Search results for: sustainable performance
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16153

Search results for: sustainable performance

613 Improved Functions For Runoff Coefficients And Smart Design Of Ditches & Biofilters For Effective Flow detention

Authors: Thomas Larm, Anna Wahlsten

Abstract:

An international literature study has been carried out for comparison of commonly used methods for the dimensioning of transport systems and stormwater facilities for flow detention. The focus of the literature study regarding the calculation of design flow and detention has been the widely used Rational method and its underlying parameters. The impact of chosen design parameters such as return time, rain intensity, runoff coefficient, and climate factor have been studied. The parameters used in the calculations have been analyzed regarding how they can be calculated and within what limits they can be used. Data used within different countries have been specified, e.g., recommended rainfall return times, estimated runoff times, and climate factors used for different cases and time periods. The literature study concluded that the determination of runoff coefficients is the most uncertain parameter that also affects the calculated flow and required detention volume the most. Proposals have been developed for new runoff coefficients, including a new proposed method with equations for calculating runoff coefficients as a function of return time (years) and rain intensity (l/s/ha), respectively. Suggestions have been made that it is recommended not to limit the use of the Rational Method to a specific catchment size, contrary to what many design manuals recommend, with references to this. The proposed relationships between return time or rain intensity and runoff coefficients need further investigation and to include the quantification of uncertainties. Examples of parameters that have not been considered are the influence on the runoff coefficients of different dimensioning rain durations and the degree of water saturation of green areas, which will be investigated further. The influence of climate effects and design rain on the dimensioning of the stormwater facilities grassed ditches and biofilters (bio retention systems) has been studied, focusing on flow detention capacity. We have investigated how the calculated runoff coefficients regarding climate effect and the influence of changed (increased) return time affect the inflow to and dimensioning of the stormwater facilities. We have developed a smart design of ditches and biofilters that results in both high treatment and flow detention effects and compared these with the effect from dry and wet ponds. Studies of biofilters have generally before focused on treatment of pollutants, but their effect on flow volume and how its flow detention capability can improve is only rarely studied. For both the new type of stormwater ditches and biofilters, it is required to be able to simulate their performance in a model under larger design rains and future climate, as these conditions cannot be tested in the field. The stormwater model StormTac Web has been used on case studies. The results showed that the new smart design of ditches and biofilters had similar flow detention capacity as dry and wet ponds for the same facility area.

Keywords: runoff coefficients, flow detention, smart design, biofilter, ditch

Procedia PDF Downloads 68
612 Stochastic Modelling for Mixed Mode Fatigue Delamination Growth of Wind Turbine Composite Blades

Authors: Chi Zhang, Hua-Peng Chen

Abstract:

With the increasingly demanding resources in the word, renewable and clean energy has been considered as an alternative way to replace traditional ones. Thus, one of practical examples for using wind energy is wind turbine, which has gained more attentions in recent research. Like most offshore structures, the blades, which is the most critical components of the wind turbine, will be subjected to millions of loading cycles during service life. To operate safely in marine environments, the blades are typically made from fibre reinforced composite materials to resist fatigue delamination and harsh environment. The fatigue crack development of blades is uncertain because of indeterminate mechanical properties for composite and uncertainties under offshore environment like wave loads, wind loads, and humid environments. There are three main delamination failure modes for composite blades, and the most common failure type in practices is subjected to mixed mode loading, typically a range of opening (mode 1) and shear (mode 2). However, the fatigue crack development for mixed mode cannot be predicted as deterministic values because of various uncertainties in realistic practical situation. Therefore, selecting an effective stochastic model to evaluate the mixed mode behaviour of wind turbine blades is a critical issue. In previous studies, gamma process has been considered as an appropriate stochastic approach, which simulates the stochastic deterioration process to proceed in one direction such as realistic situation for fatigue damage failure of wind turbine blades. On the basis of existing studies, various Paris Law equations are discussed to simulate the propagation of the fatigue crack growth. This paper develops a Paris model with the stochastic deterioration modelling according to gamma process for predicting fatigue crack performance in design service life. A numerical example of wind turbine composite materials is investigated to predict the mixed mode crack depth by Paris law and the probability of fatigue failure by gamma process. The probability of failure curves under different situations are obtained from the stochastic deterioration model for comparisons. Compared with the results from experiments, the gamma process can take the uncertain values into consideration for crack propagation of mixed mode, and the stochastic deterioration process shows a better agree well with realistic crack process for composite blades. Finally, according to the predicted results from gamma stochastic model, assessment strategies for composite blades are developed to reduce total lifecycle costs and increase resistance for fatigue crack growth.

Keywords: Reinforced fibre composite, Wind turbine blades, Fatigue delamination, Mixed failure mode, Stochastic process.

Procedia PDF Downloads 391
611 A Study of Kinematical Parameters I9N Instep Kicking in Soccer

Authors: Abdolrasoul Daneshjoo

Abstract:

Introduction: Soccer is a game which draws more attention in different countries especially in Brazil. Kicking among different skills in soccer and soccer players is an excellent role for the success and preference of a team. The way of point gaining in this game is passing the ball over the goal lines which are gained by shoot skill in attack time and or during the penalty kicks.Regarding the above assumption, identifying the effective factors in instep kicking in different distances shoot with maximum force and high accuracy or pass and penalty kick, may assist the coaches and players in raising qualitative level of performing the skill. Purpose: The aim of the present study was to study of a few kinematical parameters in instep kicking from 3 and 5 meter distance among the male and female elite soccer players. Methods: 24 right dominant lower limb subjects (12 males and 12 females) among Tehran elite soccer players with average and the standard deviation (22.5 ± 1.5) & (22.08± 1.31) years, height of (179.5 ± 5.81) & (164.3 ± 4.09) cm, weight of (69.66 ± 4.09) & (53.16 ± 3.51) kg, %BMI (21.06 ± .731) & (19.67 ± .709), having playing history of (4 ± .73) & (3.08 ± .66) years respectively participated in this study. They had at least two years of continuous playing experience in Tehran soccer league.For sampling player's kick; Kinemetrix Motion analysis with three cameras with 500 Hz was used. Five reflective markers were placed laterally on the kicking leg over anatomical points (the iliac crest, major trochanter, lateral epicondyle of femur, lateral malleolus, and lateral aspect of distal head of the fifth metatarsus). Instep kick was filmed, with one step approach and 30 to 45 degrees angle from stationary ball. Three kicks were filmed, one kick selected for further analyses. Using Kinemetrix 3D motion analysis software, the position of the markers was analyzed. Descriptive statistics were used to describe the mean and standard deviation, while the analysis of variance, and independent t-test (P < 0.05) were used to compare the kinematic parameters between two genders. Results and Discussion: Among the evaluated parameters, the knee acceleration, the thigh angular velocity, the angle of knee proportionately showed significant relationship with consequence of kick. While company performance on 5m in 2 genders, significant differences were observed in internal – external displacement of toe, ankle, hip and the velocity of toe, ankle and the acceleration of toe and the angular velocity of pelvic, thigh and before time contact. Significant differences showed the internal – external displacement of toe, the ankle, the knee and the hip, the iliac crest and the velocity of toe, the ankle and acceleration of ankle and angular velocity of the pelvic and the knee.

Keywords: biomechanics, kinematics, soccer, instep kick, male, female

Procedia PDF Downloads 399
610 The Effect of Finding and Development Costs and Gas Price on Basins in the Barnett Shale

Authors: Michael Kenomore, Mohamed Hassan, Amjad Shah, Hom Dhakal

Abstract:

Shale gas reservoirs have been of greater importance compared to shale oil reservoirs since 2009 and with the current nature of the oil market, understanding the technical and economic performance of shale gas reservoirs is of importance. Using the Barnett shale as a case study, an economic model was developed to quantify the effect of finding and development costs and gas prices on the basins in the Barnett shale using net present value as an evaluation parameter. A rate of return of 20% and a payback period of 60 months or less was used as the investment hurdle in the model. The Barnett was split into four basins (Strawn Basin, Ouachita Folded Belt, Forth-worth Syncline and Bend-arch Basin) with analysis conducted on each of the basin to provide a holistic outlook. The dataset consisted of only horizontal wells that started production from 2008 to at most 2015 with 1835 wells coming from the strawn basin, 137 wells from the Ouachita folded belt, 55 wells from the bend-arch basin and 724 wells from the forth-worth syncline. The data was analyzed initially on Microsoft Excel to determine the estimated ultimate recoverable (EUR). The range of EUR from each basin were loaded in the Palisade Risk software and a log normal distribution typical of Barnett shale wells was fitted to the dataset. Monte Carlo simulation was then carried out over a 1000 iterations to obtain a cumulative distribution plot showing the probabilistic distribution of EUR for each basin. From the cumulative distribution plot, the P10, P50 and P90 EUR values for each basin were used in the economic model. Gas production from an individual well with a EUR similar to the calculated EUR was chosen and rescaled to fit the calculated EUR values for each basin at the respective percentiles i.e. P10, P50 and P90. The rescaled production was entered into the economic model to determine the effect of the finding and development cost and gas price on the net present value (10% discount rate/year) as well as also determine the scenario that satisfied the proposed investment hurdle. The finding and development costs used in this paper (assumed to consist only of the drilling and completion costs) were £1 million, £2 million and £4 million while the gas price was varied from $2/MCF-$13/MCF based on Henry Hub spot prices from 2008-2015. One of the major findings in this study was that wells in the bend-arch basin were least economic, higher gas prices are needed in basins containing non-core counties and 90% of the Barnet shale wells were not economic at all finding and development costs irrespective of the gas price in all the basins. This study helps to determine the percentage of wells that are economic at different range of costs and gas prices, determine the basins that are most economic and the wells that satisfy the investment hurdle.

Keywords: shale gas, Barnett shale, unconventional gas, estimated ultimate recoverable

Procedia PDF Downloads 280
609 Teacher Professional Development in Saudi Arabia through the Implementation of Universal Design for Learning

Authors: Majed A. Alsalem

Abstract:

Universal Design for Learning (UDL) is common theme in education across the US and an influential model and framework that enables students in general and particularly students who are deaf and hard of hearing (DHH) to access the general education curriculum. UDL helps teachers determine how information will be presented to students and how to keep students engaged. Moreover, UDL helps students to express their understanding and knowledge to others. UDL relies on technology to promote students' interaction with content and their communication of knowledge. This study included 120 DHH students who received daily instruction based on UDL principles. This study presents the results of the study and discusses its implications for the integration of UDL in day-to-day practice as well as in the country's education policy. UDL is a Western concept that began and grew in the US, and it has just begun to transfer to other countries such as Saudi Arabia. It will be very important to researchers, practitioners, and educators to see how UDL is being implemented in a new place with a different culture. UDL is a framework that is built to provide multiple means of engagement, representation, and action and expression that should be part of curricula and lessons for all students. The purpose of this study is to investigate the variables associated with the implementation of UDL in Saudi Arabian schools and identify the barriers that could prevent the implementation of UDL. Therefore, this study used a mixed methods design that use both quantitative and qualitative methods. More insights will be gained by including both quantitative and qualitative rather than using a single method. By having methods that different concepts and approaches, the databases will be enriched. This study uses levels of collecting date through two stages in order to insure that the data comes from multiple ways to mitigate validity threats and establishing trustworthiness in the findings. The rationale and significance of this study is that it will be the first known research that targets UDL in Saudi Arabia. Furthermore, it will deal with UDL in depth to set the path for further studies in the Middle East. From a perspective of content, this study considers teachers’ implementation knowledge, skills, and concerns of implementation. This study deals with effective instructional designs that have not been presented in any conferences, workshops, teacher preparation and professional development programs in Saudi Arabia. Specifically, Saudi Arabian schools are challenged to design inclusive schools and practices as well as to support all students’ academic skills development. The total participants in stage one were 336 teachers of DHH students. The results of the intervention indicated significant differences among teachers before and after taking the training sessions associated with their understanding and level of concern. Teachers have indicated interest in knowing more about UDL and adopting it into their practices; they reported that UDL has benefits that will enhance their performance for supporting student learning.

Keywords: deaf and hard of hearing, professional development, Saudi Arabia, universal design for learning

Procedia PDF Downloads 416
608 Investigation of Mass Transfer for RPB Distillation at High Pressure

Authors: Amiza Surmi, Azmi Shariff, Sow Mun Serene Lock

Abstract:

In recent decades, there has been a significant emphasis on the pivotal role of Rotating Packed Beds (RPBs) in absorption processes, encompassing the removal of Volatile Organic Compounds (VOCs) from groundwater, deaeration, CO2 absorption, desulfurization, and similar critical applications. The primary focus is elevating mass transfer rates, enhancing separation efficiency, curbing power consumption, and mitigating pressure drops. Additionally, substantial efforts have been invested in exploring the adaptation of RPB technology for offshore deployment. This comprehensive study delves into the intricacies of nitrogen removal under low temperature and high-pressure conditions, employing the high gravity principle via innovative RPB distillation concept with a specific emphasis on optimizing mass transfer. Based on the author's knowledge and comprehensive research, no cryogenic experimental testing was conducted to remove nitrogen via RPB. The research identifies pivotal process control factors through meticulous experimental testing, with pressure, reflux ratio, and reboil ratio emerging as critical determinants in achieving the desired separation performance. The results are remarkable, with nitrogen removal reaching less than one mole% in the Liquefied Natural Gas (LNG) product and less than three moles% methane in the nitrogen-rich gas stream. The study further unveils the mass transfer coefficient, revealing a noteworthy trend of decreasing Number of Transfer Units (NTU) and Area of Transfer Units (ATU) as the rotational speed escalates. Notably, the condenser and reboiler impose varying demands based on the operating pressure, with lower pressures at 12 bar requiring a more substantial duty than the 15-bar operation of the RPB. In pursuit of optimal energy efficiency, a meticulous sensitivity analysis is conducted, pinpointing the ideal combination of pressure and rotating speed that minimizes overall energy consumption. These findings underscore the efficiency of the RPB distillation approach in effecting efficient separation, even when operating under the challenging conditions of low temperature and high pressure. This achievement is attributed to a rigorous process control framework that diligently manages the operational pressure and temperature profile of the RPB. Nonetheless, the study's conclusions point towards the need for further research to address potential scaling challenges and associated risks, paving the way for the industrial implementation of this transformative technology.

Keywords: mass transfer coefficient, nitrogen removal, liquefaction, rotating packed bed

Procedia PDF Downloads 28
607 Neuroprotection against N-Methyl-D-Aspartate-Induced Optic Nerve and Retinal Degeneration Changes by Philanthotoxin-343 to Alleviate Visual Impairments Involve Reduced Nitrosative Stress

Authors: Izuddin Fahmy Abu, Mohamad Haiqal Nizar Mohamad, Muhammad Fattah Fazel, Renu Agarwal, Igor Iezhitsa, Nor Salmah Bakar, Henrik Franzyk, Ian Mellor

Abstract:

Glaucoma is the global leading cause of irreversible blindness. Currently, the available treatment strategy only involves lowering intraocular pressure (IOP); however, the condition often progresses despite lowered or normal IOP in some patients. N-methyl-D-aspartate receptor (NMDAR) excitotoxicity often occurs in neurodegeneration-related glaucoma; thus it is a relevant target to develop a therapy based on neuroprotection approach. This study investigated the effects of Philanthotoxin-343 (PhTX-343), an NMDAR antagonist, on the neuroprotection of NMDA-induced glaucoma to alleviate visual impairments. Male Sprague-Dawley rats were equally divided: Groups 1 (control) and 2 (glaucoma) were intravitreally injected with phosphate buffer saline (PBS) and NMDA (160nM), respectively, while group 3 was pre-treated with PhTX-343 (160nM) 24 hours prior to NMDA injection. Seven days post-treatments, rats were subjected to visual behavior assessments and subsequently euthanized to harvest their retina and optic nerve tissues for histological analysis and determination of nitrosative stress level using 3-nitrotyrosine ELISA. Visual behavior assessments via open field, object, and color recognition tests demonstrated poor visual performance in glaucoma rats indicated by high exploratory behavior. PhTX-343 pre-treatment appeared to preserve visual abilities as all test results were significantly improved (p < 0.05). H&E staining of the retina showed a marked reduction of ganglion cell layer thickness in the glaucoma group; in contrast, PhTX-343 significantly increased the number by 1.28-folds (p < 0.05). PhTX-343 also increased the number of cell nuclei/100μm2 within inner retina by 1.82-folds compared to the glaucoma group (p < 0.05). Toluidine blue staining of optic nerve tissues showed that PhTX-343 reduced the degeneration changes compared to the glaucoma group which exhibited vacuolation overall sections. PhTX-343 also decreased retinal 3- nitrotyrosine concentration by 1.74-folds compared to the glaucoma group (p < 0.05). All results in PhTX-343 group were comparable to control (p > 0.05). We conclude that PhTX-343 protects against NMDA-induced changes and visual impairments in the rat model by reducing nitrosative stress levels.

Keywords: excitotoxicity, glaucoma, nitrosative stress , NMDA receptor , N-methyl-D-aspartate , philanthotoxin, visual behaviour

Procedia PDF Downloads 111
606 Complementing Assessment Processes with Standardized Tests: A Work in Progress

Authors: Amparo Camacho

Abstract:

ABET accredited programs must assess the development of student learning outcomes (SOs) in engineering programs. Different institutions implement different strategies for this assessment, and they are usually designed “in house.” This paper presents a proposal for including standardized tests to complement the ABET assessment model in an engineering college made up of six distinct engineering programs. The engineering college formulated a model of quality assurance in education to be implemented throughout the six engineering programs to regularly assess and evaluate the achievement of SOs in each program offered. The model uses diverse techniques and sources of data to assess student performance and to implement actions of improvement based on the results of this assessment. The model is called “Assessment Process Model” and it includes SOs A through K, as defined by ABET. SOs can be divided into two categories: “hard skills” and “professional skills” (soft skills). The first includes abilities, such as: applying knowledge of mathematics, science, and engineering and designing and conducting experiments, as well as analyzing and interpreting data. The second category, “professional skills”, includes communicating effectively, and understanding professional and ethnical responsibility. Within the Assessment Process Model, various tools were used to assess SOs, related to both “hard” as well as “soft” skills. The assessment tools designed included: rubrics, surveys, questionnaires, and portfolios. In addition to these instruments, the Engineering College decided to use tools that systematically gather consistent quantitative data. For this reason, an in-house exam was designed and implemented, based on the curriculum of each program. Even though this exam was administered during various academic periods, it is not currently considered standardized. In 2017, the Engineering College included three standardized tests: one to assess mathematical and scientific reasoning and two more to assess reading and writing abilities. With these exams, the college hopes to obtain complementary information that can help better measure the development of both hard and soft skills of students in the different engineering programs. In the first semester of 2017, the three exams were given to three sample groups of students from the six different engineering programs. Students in the sample groups were either from the first, fifth, and tenth semester cohorts. At the time of submission of this paper, the engineering college has descriptive statistical data and is working with various statisticians to have a more in-depth and detailed analysis of the sample group of students’ achievement on the three exams. The overall objective of including standardized exams in the assessment model is to identify more precisely the least developed SOs in order to define and implement educational strategies necessary for students to achieve them in each engineering program.

Keywords: assessment, hard skills, soft skills, standardized tests

Procedia PDF Downloads 264
605 Use of Cassava Waste and Its Energy Potential

Authors: I. Inuaeyen, L. Phil, O. Eni

Abstract:

Fossil fuels have been the main source of global energy for many decades, accounting for about 80% of global energy need. This is beginning to change however with increasing concern about greenhouse gas emissions which comes mostly from fossil fuel combustion. Greenhouse gases such as carbon dioxide are responsible for stimulating climate change. As a result, there has been shift towards more clean and renewable energy sources of energy as a strategy for stemming greenhouse gas emission into the atmosphere. The production of bio-products such as bio-fuel, bio-electricity, bio-chemicals, and bio-heat etc. using biomass materials in accordance with the bio-refinery concept holds a great potential for reducing high dependence on fossil fuel and their resources. The bio-refinery concept promotes efficient utilisation of biomass material for the simultaneous production of a variety of products in order to minimize or eliminate waste materials. This will ultimately reduce greenhouse gas emissions into the environment. In Nigeria, cassava solid waste from cassava processing facilities has been identified as a vital feedstock for bio-refinery process. Cassava is generally a staple food in Nigeria and one of the most widely cultivated foodstuff by farmers across Nigeria. As a result, there is an abundant supply of cassava waste in Nigeria. In this study, the aim is to explore opportunities for converting cassava waste to a range of bio-products such as butanol, ethanol, electricity, heat, methanol, furfural etc. using a combination of biochemical, thermochemical and chemical conversion routes. . The best process scenario will be identified through the evaluation of economic analysis, energy efficiency, life cycle analysis and social impact. The study will be carried out by developing a model representing different process options for cassava waste conversion to useful products. The model will be developed using Aspen Plus process simulation software. Process economic analysis will be done using Aspen Icarus software. So far, comprehensive survey of literature has been conducted. This includes studies on conversion of cassava solid waste to a variety of bio-products using different conversion techniques, cassava waste production in Nigeria, modelling and simulation of waste conversion to useful products among others. Also, statistical distribution of cassava solid waste production in Nigeria has been established and key literatures with useful parameters for developing different cassava waste conversion process has been identified. In the future work, detailed modelling of the different process scenarios will be carried out and the models validated using data from literature and demonstration plants. A techno-economic comparison of the various process scenarios will be carried out to identify the best scenario using process economics, life cycle analysis, energy efficiency and social impact as the performance indexes.

Keywords: bio-refinery, cassava waste, energy, process modelling

Procedia PDF Downloads 346
604 Analyzing the Use of Augmented and Virtual Reality to Teach Social Skills to Students with Autism

Authors: Maggie Mosher, Adam Carreon, Sean Smith

Abstract:

A systematic literature review was conducted to explore the evidence base on the use of augmented reality (AR), virtual reality (VR), mixed reality (MR), and extended reality (XR) to present social skill instruction to school-age students with autism spectrum disorder (ASD). Specifically, the systematic review focus was on a. the participants and intervention agents using AR, VR, MR, and XR for social skill acquisition b. the social skills taught through these mediums and c. the social validity measures (i.e., goals, procedures, and outcomes) reported in these studies. Forty-one articles met the inclusion criteria. Researchers in six studies taught social skills to students through AR, in 27 studies through non-immersive VR, and in 10 studies through immersive VR. No studies used MR or XR. The primary targeted social skills were relationship skills, emotion recognition, social awareness, cooperation, and executive functioning. An intervention to improve many social skills was implemented by 73% of researchers, 17% taught a single skill, and 10% did not clearly state the targeted skill. The intervention was considered effective in 26 of the 41 studies (63%), not effective in four studies (10%), and 11 studies (27%) reported mixed results. No researchers reported information for all 17 social validity indicators. The social validity indicators reported by researchers ranged from two to 14. Social validity measures on the feelings toward and use of the technology were provided in 22 studies (54%). Findings indicated both AR and VR are promising platforms for providing social skill instruction to students with ASD. Studies utilizing this technology show a number of social validity indicators. However, the limited information provided on the various interventions, participant characteristics, and validity measures, offers insufficient evidence of the impact of these technologies in teaching social skills to students with ASD. Future research should develop a protocol for training treatment agents to assess the role of different variables (i.e., whether agents are customizing content, monitoring student learning, using intervention specific vocabulary in their day to day instruction). Sustainability may be increased by providing training in the technology to both treatment agents and participants. Providing scripts of instruction occurring within the intervention would provide the needed information to determine the primary method of teaching within the intervention. These variables play a role in maintenance and generalization of the social skills. Understanding the type of feedback provided would help researchers determine if students were able to feel rewarded for progressing through the scenarios or if students require rewarding aspects within the intervention (i.e., badges, trophies). AR has the potential to generalize instruction and VR has the potential for providing a practice environment for performance deficits. Combining these two technologies into a mixed reality intervention may provide a more cohesive and effective intervention.

Keywords: autism, augmented reality, social and emotional learning, social skills, virtual reality

Procedia PDF Downloads 87
603 Different Response of Pure Arctic Char Salvelinus alpinus and Hybrid (Salvelinus alpinus vs. Salvelinus fontinalis Mitchill) to Various Hyperoxic Regimes

Authors: V. Stejskal, K. Lundova, R. Sebesta, T. Vanina, S. Roje

Abstract:

Pure strain of Arctic char (AC) Salvelinus alpinus and hybrid (HB) Salvelinus alpinus vs. Salvelinus fontinalis Mitchill belong to fish, which with great potential for culture in recirculating aquaculture systems (RAS). Aquaculture of these fish currently use flow-through systems (FTS), especially in Nordic countries such as Iceland (biggest producer), Norway, Sweden, and Canada. Four different water saturation regimes included normoxia (NOR), permanent hyperoxia (HYP), intermittent hyperoxia (HYP ± ) and regimes where one day of normoxia was followed by one day of hyperoxia (HYP1/1) were tested during 63 days of experiment in both species in two parallel experiments. Fish were reared in two identical RAS system consisted of 24 plastic round tanks (300 L each), drum filter, biological filter with moving beads and submerged biofilter. The temperature was maintained using flow-through cooler during at level of 13.6 ± 0.8 °C. Different water saturation regimes were achieved by mixing of pure oxygen (O₂) with water in three (one for each hyperoxic regime) mixing tower equipped with flowmeter for regulation of gas inflow. The water in groups HYP, HYP1/1 and HYP± was enriched with oxygen up to saturation of 120-130%. In HYP group was this level kept during whole day. In HYP ± group was hyperoxia kept for daylight phase (08:00-20:00) only and during night time was applied normoxia in this group. The oxygen saturation of 80-90% in NOR group was created using intensive aeration in header tank. The fish were fed with commercial feed to slight excess at 2 h intervals within the light phase of the day. Water quality parameters like pH, temperature and level of oxygen was monitoring three times (7 am, 10 am and 6 pm) per day using handy multimeter. Ammonium, nitrite and nitrate were measured in two day interval using spectrophotometry. Initial body weight (BW) was 40.9 ± 8.7 g and 70.6 ± 14.8 in AC and HB group, respectively. Final survival of AC ranged from 96.3 ± 4.6 (HYP) to 100 ± 0.0% in all other groups without significant differences among these groups. Similarly very high survival was reached in trial with HB with levels from 99.2 ± 1.3 (HYP, HYP1/1 and NOR) to 100 ± 0.0% (HYP ± ). HB fish showed best growth performance in NOR group reached final body weight (BW) 180.4 ± 2.3 g. Fish growth under different hyperoxic regimes was significantly reduced and final BW was 164.4 ± 7.6, 162.1 ± 12.2 and 151.7 ± 6.8 g in groups HY1/1, HYP ± and HYP, respectively. AC showed different preference for hyperoxic regimes as there were no significant difference in BW among NOR, HY1/1 and HYP± group with final values of 72.3 ± 11.3, 68.3 ± 8.4 and 77.1 ± 6.1g. Significantly reduced growth (BW 61.8 ± 6.8 g) was observed in HYP group. It is evident from present study that there are differences between pure bred Arctic char and hybrid in relation to hyperoxic regimes. The study was supported by projects 'CENAKVA' (No. CZ.1.05/2.1.00/01.0024), 'CENAKVA II' (No. LO1205 under the NPU I program), NAZV (QJ1510077) and GAJU (No. 060/2016/Z).

Keywords: recirculating aquaculture systems, Salmonidae, hyperoxia, abiotic factors

Procedia PDF Downloads 154
602 A Systematic Review on the Whole-Body Cryotherapy versus Control Interventions for Recovery of Muscle Function and Perceptions of Muscle Soreness Following Exercise-Induced Muscle Damage in Runners

Authors: Michael Nolte, Iwona Kasior, Kala Flagg, Spiro Karavatas

Abstract:

Background: Cryotherapy has been used as a post-exercise recovery modality for decades. Whole-body cryotherapy (WBC) is an intervention which involves brief exposures to extremely cold air in order to induce therapeutic effects. It is currently being investigated for its effectiveness in treating certain exercise-induced impairments. Purpose: The purpose of this systematic review was to determine whether WBC as a recovery intervention is more, less, or equally as effective as other interventions at reducing perceived levels of muscle soreness and promoting recovery of muscle function after exercise-induced muscle damage (EIMD) from running. Methods: A systematic review of the current literature was performed utilizing the following MeSH terms: cryotherapy, whole-body cryotherapy, exercise-induced muscle damage, muscle soreness, muscle recovery, and running. The databases utilized were PubMed, CINAHL, EBSCO Host, and Google Scholar. Articles were included if they were published within the last ten years, had a CEBM level of evidence of IIb or higher, had a PEDro scale score of 5 or higher, studied runners as primary subjects, and utilized both perceived levels of muscle soreness and recovery of muscle function as dependent variables. Articles were excluded if subjects did not include runners, if the interventions included PBC instead of WBC, and if both muscle performance and perceived muscle soreness were not assessed within the study. Results: Two of the four articles revealed that WBC was significantly more effective than treatment interventions such as far-infrared radiation and passive recovery at reducing perceived levels of muscle soreness and restoring muscle power and endurance following simulated trail runs and high-intensity interval running, respectively. One of the four articles revealed no significant difference between WBC and passive recovery in terms of reducing perceived muscle soreness and restoring muscle power following sprint intervals. One of the four articles revealed that WBC had a harmful effect compared to CWI and passive recovery on both perceived muscle soreness and recovery of muscle strength and power following a marathon. Discussion/Conclusion: Though there was no consensus in terms of WBC’s effectiveness at treating exercise-induced muscle damage following running compared to other interventions, it seems as though WBC may at least have a time-dependent positive effect on muscle soreness and recovery following high-intensity interval runs and endurance running, marathons excluded. More research needs to be conducted in order to determine the most effective way to implement WBC as a recovery method for exercise-induced muscle damage, including the optimal temperature, timing, duration, and frequency of treatment.

Keywords: cryotherapy, physical therapy intervention, physical therapy, whole body cryotherapy

Procedia PDF Downloads 215
601 An Adaptive Oversampling Technique for Imbalanced Datasets

Authors: Shaukat Ali Shahee, Usha Ananthakumar

Abstract:

A data set exhibits class imbalance problem when one class has very few examples compared to the other class, and this is also referred to as between class imbalance. The traditional classifiers fail to classify the minority class examples correctly due to its bias towards the majority class. Apart from between-class imbalance, imbalance within classes where classes are composed of a different number of sub-clusters with these sub-clusters containing different number of examples also deteriorates the performance of the classifier. Previously, many methods have been proposed for handling imbalanced dataset problem. These methods can be classified into four categories: data preprocessing, algorithmic based, cost-based methods and ensemble of classifier. Data preprocessing techniques have shown great potential as they attempt to improve data distribution rather than the classifier. Data preprocessing technique handles class imbalance either by increasing the minority class examples or by decreasing the majority class examples. Decreasing the majority class examples lead to loss of information and also when minority class has an absolute rarity, removing the majority class examples is generally not recommended. Existing methods available for handling class imbalance do not address both between-class imbalance and within-class imbalance simultaneously. In this paper, we propose a method that handles between class imbalance and within class imbalance simultaneously for binary classification problem. Removing between class imbalance and within class imbalance simultaneously eliminates the biases of the classifier towards bigger sub-clusters by minimizing the error domination of bigger sub-clusters in total error. The proposed method uses model-based clustering to find the presence of sub-clusters or sub-concepts in the dataset. The number of examples oversampled among the sub-clusters is determined based on the complexity of sub-clusters. The method also takes into consideration the scatter of the data in the feature space and also adaptively copes up with unseen test data using Lowner-John ellipsoid for increasing the accuracy of the classifier. In this study, neural network is being used as this is one such classifier where the total error is minimized and removing the between-class imbalance and within class imbalance simultaneously help the classifier in giving equal weight to all the sub-clusters irrespective of the classes. The proposed method is validated on 9 publicly available data sets and compared with three existing oversampling techniques that rely on the spatial location of minority class examples in the euclidean feature space. The experimental results show the proposed method to be statistically significantly superior to other methods in terms of various accuracy measures. Thus the proposed method can serve as a good alternative to handle various problem domains like credit scoring, customer churn prediction, financial distress, etc., that typically involve imbalanced data sets.

Keywords: classification, imbalanced dataset, Lowner-John ellipsoid, model based clustering, oversampling

Procedia PDF Downloads 394
600 Investigating the Process Kinetics and Nitrogen Gas Production in Anammox Hybrid Reactor with Special Emphasis on the Role of Filter Media

Authors: Swati Tomar, Sunil Kumar Gupta

Abstract:

Anammox is a novel and promising technology that has changed the traditional concept of biological nitrogen removal. The process facilitates direct oxidation of ammonical nitrogen under anaerobic conditions with nitrite as an electron acceptor without the addition of external carbon sources. The present study investigated the feasibility of anammox hybrid reactor (AHR) combining the dual advantages of suspended and attached growth media for biodegradation of ammonical nitrogen in wastewater. The experimental unit consisted of 4 nos. of 5L capacity AHR inoculated with mixed seed culture containing anoxic and activated sludge (1:1). The process was established by feeding the reactors with synthetic wastewater containing NH4-H and NO2-N in the ratio 1:1 at HRT (hydraulic retention time) of 1 day. The reactors were gradually acclimated to higher ammonium concentration till it attained pseudo steady state removal at a total nitrogen concentration of 1200 mg/l. During this period, the performance of the AHR was monitored at twelve different HRTs varying from 0.25-3.0 d with increasing NLR from 0.4 to 4.8 kg N/m3d. AHR demonstrated significantly higher nitrogen removal (95.1%) at optimal HRT of 1 day. Filter media in AHR contributed an additional 27.2% ammonium removal in addition to 72% reduction in the sludge washout rate. This may be attributed to the functional mechanism of filter media which acts as a mechanical sieve and reduces the sludge washout rate many folds. This enhances the biomass retention capacity of the reactor by 25%, which is the key parameter for successful operation of high rate bioreactors. The effluent nitrate concentration, which is one of the bottlenecks of anammox process was also minimised significantly (42.3-52.3 mg/L). Process kinetics was evaluated using first order and Grau-second order models. The first-order substrate removal rate constant was found as 13.0 d-1. Model validation revealed that Grau second order model was more precise and predicted effluent nitrogen concentration with least error (1.84±10%). A new mathematical model based on mass balance was developed to predict N2 gas in AHR. The mass balance model derived from total nitrogen dictated significantly higher correlation (R2=0.986) and predicted N2 gas with least error of precision (0.12±8.49%). SEM study of biomass indicated the presence of the heterogeneous population of cocci and rod shaped bacteria of average diameter varying from 1.2-1.5 mm. Owing to enhanced NRE coupled with meagre production of effluent nitrate and its ability to retain high biomass, AHR proved to be the most competitive reactor configuration for dealing with nitrogen laden wastewater.

Keywords: anammox, filter media, kinetics, nitrogen removal

Procedia PDF Downloads 362
599 Properties of the CsPbBr₃ Quantum Dots Treated by O₃ Plasma for Integration in the Perovskite Solar Cell

Authors: Sh. Sousani, Z. Shadrokh, M. Hofbauerová, J. Kollár, M. Jergel, P. Nádaždy, M. Omastová, E. Majková

Abstract:

Perovskite quantum dots (PQDs) have the potential to increase the performance of the perovskite solar cell (PSCs). The integration of PQDs into PSCs can extend the absorption range and enhance photon harvesting and device efficiency. In addition, PQDs can stabilize the device structure by passivating surface defects and traps in the perovskite layer and enhance its stability. The integration of PQDs into PSCs is strongly affected by the type of ligands on the surface of PQDs. The ligands affect the charge transport properties of PQDs, as well as the formation of well-defined interfaces and stability of PSCs. In this work, the CsPbBr₃ QDs were synthesized by the conventional hot-injection method using cesium oleate, PbBr₂ and two different ligands, namely oleic acid (OA) oleylamine (OAm) and didodecyldimethylammonium bromide (DDAB). The STEM confirmed regular shape and relatively monodisperse cubic structure with an average size of about 10-14 nm of the prepared CsPbBr₃ QDs. Further, the photoluminescent (PL) properties of the PQDs/perovskite bilayer with the ligand OA, OAm and DDAB were studied. For this purpose, ITO/PQDs as well as ITO/PQDs/MAPI perovskite structures were prepared by spin coating and the effect of the ligand and oxygen plasma treatment was analyzed. The plasma treatment of the PQDs layer could be beneficial for the deposition of the MAPI perovskite layer and the formation of a well-defined PQDs/MAPI interface. The absorption edge in UV-Vis absorption spectra for OA, OAm CsPbBr₃ QDs is placed around 513 nm (the band gap 2.38 eV); for DDAB CsPbBr₃ QDs, it is located at 490 nm (the band gap 2.33 eV). The photoluminescence (PL) spectra of CsPbBr₃ QDs show two peaks located around 514 nm (503 nm) and 718 nm (708 nm) for OA, OAm (DDAB). The peak around 500 nm corresponds to the PL of PQDs, and the peak close to 710 nm belongs to the surface states of PQDs for both types of ligands. These surface states are strongly affected by the O₃ plasma treatment. For PQDs with DDAB ligand, the O₃ exposure (5, 10, 15 s) results in the blue shift of the PQDs peak and a non-monotonous change of the amplitude of the surface states' peak. For OA, OAm ligand, the O₃ exposition did not cause any shift of the PQDs peak, and the intensity of the PL peak related to the surface states is lower by one order of magnitude in comparison with DDAB, being affected by O₃ plasma treatment. The PL results indicate the possibility of tuning the position of the PL maximum by the ligand of the PQDs. Similar behavior of the PQDs layer was observed for the ITO/QDs/MAPI samples, where an additional strong PL peak at 770 nm coming from the perovskite layer was observed; for the sample with PQDs with DDAB ligands, a small blue shift of the perovskite PL maximum was observed independently of the plasma treatment. These results suggest the possibility of affecting the PL maximum position and the surface states of the PQDs by the combination of a suitable ligand and the O₃ plasma treatment.

Keywords: perovskite quantum dots, photoluminescence, O₃ plasma., Perovskite Solar Cells

Procedia PDF Downloads 43
598 Properties of the CsPbBr₃ Quantum Dots Treated by O₃ Plasma for Integration in the Perovskite Solar Cell

Authors: Sh. Sousani, Z. Shadrokh, M. Hofbauerová, J. Kollár, M. Jergel, P. Nádaždy, M. Omastová, E. Majková

Abstract:

Perovskite quantum dots (PQDs) have the potential to increase the performance of the perovskite solar cells (PSCs). The integration of PQDs into PSCs can extend the absorption range and enhance photon harvesting and device efficiency. In addition, PQDs can stabilize the device structure by passivating surface defects and traps in the perovskite layer and enhance its stability. The integration of PQDs into PSCs is strongly affected by the type of ligands on the surface of PQDs. The ligands affect the charge transport properties of PQDs, as well as the formation of well-defined interfaces and stability of PSCs. In this work, the CsPbBr₃ QDs were synthesized by the conventional hot-injection method using cesium oleate, PbBr₂, and two different ligands, namely oleic acid (OA)@oleylamine (OAm) and didodecyldimethylammonium bromide (DDAB). The STEM confirmed regular shape and relatively monodisperse cubic structure with an average size of about 10-14 nm of the prepared CsPbBr₃ QDs. Further, the photoluminescent (PL) properties of the PQDs/perovskite bilayer with the ligand OA@OAm and DDAB were studied. For this purpose, ITO/PQDs, as well as ITO/PQDs/MAPI perovskite structures, were prepared by spin coating, and the effect of the ligand and oxygen plasma treatment was analysed. The plasma treatment of the PQDs layer could be beneficial for the deposition of the MAPI perovskite layer and the formation of a well-defined PQDs/MAPI interface. The absorption edge in UV-Vis absorption spectra for OA@OAm CsPbBr₃ QDs is placed around 513 nm (the band gap 2.38 eV); for DDAB CsPbBr₃ QDs, it is located at 490 nm (the band gap 2.33 eV). The photoluminescence (PL) spectra of CsPbBr₃ QDs show two peaks located around 514 nm (503 nm) and 718 nm (708 nm) for OA@OAm (DDAB). The peak around 500 nm corresponds to the PL of PQDs, and the peak close to 710 nm belongs to the surface states of PQDs for both types of ligands. These surface states are strongly affected by the O₃ plasma treatment. For PQDs with DDAB ligand, the O₃ exposure (5, 10, 15 s) results in the blue shift of the PQDs peak and a non-monotonous change of the amplitude of the surface states' peak. For OA@OAm ligand, the O₃ exposition did not cause any shift of the PQDs peak, and the intensity of the PL peak related to the surface states is lower by one order of magnitude in comparison with DDAB, being affected by O₃ plasma treatment. The PL results indicate the possibility of tuning the position of the PL maximum by the ligand of the PQDs. Similar behaviour of the PQDs layer was observed for the ITO/QDs/MAPI samples, where an additional strong PL peak at 770 nm coming from the perovskite layer was observed; for the sample with PQDs with DDAB ligands, a small blue shift of the perovskite PL maximum was observed independently of the plasma treatment. These results suggest the possibility of affecting the PL maximum position and the surface states of the PQDs by the combination of a suitable ligand and the O₃ plasma treatment.

Keywords: perovskite quantum dots, photoluminescence, O₃ plasma., perovskite solar cells

Procedia PDF Downloads 45
597 Innovation Culture TV “Stars of Science”: 15 Seasons Case Study

Authors: Fouad Mrad, Viviane Zaccour

Abstract:

The accelerated developments in the political, economic, environmental, security, health, and social folders are exhausting planners across the world, especially in Arab countries. The impact of the tension is multifaceted and has resulted in conflicts, wars, migration, and human insecurity. The potential cross-cutting role that science, innovation and technology can play in supporting Arab societies to address these pressing challenges is a serious, unique chance for the people of the region. This opportunity is based on the existing capacity of educated youth and inaccessible talents in the local universities and research centers. It has been accepted that Arab countries have achieved major advancements in the economy, education and social wellbeing since the 70s of the 20th Century. Mainly direct outcome of the oil and other natural resources. The UN Secretary-General, during the Education Summit in Sep 2022, stressed that “Learning continues to underplay skills, including problem-solving, critical thinking and empathy.” Stars of Science by Qatar Foundation was launched in 2009 and has been sustained through 2023. Consistent mission from the start: To mobilize a new generation of Pan-Arab innovators and problem solvers by encouraging youth participation and interest in Science, Technology and Entrepreneurship throughout the Arab world via the program and its social media activities. To make science accessible and attractive to mass audiences by de-mystifying the process of innovation. Harnessing best practices within reality TV to show that science, engineering, and innovation are important in everyday life and can be fun.” Thousands of Participants learned unforgettable lessons; winners changed their lives forever as they learned and earned seed capital; they became drivers of change in their countries and families; millions of viewers were exposed to an innovative experimental process, and culturally, several relevant national institutions adopted the SOS track in their national initiatives. The program exhibited experientially youth self-efficacy as the most distinct core property of human agency, which is an individual's belief in his or her capacity to execute behaviors necessary to produce specific performance attainments. In addition, the program proved that innovations are performed by networks of people with different sets of technological, useful knowledge, skills and competencies introduced by socially shared technological knowledge as a main determinant of economic activities in any economy.

Keywords: science, invention, innovation, Qatar foundation, QSTP, prototyping

Procedia PDF Downloads 57
596 ePA-Coach: Design of the Intelligent Virtual Learning Coach for Senior Learners in Support of Digital Literacy in the Context of Electronic Patient Record

Authors: Ilona Buchem, Carolin Gellner

Abstract:

Over the last few years, the call for the support of senior learners in the development of their digital literacy has become prevalent, mainly due to the progression towards ageing societies paired with advances in digitalisation in all spheres of life, including e-health and electronic patient record (EPA). While major research efforts in supporting senior learners in developing digital literacy have been invested so far in e-learning focusing on knowledge acquisition and cognitive tasks, little research exists in learning models which target virtual mentoring and coaching with the help of pedagogical agents and address the social dimensions of learning. Research from studies with students in the context of formal education has already provided methods for designing intelligent virtual agents in support of personalised learning. However, this research has mostly focused on cognitive skills and has not yet been applied to the context of mentoring/coaching of senior learners, who have different characteristics and learn in different contexts. In this paper, we describe how insights from previous research can be used to develop an intelligent virtual learning coach (agent) for senior learners with a focus on building the social relationship between the agent and the learner and the key task of the agent to socialize learners to the larger context of digital literacy with a focus on electronic health records. Following current approaches to mentoring and coaching, the agent is designed not to enhance and monitor the cognitive performance of the learner but to serve as a trusted friend and advisor, whose role is to provide one-to-one guidance and support sharing of experiences among learners (peers). Based on literature review and synopsis of research on virtual agents and current coaching/mentoring models under consideration of the specific characteristics and requirements of senior learners, we describe the design framework which was applied to design an intelligent virtual learning coach as part of the e-learning system for digital literacy of senior learners in the ePA-Coach project founded by the German Ministry of Education and Research. This paper also presents the results from the evaluation study, which compared the use of the first prototype of the virtual learning coach designed according to the design framework with a voice narration in a multimedia learning environment with senior learners. The focus of the study was to validate the agent design in the context of the persona effect (Lester et al., 1997). Since the persona effect is related to the hypothesis that animated agents are perceived as more socially engaging, the study evaluated possible impacts of agent coaching in comparison with voice coaching on motivation, engagement, experience, and digital literacy.

Keywords: virtual learning coach, virtual mentor, pedagogical agent, senior learners, digital literacy, electronic health records

Procedia PDF Downloads 98
595 Transient Performance Evaluation and Control Measures for Oum Azza Pumping Station Case Study

Authors: Itissam Abuiziah

Abstract:

This work presents a case study of water-hammer analysis and control for the Oum Azza pumping station project in the coastal area of Rabat to Casablanca from the dam Sidi Mohamed Ben Abdellah (SMBA). This is a typical pumping system with a long penstock and is currently at design and executions stages. Since there is no ideal location for construction of protection devices, the protection devices were provisionally designed to protect the whole conveying pipeline. The simulation results for the transient conditions caused by a sudden pumping stopping without including any protection devices, show that there is a negative beyond 1300m to the station 5725m near the arrival of the reservoir, therefore; there is a need for the protection devices to protect the conveying pipeline. To achieve the goal behind the transient flow analysis which is to protect the conveying pipeline system, four scenarios had been investigated in this case study with two types of protecting devices (pressure relief valve and desurging tank with automatic air control). The four scenarios are conceders as with pressure relief valve, with pressure relief valve and a desurging tank with automatic air control, with pressure relief valve and tow desurging tanks with automatic air control and with pressure relief valve and three desurging tanks with automatic air control. The simulation result for the first scenario shows that overpressure corresponding to an instant pumping stopping is reduced from 263m to 240m, and the minimum hydraulic grad line for the length approximately from station 1300m to station 5725m is still below the pipeline profile which means that the pipe must be equipped with another a protective devices for smoothing depressions. The simulation results for the second scenario show that the minimum and maximum pressures envelopes are decreases especially in the depression phase but not effectively protects the conduct in this case study. The minimum pressure increased from -77.7m for the previous scenario to -65.9m for the current scenario. Therefore the pipeline is still requiring additional protective devices; another desurging tank with automatic air control is installed at station2575.84m. The simulation results for the third scenario show that the minimum and maximum pressures envelopes are decreases but not effectively protects the conduct in this case study since the depression is still exist and varies from -0.6m to– 12m. Therefore the pipeline is still requiring additional protective devices; another desurging tank with automatic air control is installed at station 5670.32 m. Examination of the envelope curves of the minimum pressuresresults for the fourth scenario, we noticed that the piezometric pressure along the pipe remains positive over the entire length of the pipe. We can, therefore, conclude that such scenario can provide effective protection for the pipeline.

Keywords: analysis methods, protection devices, transient flow, water hammer

Procedia PDF Downloads 161
594 Numerical and Experimental Investigation of Air Distribution System of Larder Type Refrigerator

Authors: Funda Erdem Şahnali, Ş. Özgür Atayılmaz, Tolga N. Aynur

Abstract:

Almost all of the domestic refrigerators operate on the principle of the vapor compression refrigeration cycle and removal of heat from the refrigerator cabinets is done via one of the two methods: natural convection or forced convection. In this study, airflow and temperature distributions inside a 375L no-frost type larder cabinet, in which cooling is provided by forced convection, are evaluated both experimentally and numerically. Airflow rate, compressor capacity and temperature distribution in the cooling chamber are known to be some of the most important factors that affect the cooling performance and energy consumption of a refrigerator. The objective of this study is to evaluate the original temperature distribution in the larder cabinet, and investigate for better temperature distribution solutions throughout the refrigerator domain via system optimizations that could provide uniform temperature distribution. The flow visualization and airflow velocity measurements inside the original refrigerator are performed via Stereoscopic Particle Image Velocimetry (SPIV). In addition, airflow and temperature distributions are investigated numerically with Ansys Fluent. In order to study the heat transfer inside the aforementioned refrigerator, forced convection theories covering the following cases are applied: closed rectangular cavity representing heat transfer inside the refrigerating compartment. The cavity volume has been represented with finite volume elements and is solved computationally with appropriate momentum and energy equations (Navier-Stokes equations). The 3D model is analyzed as transient, with k-ε turbulence model and SIMPLE pressure-velocity coupling for turbulent flow situation. The results obtained with the 3D numerical simulations are in quite good agreement with the experimental airflow measurements using the SPIV technique. After Computational Fluid Dynamics (CFD) analysis of the baseline case, the effects of three parameters: compressor capacity, fan rotational speed and type of shelf (glass or wire) are studied on the energy consumption; pull down time, temperature distributions in the cabinet. For each case, energy consumption based on experimental results is calculated. After the analysis, the main effective parameters for temperature distribution inside a cabin and energy consumption based on CFD simulation are determined and simulation results are supplied for Design of Experiments (DOE) as input data for optimization. The best configuration with minimum energy consumption that provides minimum temperature difference between the shelves inside the cabinet is determined.

Keywords: air distribution, CFD, DOE, energy consumption, experimental, larder cabinet, refrigeration, uniform temperature

Procedia PDF Downloads 83
593 Investigation of Unusually High Ultrasonic Signal Attenuation in Water Observed in Various Combinations of Pairs of Lead Zirconate Titanate Pb(ZrxTi1-x)O3 (PZT) Piezoelectric Ceramics Positioned Adjacent to One Another Separated by an Intermediate Gap

Authors: S. M. Mabandla, P. Loveday, C. Gomes, D. T. Maiga, T. T. Phadi

Abstract:

Lead zirconate titanate (PZT) piezoelectric ceramics are widely used in ultrasonic applications due to their ability to effectively convert electrical energy into mechanical vibrations and vice versa. This paper presents a study on the behaviour of various combinations of pairs of PZT piezoelectric ceramic materials positioned adjacent to each other with an intermediate gap submerged in water, where one piezoelectric ceramic material is excited by a cyclic electric field with constant frequency and amplitude displacement. The transmitted ultrasonic sound propagates through the medium and is received by the PZT ceramic at the other end, the ultrasonic sound signal amplitude displacement experiences attenuation during propagation due to acoustic impedance. The investigation focuses on understanding the causes of extremely high amplitude displacement attenuation that have been observed in various combinations of piezoelectric ceramic pairs that are submerged in water arranged in a manner stipulated earlier. by examining various combinations of pairs of these piezoelectric ceramics, their physical, electrical, and acoustic properties, and behaviour and attributing them to the observed significant signal attenuation. The experimental setup involves exciting one piezoelectric ceramic material at one end with a burst square cyclic electric field signal of constant frequency, which generates a burst of ultrasonic sound that propagates through the water medium to the adjacent piezoelectric ceramic at the other end. Mechanical vibrations of a PZT piezoelectric ceramic are measured using a double-beam laser Doppler vibrometer to mimic the incident ultrasonic waves generated and received ultrasonic waves on the other end due to mechanical vibrations of a PZT. The measured ultrasonic sound wave signals are continuously compared to the applied cyclic electric field at both ends. The impedance matching networks are continuously tuned at both ends to eliminate electromechanical impedance mismatch to improve ultrasonic transmission and reception. The study delves into various physical, electrical, and acoustic properties of the PZT piezoelectric ceramics, such as the electromechanical coupling factor, acoustic coupling, and elasticity, among others. These properties are analyzed to identify potential factors contributing to the unusually high acoustic impedance in the water medium between the ceramics. Additionally, impedance-matching networks are investigated at both ends to offset the high signal attenuation and improve overall system performance. The findings will be reported in this paper.

Keywords: acoustic impedance, impedance mismatch, piezoelectric ceramics, ultrasonic sound

Procedia PDF Downloads 58
592 The Impact of HKUST-1 Metal-Organic Framework Pretreatment on Dynamic Acetaldehyde Adsorption

Authors: M. François, L. Sigot, C. Vallières

Abstract:

Volatile Organic Compounds (VOCs) are a real health issue, particularly in domestic indoor environments. Among these VOCs, acetaldehyde is frequently monitored in dwellings ‘air, especially due to smoking and spontaneous emissions from the new wall and soil coverings. It is responsible for respiratory complaints and is classified as possibly carcinogenic to humans. Adsorption processes are commonly used to remove VOCs from the air. Metal-Organic Frameworks (MOFs) are a promising type of material for high adsorption performance. These hybrid porous materials composed of metal inorganic clusters and organic ligands are interesting thanks to their high porosity and surface area. The HKUST-1 (also referred to as MOF-199) is a copper-based MOF with the formula [Cu₃(BTC)₂(H₂O)₃]n (BTC = benzene-1,3,5-tricarboxylate) and exhibits unsaturated metal sites that can be attractive sites for adsorption. The objective of this study is to investigate the impact of HKUST-1 pretreatment on acetaldehyde adsorption. Thus, dynamic adsorption experiments were conducted in 1 cm diameter glass column packed with 2 cm MOF bed height. MOF were sieved to 630 µm - 1 mm. The feed gas (Co = 460 ppmv ± 5 ppmv) was obtained by diluting a 1000 ppmv acetaldehyde gas cylinder in air. The gas flow rate was set to 0.7 L/min (to guarantee a suitable linear velocity). Acetaldehyde concentration was monitored online by gas chromatography coupled with a flame ionization detector (GC-FID). Breakthrough curves must allow to understand the interactions between the MOF and the pollutant as well as the impact of the HKUST-1 humidity in the adsorption process. Consequently, different MOF water content conditions were tested, from a dry material with 7 % water content (dark blue color) to water saturated state with approximately 35 % water content (turquoise color). The rough material – without any pretreatment – containing 30 % water serves as a reference. First, conclusions can be drawn from the comparison of the evolution of the ratio of the column outlet concentration (C) on the inlet concentration (Co) as a function of time for different HKUST-1 pretreatments. The shape of the breakthrough curves is significantly different. The saturation of the rough material is slower (20 h to reach saturation) than that of the dried material (2 h). However, the breakthrough time defined for C/Co = 10 % appears earlier in the case of the rough material (0.75 h) compared to the dried HKUST-1 (1.4 h). Another notable difference is the shape of the curve before the breakthrough at 10 %. An abrupt increase of the outlet concentration is observed for the material with the lower humidity in comparison to a smooth increase for the rough material. Thus, the water content plays a significant role on the breakthrough kinetics. This study aims to understand what can explain the shape of the breakthrough curves associated to the pretreatments of HKUST-1 and which mechanisms take place in the adsorption process between the MOF, the pollutant, and the water.

Keywords: acetaldehyde, dynamic adsorption, HKUST-1, pretreatment influence

Procedia PDF Downloads 217
591 A Methodology of Using Fuzzy Logics and Data Analytics to Estimate the Life Cycle Indicators of Solar Photovoltaics

Authors: Thor Alexis Sazon, Alexander Guzman-Urbina, Yasuhiro Fukushima

Abstract:

This study outlines the method of how to develop a surrogate life cycle model based on fuzzy logic using three fuzzy inference methods: (1) the conventional Fuzzy Inference System (FIS), (2) the hybrid system of Data Analytics and Fuzzy Inference (DAFIS), which uses data clustering for defining the membership functions, and (3) the Adaptive-Neuro Fuzzy Inference System (ANFIS), a combination of fuzzy inference and artificial neural network. These methods were demonstrated with a case study where the Global Warming Potential (GWP) and the Levelized Cost of Energy (LCOE) of solar photovoltaic (PV) were estimated using Solar Irradiation, Module Efficiency, and Performance Ratio as inputs. The effects of using different fuzzy inference types, either Sugeno- or Mamdani-type, and of changing the number of input membership functions to the error between the calibration data and the model-generated outputs were also illustrated. The solution spaces of the three methods were consequently examined with a sensitivity analysis. ANFIS exhibited the lowest error while DAFIS gave slightly lower errors compared to FIS. Increasing the number of input membership functions helped with error reduction in some cases but, at times, resulted in the opposite. Sugeno-type models gave errors that are slightly lower than those of the Mamdani-type. While ANFIS is superior in terms of error minimization, it could generate solutions that are questionable, i.e. the negative GWP values of the Solar PV system when the inputs were all at the upper end of their range. This shows that the applicability of the ANFIS models highly depends on the range of cases at which it was calibrated. FIS and DAFIS generated more intuitive trends in the sensitivity runs. DAFIS demonstrated an optimal design point wherein increasing the input values does not improve the GWP and LCOE anymore. In the absence of data that could be used for calibration, conventional FIS presents a knowledge-based model that could be used for prediction. In the PV case study, conventional FIS generated errors that are just slightly higher than those of DAFIS. The inherent complexity of a Life Cycle study often hinders its widespread use in the industry and policy-making sectors. While the methodology does not guarantee a more accurate result compared to those generated by the Life Cycle Methodology, it does provide a relatively simpler way of generating knowledge- and data-based estimates that could be used during the initial design of a system.

Keywords: solar photovoltaic, fuzzy logic, inference system, artificial neural networks

Procedia PDF Downloads 141
590 Material Chemistry Level Deformation and Failure in Cementitious Materials

Authors: Ram V. Mohan, John Rivas-Murillo, Ahmed Mohamed, Wayne D. Hodo

Abstract:

Cementitious materials, an excellent example of highly complex, heterogeneous material systems, are cement-based systems that include cement paste, mortar, and concrete that are heavily used in civil infrastructure; though commonly used are one of the most complex in terms of the material morphology and structure than most materials, for example, crystalline metals. Processes and features occurring at the nanometer sized morphological structures affect the performance, deformation/failure behavior at larger length scales. In addition, cementitious materials undergo chemical and morphological changes gaining strength during the transient hydration process. Hydration in cement is a very complex process creating complex microstructures and the associated molecular structures that vary with hydration. A fundamental understanding can be gained through multi-scale level modeling for the behavior and properties of cementitious materials starting from the material chemistry level atomistic scale to further explore their role and the manifested effects at larger length and engineering scales. This predictive modeling enables the understanding, and studying the influence of material chemistry level changes and nanomaterial additives on the expected resultant material characteristics and deformation behavior. Atomistic-molecular dynamic level modeling is required to couple material science to engineering mechanics. Starting at the molecular level a comprehensive description of the material’s chemistry is required to understand the fundamental properties that govern behavior occurring across each relevant length scale. Material chemistry level models and molecular dynamics modeling and simulations are employed in our work to describe the molecular-level chemistry features of calcium-silicate-hydrate (CSH), one of the key hydrated constituents of cement paste, their associated deformation and failure. The molecular level atomic structure for CSH can be represented by Jennite mineral structure. Jennite has been widely accepted by researchers and is typically used to represent the molecular structure of the CSH gel formed during the hydration of cement clinkers. This paper will focus on our recent work on the shear and compressive deformation and failure behavior of CSH represented by Jennite mineral structure that has been widely accepted by researchers and is typically used to represent the molecular structure of CSH formed during the hydration of cement clinkers. The deformation and failure behavior under shear and compression loading deformation in traditional hydrated CSH; effect of material chemistry changes on the predicted stress-strain behavior, transition from linear to non-linear behavior and identify the on-set of failure based on material chemistry structures of CSH Jennite and changes in its chemistry structure will be discussed.

Keywords: cementitious materials, deformation, failure, material chemistry modeling

Procedia PDF Downloads 267
589 Association of Brain Derived Neurotrophic Factor with Iron as well as Vitamin D, Folate and Cobalamin in Pediatric Metabolic Syndrome

Authors: Mustafa M. Donma, Orkide Donma

Abstract:

The impact of metabolic syndrome (MetS) on cognition and functions of the brain is being investigated. Iron deficiency and deficiencies of B9 (folate) as well as B12 (cobalamin) vitamins are best-known nutritional anemias. They are associated with cognitive disorders and learning difficulties. The antidepressant effects of vitamin D are known and the deficiency state affects mental functions negatively. The aim of this study is to investigate possible correlations of MetS with serum brain-derived neurotrophic factor (BDNF), iron, folate, cobalamin and vitamin D in pediatric patients. 30 children, whose age- and sex-dependent body mass index (BMI) percentiles vary between 85 and 15, 60 morbid obese children with above 99th percentiles constituted the study population. Anthropometric measurements were taken. BMI values were calculated. Age- and sex-dependent BMI percentile values were obtained using the appropriate tables prepared by the World Health Organization (WHO). Obesity classification was performed according to WHO criteria. Those with MetS were evaluated according to MetS criteria. Serum BDNF was determined by enzyme-linked immunosorbent assay. Serum folate was analyzed by an immunoassay analyzer. Serum cobalamin concentrations were measured using electrochemiluminescence immunoassay. Vitamin D status was determined by the measurement of 25-hydroxycholecalciferol [25-hydroxy vitamin D3, 25(OH)D] using high performance liquid chromatography. Statistical evaluations were performed using SPSS for Windows, version 16. The p values less than 0.05 were accepted as statistically significant. Although statistically insignificant, lower folate and cobalamin values were found in MO children compared to those observed for children with normal BMI. For iron and BDNF values, no alterations were detected among the groups. Significantly decreased vitamin D concentrations were noted in MO children with MetS in comparison with those in children with normal BMI (p ≤ 0.05). The positive correlation observed between iron and BDNF in normal-BMI group was not found in two MO groups. In THE MetS group, the partial correlation among iron, BDNF, folate, cobalamin, vitamin D controlling for waist circumference and BMI was r = -0.501; p ≤ 0.05. None was calculated in MO and normal BMI groups. In conclusion, vitamin D should also be considered during the assessment of pediatric MetS. Waist circumference and BMI should collectively be evaluated during the evaluation of MetS in children. Within this context, BDNF appears to be a key biochemical parameter during the examination of obesity degree in terms of mental functions, cognition and learning capacity. The association observed between iron and BDNF in children with normal BMI was not detected in MO groups possibly due to development of inflammation and other obesity-related pathologies. It was suggested that this finding may contribute to mental function impairments commonly observed among obese children.

Keywords: brain-derived neurotrophic factor, iron, vitamin B9, vitamin B12, vitamin D

Procedia PDF Downloads 97
588 Exploring Professional Development Needs of Mathematics Teachers through Their Reflective Practitioner Experiences

Authors: Sevket Ceyhun Cetin, Mehmet Oren

Abstract:

According to existing educational research studies, students learn better with high teacher quality. Therefore, professional development has become a crucial way of increasing the quality of novices and veteran in-service teachers by providing support regarding content and pedagogy. To answer what makes PD effective, researchers have studied different PD models and revealed some critical elements that need to be considered, such as duration of a PD and the manner of delivery (e.g., lecture vs. engaging). Also, it has been pointed out that if PDs are prepared as one-size-fits-all, they most likely be ineffective in addressing teachers’ needs toward improving instructional quality. Instead, teachers’ voices need to be heard, and the foci of PDs should be determined based on their specific needs. Thus, this study was conducted to identify professional development needs of middle school mathematics teachers based on their self-evaluation of their performances in light of teaching standards. This study also aimed to explore whether the PD needs with respect to years of teaching experience (novice vs. veteran). These teachers had participated in a federally-funded research grant, which aimed to improve the competencies of 6-9 grade-level mathematics teachers in pedagogy and content areas. In the research project, the participants had consistently videoed their lessons throughout a school year and reflected on their performances, using Teacher Advanced Program (TAPTM) rubric, which was based on the best practices of teaching. Particularly, they scored their performances in the following areas and provided evidence as the justifications of their scores: Standards and Objectives, Presenting Instructional Content, Lesson Structure and Pacing, Activities and Materials, Academic Feedback, Grouping Students, and Questioning. The rating scale of the rubric is 1 through 5 (i.e., 1=Unsatisfactory [performance], 3=Proficient, and 5=Exemplary). For each area mentioned above, the numerical scores of 77 written reports (for 77 videoed lessons) of 24 teachers (nnovices=12 and nveteran=12) were averaged. Overall, the average score of each area was below 3 (ranging between 2.43 and 2.86); in other words, teachers judged their performances incompetent across the seven areas. In the second step of the data analysis, the lowest three areas in which novice and veteran teachers performed poorly were selected for further qualitative analysis. According to the preliminary results, the lowest three areas for the novice teachers were: Questioning, Grouping Students, and Academic Feedback. Grouping Students was also one of the lowest areas of the veteran teachers, but the other two areas for this group were: Lesson Structure & Pacing, and Standards & Objectives. Identifying in-service teachers’ needs based on their reflective practitioner experiences provides educators very crucial information that can be used to create more effective PD that improves teacher quality.

Keywords: mathematics teacher, professional development, self-reflection, video data

Procedia PDF Downloads 345
587 Life Cycle Assessment of Todays and Future Electricity Grid Mixes of EU27

Authors: Johannes Gantner, Michael Held, Rafael Horn, Matthias Fischer

Abstract:

At the United Nations Climate Change Conference 2015 a global agreement on the reduction of climate change was achieved stating CO₂ reduction targets for all countries. For instance, the EU targets a reduction of 40 percent in emissions by 2030 compared to 1990. In order to achieve this ambitious goal, the environmental performance of the different European electricity grid mixes is crucial. First, the electricity directly needed for everyone’s daily life (e.g. heating, plug load, mobility) and therefore a reduction of the environmental impacts of the electricity grid mix reduces the overall environmental impacts of a country. Secondly, the manufacturing of every product depends on electricity. Thereby a reduction of the environmental impacts of the electricity mix results in a further decrease of environmental impacts of every product. As a result, the implementation of the two-degree goal highly depends on the decarbonization of the European electricity mixes. Currently the production of electricity in the EU27 is based on fossil fuels and therefore bears a high GWP impact per kWh. Due to the importance of the environmental impacts of the electricity mix, not only today but also in future, within the European research projects, CommONEnergy and Senskin, time-dynamic Life Cycle Assessment models for all EU27 countries were set up. As a methodology, a combination of scenario modeling and life cycle assessment according to ISO14040 and ISO14044 was conducted. Based on EU27 trends regarding energy, transport, and buildings, the different national electricity mixes were investigated taking into account future changes such as amount of electricity generated in the country, change in electricity carriers, COP of the power plants and distribution losses, imports and exports. As results, time-dynamic environmental profiles for the electricity mixes of each country and for Europe overall were set up. Thereby for each European country, the decarbonization strategies of the electricity mix are critically investigated in order to identify decisions, that can lead to negative environmental effects, for instance on the reduction of the global warming of the electricity mix. For example, the withdrawal of the nuclear energy program in Germany and at the same time compensation of the missing energy by non-renewable energy carriers like lignite and natural gas is resulting in an increase in global warming potential of electricity grid mix. Just after two years this increase countervailed by the higher share of renewable energy carriers such as wind power and photovoltaic. Finally, as an outlook a first qualitative picture is provided, illustrating from environmental perspective, which country has the highest potential for low-carbon electricity production and therefore how investments in a connected European electricity grid could decrease the environmental impacts of the electricity mix in Europe.

Keywords: electricity grid mixes, EU27 countries, environmental impacts, future trends, life cycle assessment, scenario analysis

Procedia PDF Downloads 166
586 Patterns of TV Simultaneous Interpreting of Emotive Overtones in Trump’s Victory Speech from English into Arabic

Authors: Hanan Al-Jabri

Abstract:

Simultaneous interpreting is deemed to be the most challenging mode of interpreting by many scholars. The special constraints involved in this task including time constraints, different linguistic systems, and stress pose a great challenge to most interpreters. These constraints are likely to maximise when the interpreting task is done live on TV. The TV interpreter is exposed to a wide variety of audiences with different backgrounds and needs and is mostly asked to interpret high profile tasks which raise his/her levels of stress, which further complicate the task. Under these constraints, which require fast and efficient performance, TV interpreters of four TV channels were asked to render Trump's victory speech into Arabic. However, they had also to deal with the burden of rendering English emotive overtones employed by the speaker into a whole different linguistic system. The current study aims at investigating the way TV interpreters, who worked in the simultaneous mode, handled this task; it aims at exploring and evaluating the TV interpreters’ linguistic choices and whether the original emotive effect was maintained, upgraded, downgraded or abandoned in their renditions. It also aims at exploring the possible difficulties and challenges that emerged during this process and might have influenced the interpreters’ linguistic choices. To achieve its aims, the study analysed Trump’s victory speech delivered on November 6, 2016, along with four Arabic simultaneous interpretations produced by four TV channels: Al-Jazeera, RT, CBC News, and France 24. The analysis of the study relied on two frameworks: a macro and a micro framework. The former presents an overview of the wider context of the English speech as well as an overview of the speaker and his political background to help understand the linguistic choices he made in the speech, and the latter framework investigates the linguistic tools which were employed by the speaker to stir people’s emotions. These tools were investigated based on Shamaa’s (1978) classification of emotive meaning according to their linguistic level: phonological, morphological, syntactic, and semantic and lexical levels. Moreover, this level investigates the patterns of rendition which were detected in the Arabic deliveries. The results of the study identified different rendition patterns in the Arabic deliveries, including parallel rendition, approximation, condensation, elaboration, transformation, expansion, generalisation, explicitation, paraphrase, and omission. The emerging patterns, as suggested by the analysis, were influenced by factors such as speedy and continuous delivery of some stretches, and highly-dense segments among other factors. The study aims to contribute to a better understanding of TV simultaneous interpreting between English and Arabic, as well as the practices of TV interpreters when rendering emotiveness especially that little is known about interpreting practices in the field of TV, particularly between Arabic and English.

Keywords: emotive overtones, interpreting strategies, political speeches, TV interpreting

Procedia PDF Downloads 136
585 Fabrication of High-Aspect Ratio Vertical Silicon Nanowire Electrode Arrays for Brain-Machine Interfaces

Authors: Su Yin Chiam, Zhipeng Ding, Guang Yang, Danny Jian Hang Tng, Peiyi Song, Geok Ing Ng, Ken-Tye Yong, Qing Xin Zhang

Abstract:

Brain-machine interfaces (BMI) is a ground rich of exploration opportunities where manipulation of neural activity are used for interconnect with myriad form of external devices. These research and intensive development were evolved into various areas from medical field, gaming and entertainment industry till safety and security field. The technology were extended for neurological disorders therapy such as obsessive compulsive disorder and Parkinson’s disease by introducing current pulses to specific region of the brain. Nonetheless, the work to develop a real-time observing, recording and altering of neural signal brain-machine interfaces system will require a significant amount of effort to overcome the obstacles in improving this system without delay in response. To date, feature size of interface devices and the density of the electrode population remain as a limitation in achieving seamless performance on BMI. Currently, the size of the BMI devices is ranging from 10 to 100 microns in terms of electrodes’ diameters. Henceforth, to accommodate the single cell level precise monitoring, smaller and denser Nano-scaled nanowire electrode arrays are vital in fabrication. In this paper, we would like to showcase the fabrication of high aspect ratio of vertical silicon nanowire electrodes arrays using microelectromechanical system (MEMS) method. Nanofabrication of the nanowire electrodes involves in deep reactive ion etching, thermal oxide thinning, electron-beam lithography patterning, sputtering of metal targets and bottom anti-reflection coating (BARC) etch. Metallization on the nanowire electrode tip is a prominent process to optimize the nanowire electrical conductivity and this step remains a challenge during fabrication. Metal electrodes were lithographically defined and yet these metal contacts outline a size scale that is larger than nanometer-scale building blocks hence further limiting potential advantages. Therefore, we present an integrated contact solution that overcomes this size constraint through self-aligned Nickel silicidation process on the tip of vertical silicon nanowire electrodes. A 4 x 4 array of vertical silicon nanowires electrodes with the diameter of 290nm and height of 3µm has been successfully fabricated.

Keywords: brain-machine interfaces, microelectromechanical systems (MEMS), nanowire, nickel silicide

Procedia PDF Downloads 423
584 An Examination of Crisis Communication in Sport: Lessons from Sport Organizations Responding to Coronavirus Disease Outbreak

Authors: Geumchan Hwang

Abstract:

Professional sport leagues in Europe and North America are shut down due to novel coronavirus disease (COVID-19) outbreak. Football leagues in Europe (e.g., La Liga, English Premier League, Bundesliga, Serie A, and Ligue 1) and big four professional sport leagues in North America (e.g., National Football League, Major League Baseball, National Basketball Association, and National Hockey League) are indefinitely suspended or delayed. COVID-19 outbreak has a growing negative impact on economics of sport leagues. For example, loss of revenue in Europe’s top five leagues due to the COVID-19 pandemic was estimated at € 4 billion and loss of revenue in the NBA was estimated at $650 million as of March 2020. In the unprecedented difficult situation, sport teams and leagues try to communicate with sport fans through diverse media platforms. In sport, however, very few studies have been done regarding how sport organizations effectively communicate with sport fans during pandemics, such as COVID-19 outbreak. Understanding sport organizations’ crisis communication is important to develop effective crisis management strategies for sport organizations. Therefore, the purpose of the study is to examine how sport organizations communicate with sport fans via online platforms in COVID-19 outbreak and how sport fans evaluate their communication strategies. 9 official sport league sites (i.e., five major football leagues in Europe and four major sport leagues in North America) and COVID-19 news articles published between January and June in 2020 will be analyzed in terms of coronavirus information, teams and players’ live update, fan interaction, fan support, and community engagement. In addition, comments posted on social media sites (i.e., Facebook and Twitter) of major sport leagues will be also analyzed to examine how sport fans perceive online messages provided by sport leagues as an effective communication strategy. To measure the effectiveness of crisis communication performance, five components (i.e., prompt, compassionate, honest, informative, and interactive) of crisis communication will be collected from leagues’ official websites information and social media posts. Upon completing data collection, content analysis method will be used to evaluate effectiveness of crisis communication among 9 professional sport leagues. The results of the study will provide athletic directors, administrators, and public relations managers in sport organizations with practical information regarding how athlete celebrities and sport organizations should interact with their fans in pandemic situations. In particular, this study will contribute to developing specific crisis management plan for sport organizations. For instance, football teams and leagues in Europe will be able to create standard manuals to minimize damages caused by disease outbreak, such as COVID-19 outbreak.

Keywords: COVID-19, communication, sport leagues, fans

Procedia PDF Downloads 119