depression Inventory questionnaires. Data were analyzed using descriptive and inferential statistics, including two-way ANOVA. The results of the two-way ANOVA, after controlling for the pre-test effect, revealed a significant difference in the mean depression scores between the control and experimental groups (p < 0.001). This suggests that the continuous exercise program significantly reduced depression levels in the young female athletes. The findings suggest that continuous exercise is an effective non-pharmacological intervention for reducing depression in young female athletes. Incorporating regular physical activity into treatment plans may serve as a complementary therapy alongside conventional treatments, offering a low-risk and beneficial approach to managing depression.

Keywords: depression, exercise, female athletes, yong women

Procedia PDF Downloads 62