Search results for: surface properties
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13816

Search results for: surface properties

12316 Mechanical Properties of Sugar Palm Fibre Reinforced Thermoplastic Polyurethane Composites

Authors: Dandi Bachtiar, Mohammed Ausama Abbas, Januar Parlaungan Siregar, Mohd Ruzaimi Bin Mat Rejab

Abstract:

Short sugar palm fibre and thermoplastic polyurethane were combined to produce new composites by using the extrude method. Two techniques used to prepare a new composite material, firstly, extrusion of the base material with short fibre, secondly hot pressing them. The size of sugar palm fibre was fixed at 250µm. Different weight percent (10 wt%, 20 wt% and 30 wt%) were used in order to optimise preparation process. The optimization of process depended on the characterization mechanical properties such as impact, tensile, and flexural of the new (TPU/SPF) composite material. The results proved that best tensile and impact properties of weight additive fibre applied 10 wt%. There was an increasing trend recorded of flexural properties during increased the fibre loading. Meanwhile, the maximum tensile strength was 14.0 MPa at 10 wt% of the fibre. Moreover, there was no significant effect for additions more than 30 wt% of the fibre.

Keywords: composites, natural fibre, polyurethane, sugar palm

Procedia PDF Downloads 384
12315 Characteristics Flakes Product with Dry Residue of Wild Orenago

Authors: Kosutic Milenko, Filipovic Jelena

Abstract:

Cereals constitute the staple food of the human race. In accordance with the modern nutritionist opinions, cereal products, flakes and snack products are the most common foods in the daily diet, such as ready to eat breakfast cereal, flakes, and snacks. Extrusion technology makes it possible to apply different sources of ingredients for the enrichment of cereal-based flakes or snacks products. Substances with strong antioxidant properties such as wild oregano have a positive impact on human health, therefore attracting the attention of scientists, consumers and food industry experts. This paper investigates the effects of simultaneous addition of dry residue of wild oregano (0.5% and 1%), on the physical and colour properties of corn flakes to obtain new products with altered nutritional properties. Post-hoc Tukey’s HSD test at 95% confidence limit showed significant differences between various samples. Addition of dry residue wild oregano positively influenced physical characteristics (decreased bulk density 30.2%, increased expansion rate 44.9%), influenced of decrease hardness 38.1% and work of compression 40.3% also significantly change the color of flakes product. Presented data point that investigated corn flakes is a new product with good physical and sensory properties due to higher level of dry residue of wild oregano.

Keywords: flakes product, wild oregano, phisical properties, colour, sensory properties

Procedia PDF Downloads 323
12314 Characterization of Calcined Clay Blended Self Compacting Concrete-Correlation between Super-Plasticizer Dosage and Self Compacting Concrete Properties

Authors: Kumator Josiphiah Taku

Abstract:

Sustainability in construction is essential to the economic construction and can be achieved by the use of locally available construction materials. This research work, thus, uses locally available materials –calcined clay and Sandcrete SPR-300 superplasticizer in the production of Self Compacting Concrete (SCC) by investigating the correlation between the superplasticizer dosage and the fresh and hardened states properties of a grade 50 SCC made by incorporating a Calcined Clay (CC) – Portland Limestone Cement (PLC) blend as the cementitious matter at 20% replacement of PLC with CC and using CC as filler. The superplasticizer dosage was varied from 0.4 to 3.0% by weight of cementitious material and the slump, v-funnel, L-box and strength parameters investigated. The result shows a positive correlation between the increased dosage of the superplasticizer and the fresh and hardened states properties of the SCC up to 2% dosage. The J¬Spread¬, t¬500J¬, Slump flow, L-box H¬2¬/H¬1 ¬ratio and strength, all increases with SP dosage while the V-funnel flow decreased with SP dosage. Overall, SP ratio of 0.5 to 2.0 can be used in improving the properties of SCC produced using calcined clay both as filler and cementitious material.

Keywords: calcined clay, compressive strength, fresh-state properties of SCC, self compacting concrete, superplasticizer dosage

Procedia PDF Downloads 166
12313 Influence of Vegetable Oil-Based Controlled Cutting Fluid Impinging Supply System on Micro Hardness in Machining of Ti-6Al-4V

Authors: Salah Gariani, Islam Shyha, Fawad Inam, Dehong Huo

Abstract:

A controlled cutting fluid impinging supply system (CUT-LIST) was developed to deliver an accurate amount of cutting fluid into the machining zone via well-positioned coherent nozzles based on a calculation of the heat generated. The performance of the CUT-LIST was evaluated against a conventional flood cutting fluid supply system during step shoulder milling of Ti-6Al-4V using vegetable oil-based cutting fluid. In this paper, the micro-hardness of the machined surface was used as the main criterion to compare the two systems. CUT-LIST provided significant reductions in cutting fluid consumption (up to 42%). Both systems caused increased micro-hardness value at 100 µm from the machined surface, whereas a slight reduction in micro-hardness of 4.5% was measured when using CUL-LIST. It was noted that the first 50 µm is the soft sub-surface promoted by thermal softening, whereas down to 100 µm is the hard sub-surface caused by the cyclic internal work hardening and then gradually decreased until it reached the base material nominal hardness. It can be concluded that the CUT-LIST has always given lower micro-hardness values near the machined surfaces in all conditions investigated.

Keywords: impinging supply system, micro-hardness, shoulder milling, Ti-6Al-4V, vegetable oil-based cutting fluid

Procedia PDF Downloads 286
12312 Water Temperature on Early Age Concrete Property

Authors: Tesfaye Sisay Dessalegn

Abstract:

The long-term performance of concrete structures is affected by the properties and behavior of concrete at an early age. However, the fundamental mechanisms affecting the early-age behavior of concrete have not yet been fully studied. The effect of water temperature on concrete is not sufficiently studied, and at the same time, the majority of studies focused on the effect of mixing water temperature on the workability and mechanical properties of concrete. However, to the best of the authors' knowledge, the effect of mixing water temperatures on plastic shrinkage cracking of concrete has not been studied yet.

Keywords: water temperature, early age concrete strength, mechanical properties of concrete, strength

Procedia PDF Downloads 57
12311 Extracellular Production of the Oncolytic Enzyme, Glutaminase Free L-Asparaginase, from Newly Isolated Streptomyces Olivaceus NEAE-119: Optimization of Culture Conditions Using Response Surface Methodology

Authors: Noura El-Ahmady El-Naggar

Abstract:

Among the antitumour drugs, bacterial enzyme L-asparaginase has been employed as the most effective chemotherapeutic agent in pediatric oncotherapy especially for acute lymphoblastic leukemia. Glutaminase free L-asparaginase producing actinomycetes were isolated from soil samples collected from Egypt. Among them, a potential culture, strain NEAE-119, was selected and identified on the basis of morphological, cultural, physiological and biochemical properties, together with 16S rDNA sequence as Streptomyces olivaceus NEAE-119 and sequencing product(1509 bp) was deposited in the GenBank database under accession number KJ200342. The optimization of different process parameters for L-asparaginase production by Streptomyces olivaceus NEAE-119 using Plackett–Burman experimental design and response surface methodology was carried out. Fifteen nutritional variables (temperature, pH, incubation time, inoculum size, inoculum age, agitation speed, dextrose, starch, L-asparagine, KNO3, yeast extract, K2HPO4, MgSO4.7H2O, NaCl and FeSO4. 7H2O) were screened using Plackett–Burman experimental design. The most positive significant independent variables affecting enzyme production (temperature, inoculum age and agitation speed) were further optimized by the central composite face-centered design -response surface methodology. As a result, a medium of the following formula is the optimum for producing an extracellular L-asparaginase in the culture filtrate of Streptomyces olivaceus NEAE-119: Dextrose 3g, starch 20g, L-asparagine 10g, KNO3 1g, K2HPO4 1g, MgSO4.7H2O 0.1g, NaCl 0.1g, pH 7, temperature 37°C, agitation speed 200 rpm/min, inoculum size 4%, v/v, inoculum age 72 h and fermentation period 5 days.

Keywords: Streptomyces olivaceus NEAE-119, glutaminase free L-asparaginase, production, Plackett-Burman design, central composite face-centered design, 16S rRNA, scanning electron microscope

Procedia PDF Downloads 365
12310 Evaluation of the Mechanical Properties of Nano TiO2 and Clay Filler Filled Epoxy Composites

Authors: A. Mimaroglu, H. Unal

Abstract:

In this study, the mechanical properties of nano filled epoxy composites were evaluated. The matrix material is epoxy. nano fillers are Al2O3, TiO2 and clay added in 2.5- 10 wt% by weight ratio. Test samples were prepared using an open mould type die. Mechanical tests were carried out. The tensile strength, elastic modulus, elongation at break and the hardness of the composite materials were obtained and evaluated. It was seen from the results that the filler content had a high influence on the level of the mechanical properties of the epoxy composites.

Keywords: nano, epoxy, composite, fillers, clay

Procedia PDF Downloads 390
12309 The Influence of Zeolitic Spent Refinery Admixture on the Rheological and Technological Properties of Steel Fiber Reinforced Self- Compacting Concrete

Authors: Žymantas Rudžionis, Paulius Grigaliūnas, Danutė Vaičiukynienė

Abstract:

By planning this experimental work to investigate the effect of zeolitic waste on rheological and technological properties of self-compacting fiber reinforced concrete, we had an intention to draw attention to the environmental factor. Large amount of zeolitic waste, as a secondary raw materials are not in use properly and large amount of it is collected without a clear view of it’s usage in future. The principal aim of this work is to assure, that zeolitic waste admixture takes positive effect to the self-compacting fiber reinforced concrete mixes stability, flowability and other properties by using the experimental research methods. In addition to that a research on cement and zeolitic waste mortars were implemented to clarify the effect of zeolitic waste on properties of cement paste and stone. Primary studies indicates that zeolitic waste characterizes clear puzzolanic behavior, do not deteriorate and in some cases ensure positive rheological and mechanical characteristics of self-compacting concrete mixes.

Keywords: self compacting concrete, steel fiber reinforced concrete, zeolitic waste, rheological, properties of concrete, slump flow

Procedia PDF Downloads 366
12308 Enhancement of Mechanical Properties and Thermal Conductivity of Oil Palm Shell Lightweight Concrete Reinforced with High Performance Polypropylene Fibres

Authors: Leong Tatt Loh, Ming Kun Yew, Ming Chian Yew, Lip Huat Saw, Jing Han Beh, Siong Kang Lim, Foo Wei Lee

Abstract:

Oil palm shell (OPS) is the solid waste product from the palm oil sector of the agricultural industry and can be used as alternative coarse aggregates to substitute depleting conventional raw materials. This research aims to investigate the incorporation of various high-performance polypropylene (HPP) fibres with different geometry to enhance the mechanical properties and thermal conductivity of OPS lightweight concrete. The effect of different volume fractions (Vf) (0.05%, 0.10% and 0.15%) were studied for each fibre. The results reveal that the effectiveness of HPP fibres to increase the compressive strength at later ages was more pronounced than at early age. It is found that the use of HPP fibres reinforced OPS lightweight concrete (LWC) induced the advantageous of improving mechanical properties (compressive strength, flexural strength and splitting tensile strength) and thermal conductivity. Hence, this HPP fibres is a promising alternative solution to compensate lower mechanical properties as well as contribute to energy efficiency building material in the construction industry.

Keywords: oil palm shell, high performance polypropylene fibre, lightweight concrete, mechanical properties, thermal conductivity

Procedia PDF Downloads 207
12307 Properties of Self-Compacting Concrete Mixed with Fly Ash

Authors: Abhinandan Singh Gill, Gurbir Kaur Jawanda

Abstract:

Since the introduction of self-consolidating concrete (SCC) in Japan during the late 1980’s, acceptance and usage of this concrete in the construction industry has been steadily gaining momentum. In the United States, the usage of SCC has been spearheaded by the precast concrete industry. Good SCC must possess the following key fresh properties: filling ability, passing ability, and resistance to segregation. Self-compacting concrete is one of 'the most revolutionary developments' in concrete research; this concrete is able to flow and to fill the most restocked places of the form work without vibration. There are several methods for testing its properties. In the fresh state: the most frequently used are slump flow test, L box and V-funnel. This work presents properties of self-compacting concrete, mixed with fly ash. The test results for acceptance characteristics of self-compacting concrete such as slump flow; V-funnel and L-Box are presented. Further, the compressive strength at the ages of 7, 28 days was also determined and results are included here.

Keywords: compressive strength, fly ash, self-compacting concrete, slump flow test, super plasticizer

Procedia PDF Downloads 411
12306 New Approaches to the Determination of the Time Costs of Movements

Authors: Dana Kristalova

Abstract:

This article deals with geographical conditions in terrain and their effect on the movement of vehicles, their effect on speed and safety of movement of people and vehicles. Finding of the optimal routes outside the communication is studied in the army environment, but it occur in civilian as well, primarily in crisis situation, or by the provision of assistance when natural disasters such as floods, fires, storms, etc. have happened. These movements require the optimization of routes when effects of geographical factors should be included. The most important factor is surface of the terrain. It is based on several geographical factors as are slopes, soil conditions, micro-relief, a type of surface and meteorological conditions. Their mutual impact has been given by coefficient of deceleration. This coefficient can be used for commander´s decision. New approaches and methods of terrain testing, mathematical computing, mathematical statistics or cartometric investigation are necessary parts of this evaluation.

Keywords: surface of a terrain, movement of vehicles, geographical factor, optimization of routes

Procedia PDF Downloads 462
12305 Influence of Modified and Unmodified Cow Bone on the Mechanical Properties of Reinforced Polyester Composites for Biomedical Applications

Authors: I. O. Oladele, J. A. Omotoyinbo, A. M. Okoro, A. G. Okikiola, J. L. Olajide

Abstract:

This work was carried out to investigate comparatively the effects of modified and unmodified cow bone particles on the mechanical properties of polyester matrix composites in order to investigate the suitability of the materials as biomaterial. Cow bones were procured from an abattoir, sun dried for 4 weeks and crushed. The crushed bones were divided into two, where one part was turned to ash while the other part was pulverized with laboratory ball mill before the two grades were sieved using 75 µm sieve size. Bone ash and bone particle reinforced tensile and flexural composite samples were developed from pre-determined proportions of 2, 4, 6, and 8 %. The samples after curing were stripped from the moulds and were allowed to further cure for 3 weeks before tensile and flexural tests were performed on them. The tensile test result showed that, 8 wt % bone particle reinforced polyester composites has higher tensile properties except for modulus of elasticity where 8 wt % bone ash particle reinforced composites has higher value while for flexural test, bone ash particle reinforced composites demonstrate the best flexural properties. The results show that these materials are structurally compatible.

Keywords: biomedical, composites, cow bone, mechanical properties, polyester, reinforcement

Procedia PDF Downloads 279
12304 Production of Biosurfactant by Pseudomonas luteola on a Reject from the Production of Anti-scorpion Serum

Authors: Radia Chemlal, Youcef Hamidi, Nabil Mameri

Abstract:

This study deals with the production of biosurfactant by the Pseudomonas luteola strain on three different culture media (semi-synthetic medium M1, whey, and pharmaceutical reject) in the presence of gasoil. The monitoring of bacterial growth by measuring the optical density at 600 nm by spectrophotometer and the surface tension clearly showed the ability of Pseudomonas luteola to produce biosurfactants at various conditions of the culture medium. The biosurfactant produced in the pharmaceutical reject medium generated a decrease in the surface tension with a percentage of 19.4% greater than the percentage obtained when using whey which is 7.0%. The pharmaceutical rejection is diluted at various percentages ranging from 5% to 100% in order to study the effect of the concentration on the biosurfactant production. The best result inducing the great reduction of the surface tension value is obtained at the dilution of 30% with the pharmaceutical reject.

Keywords: biosurfactant, pseudomonas luteola, whey, antiscorpionic serum, gas oil

Procedia PDF Downloads 102
12303 The Effect of Surface Wave on the Performance Characteristic of a Wave-Tidal Integral Turbine Hybrid Generation System

Authors: Norshazmira Mat Azmi, Sayidal El Fatimah Masnan, Shatirah Akib

Abstract:

More than 70% of the Earth is covered by oceans, which are considered to possess boundless renewable energy, such as tidal energy, tidal current energy, wave energy, thermal energy, and chemical energy. The hybrid system help in improving the economic and environmental sustainability of renewable energy systems to fulfill the energy demand. The concept of hybridizing renewable energy is to meet the desired system requirements, with the lowest value of the energy cost. This paper propose a hybrid power generation system suitable for remote area application and highlight the impact of surface waves on turbine design and performance, and the importance of understanding the site-specific wave conditions.

Keywords: marine current energy, tidal turbines, wave turbine, renewable energy, surface waves, hydraulic flume experiments, instantaneous wave phase

Procedia PDF Downloads 408
12302 Production and Quality Assessment of Antioxidant-Rich Biscuit Produced from Pearl Millet and Orange Peel Flour Blends

Authors: Oloniyo Rebecca Olajumoke

Abstract:

The unstable free radicals molecules oxidize cells throughout the body to cause oxidative stress, which has been implicated in the pathogenesis of many chronic diseases. Thus, the consumption of antioxidant-rich snacks could help to reduce the production of these free radicals in the body. This study aimed at producing antioxidant–rich biscuits from an underutilized pearl millet and agricultural waste from orange peel flour (PMF and OPF, respectively) blends. Biscuits were produced from PMF, and OPF blends using various proportions (95:05; 90:10; 85:15; 80:20 with 100% PMF as control. The functional properties of the flours, as well as the antioxidant properties, physical evaluation, and consumer acceptability of the biscuits, were evaluated. The functional properties of the composite flour showed an increase in oil absorption capacity (7.73-8.80 g/ml), water absorption capacity (6.82-7.21 g/ml), foaming (3.91-5.88 g/ml), and emulsification (52.85-58.82 g/ml) properties. The increased addition of OPF significantly (p<0.05) increased the antioxidant properties of the biscuits produced from the composite flour. For instance, the ferric reducing properties (0.10-0.4 mgAAE/g), total flavonoid (1.20-8.12 mg QE/g), and ABTS radical scavenging (1.17-2.19 mmol/TEAC/g) of the composite flours were increasingly comparable to those of 100% PMF. The physical parameters of the biscuit were significantly different (p<0.05) from one another. The addition of OPF into PMF reduced the weight, diameter, and spread ratio of biscuits produced while contrarily increasing the height of the biscuit. The incorporation of OPF at 5% (95:05) substitution yielded a consumedly acceptable biscuit product. The significant increase in antioxidant properties with an increase in OPF during the production of biscuits would therefore increase the nutritional value and potential health benefits.

Keywords: orange peel, biscuit, antioxidant, pearl millet

Procedia PDF Downloads 95
12301 Empirical Modeling and Optimization of Laser Welding of AISI 304 Stainless Steel

Authors: Nikhil Kumar, Asish Bandyopadhyay

Abstract:

Laser welding process is a capable technology for forming the automobile, microelectronics, marine and aerospace parts etc. In the present work, a mathematical and statistical approach is adopted to study the laser welding of AISI 304 stainless steel. A robotic control 500 W pulsed Nd:YAG laser source with 1064 nm wavelength has been used for welding purpose. Butt joints are made. The effects of welding parameters, namely; laser power, scanning speed and pulse width on the seam width and depth of penetration has been investigated using the empirical models developed by response surface methodology (RSM). Weld quality is directly correlated with the weld geometry. Twenty sets of experiments have been conducted as per central composite design (CCD) design matrix. The second order mathematical model has been developed for predicting the desired responses. The results of ANOVA indicate that the laser power has the most significant effect on responses. Microstructural analysis as well as hardness of the selected weld specimens has been carried out to understand the metallurgical and mechanical behaviour of the weld. Average micro-hardness of the weld is observed to be higher than the base metal. Higher hardness of the weld is the resultant of grain refinement and δ-ferrite formation in the weld structure. The result suggests that the lower line energy generally produce fine grain structure and improved mechanical properties than the high line energy. The combined effects of input parameters on responses have been analyzed with the help of developed 3-D response surface and contour plots. Finally, multi-objective optimization has been conducted for producing weld joint with complete penetration, minimum seam width and acceptable welding profile. Confirmatory tests have been conducted at optimum parametric conditions to validate the applied optimization technique.

Keywords: ANOVA, laser welding, modeling and optimization, response surface methodology

Procedia PDF Downloads 294
12300 Superchaotropicity: Grafted Surface to Probe the Adsorption of Nano-Ions

Authors: Raimoana Frogier, Luc Girard, Pierre Bauduin, Diane Rebiscoul, Olivier Diat

Abstract:

Nano-ions (NIs) are ionic species or clusters of nanometric size. Their low charge density and the delocalization of their charges give special properties to some of NIs belonging to chemical classes of polyoxometalates (POMs) or boron clusters. They have the particularity of interacting non-covalently with neutral hydrated surface or interfaces such as assemblies of surface-active molecules (micelles, vesicles, lyotropic liquid crystals), foam bubbles or emulsion droplets. This makes possible to classify those NIs in the Hofmeister series as superchaotropic ions. The mechanism of adsorption is complex, linked to the simultaneous dehydration of the ion and the molecule or supramolecular assembly with which it can interact, all with an enthalpic gain on the free energy of the system. This interaction process is reversible and is sufficiently pronounced to induce changes in molecular and supramolecular shape or conformation, phase transitions in the liquid phase, all at sub-millimolar ionic concentrations. This new property of some NIs opens up new possibilities for applications in fields as varied as biochemistry for solubilization, recovery of metals of interest by foams in the form of NIs... In order to better understand the physico-chemical mechanisms at the origin of this interaction, we use silicon wafers functionalized by non-ionic oligomers (polyethylene glycol chains or PEG) to study in situ by X-ray reflectivity this interaction of NIs with the grafted chains. This study carried out at ESRF (European Synchrotron Radiation Facility) and has shown that the adsorption of the NIs, such as POMs, has a very fast kinetics. Moreover the distribution of the NIs in the grafted PEG chain layer was quantify. These results are very encouraging and confirm what has been observed on soft interfaces such as micelles or foams. The possibility to play on the density, length and chemical nature of the grafted chains makes this system an ideal tool to provide kinetic and thermodynamic information to decipher the complex mechanisms at the origin of this adsorption.

Keywords: adsorption, nano-ions, solid-liquid interface, superchaotropicity

Procedia PDF Downloads 67
12299 Ageing Deterioration of High-Density Polyethylene Cable Spacer under Salt Water Dip Wheel Test

Authors: P. Kaewchanthuek, R. Rawonghad, B. Marungsri

Abstract:

This paper presents the experimental results of high-density polyethylene cable spacers for 22 kV distribution systems under salt water dip wheel test based on IEC 62217. The strength of anti-tracking and anti-erosion of cable spacer surface was studied in this study. During the test, dry band arc and corona discharge were observed on cable spacer surface. After 30,000 cycles of salt water dip wheel test, obviously surface erosion and tracking were observed especially on the ground end. Chemical analysis results by fourier transforms infrared spectroscopy showed chemical changed from oxidation and carbonization reaction on tested cable spacer. Increasing of C=O and C=C bonds confirmed occurrence of these reactions.

Keywords: cable spacer, HDPE, ageing of cable spacer, salt water dip wheel test

Procedia PDF Downloads 379
12298 Research on Key Technologies on Initial Installation of Ultra-Deep-Water Dynamic Umbilical

Authors: Weiwei Xie, Yichao Li

Abstract:

The initial installation of the umbilical can affect the subsequent installation process and final installation. Meanwhile, the design of both ends of the ultra-deep water dynamic umbilical (UDWDU), as well as the design of the surface unit and the subsea production system connected by UDWDU,], varies in different oil and gas fields. To optimize the installation process of UDWDU, on the basis of the summary and analysis of the surface-end and the subsea-end design of UDWDU and the mainstream construction resources, the method of initial installation from the surface unit side or the subsea production system side of UDWDU is studied, and each initiation installation method is pointed out if some difficulties that may be encountered.

Keywords: dynamic umbilical, ultra-deep-water, initial installation, installation process

Procedia PDF Downloads 155
12297 Numerical Analysis of Heat Transfer Enhancement in Heat Exchangers by using Dimpled Tube

Authors: Bader Alhumaidi Alsubaei, Zahid H. Akash, Ali Imam Sunny

Abstract:

The heat transfer coefficient can be improved passively by using a dimpled surface on the tube. The contact area where heat transfer takes place can be enlarged and turbulence will be purposefully produced inside the duct; as a consequence, higher heat transfer quality will be achieved by employing an extended inner or outer surface (dimpled surface). In order to compare the rate and quality of heat transfer between a regular-shaped pipe and a dimpled pipe, a dimpled tube with a fixed dimple radius was created. Numerical analysis of the plain and dimpled pipes was performed using ANSYS. A 23% increase in Nusselt number was seen for dimpled tubes compared to plain tubes. In comparison to plain tubes, dimpled tubes' increase in thermal performance index was found to be between 8% and 10%. An increase in pressure drop of 18% was noted.

Keywords: heat transfer, dimpled tube, CFD, ANSYS

Procedia PDF Downloads 109
12296 Improvement of Wear Resistance of 356 Aluminum Alloy by High Energy Electron Beam Irradiation

Authors: M. Farnush

Abstract:

This study is concerned with the microstructural analysis and improvement of wear resistance of 356 aluminum alloy by a high energy electron beam. Shock hardening on material by high energy electron beam improved wear resistance. Particularly, in the surface of material by shock hardening, the wear resistance was greatly enhanced to 29% higher than that of the 356 aluminum alloy substrate. These findings suggested that surface shock hardening using high energy electron beam irradiation was economical and useful for the development of surface shock hardening with improved wear resistance.

Keywords: Al356 alloy, HEEB, wear resistance, frictional characteristics

Procedia PDF Downloads 318
12295 Investigation of Physical Properties of W-Doped CeO₂ and Mo-Doped CeO₂: A Density Functional Theory Study

Authors: Aicha Bouhlala, Sabah Chettibi

Abstract:

A systematic investigation on structural, electronic, and magnetic properties of Ce₀.₇₅A₀.₂₅O₂ (A = W, Mo) is performed using first-principles calculations within the framework Full-Potential Linear Augmented Plane Wave (FP-LAPW) method based on the Density Functional Theory (DFT). The exchange-correlation potential has been treated using the generalized gradient approximation (WC-GGA) developed by Wu-Cohen. The host compound CeO2 was doped with transition metal atoms W and Mo in the doping concentration of 25% to replace the Ce atom. In structural properties, the equilibrium lattice constant is observed for the W-doped CeO₂ compound which exists within the value of 5.314 A° and the value of 5.317 A° for Mo-doped CeO2. The present results show that Ce₀.₇₅A₀.₂₅O₂ (A=W, Mo) systems exhibit semiconducting behavior in both spin channels. Although undoped CeO₂ is a non-magnetic semiconductor. The band structure of these doped compounds was plotted and they exhibit direct band gap at the Fermi level (EF) in the majority and minority spin channels. In the magnetic properties, the doped atoms W and Mo play a vital role in increasing the magnetic moments of the supercell and the values of the total magnetic moment are found to be 1.998 μB for Ce₀.₇₅W₀.₂₅O₂ and to be 2.002 μB for Ce₀.₇₅Mo₀.₂₅O₂ compounds. Calculated results indicate that the magneto-electronic properties of the Ce₁₋ₓAₓO₂(A= W, Mo) oxides supply a new way to the experimentalist for the potential applications in spintronics devices.

Keywords: FP-LAPW, DFT, CeO₂, properties

Procedia PDF Downloads 216
12294 Investigation of Interaction between Interferons and Polyethylene Glycol Using Molecular Dynamics Simulation

Authors: M. Dehestani, F. Kamali, M. Klantari Pour, L. Zeidabadi-Nejad

Abstract:

Chemical bonding between polyethylene glycol (PEG) with pharmaceutical proteins called pegylation is one of the most effective methods of improving the pharmacological properties. The covalent attachment of polyethylene glycol (PEG) to proteins will increase their pharmacologic properties. For the formation of a combination of pegylated protein should first be activated PEG and connected to the protein. Interferons(IFNs) are a family of cytokines which show antiviral effects in front of the biological and are responsible for setting safety system. In this study, the nature and properties of the interaction between active positions of IFNs and polyethylene glycol have been investigated using molecular dynamics simulation. The main aspect of this theoretical work focuses on the achievement of valuable data on the reaction pathways of PEG-IFNs and the transition state energy. Our results provide a new perspective on the interactions, chemical properties and reaction pathways between IFNs and PEG.

Keywords: interaction, interferons, molecular dynamics simulation, polyethylene glycol

Procedia PDF Downloads 241
12293 Theoretical and Experimental Investigation of Fe and Ni-TCNQ on Graphene

Authors: A. Shahsavar, Z. Jakub

Abstract:

Due to the outstanding properties of the 2D metal-organic frameworks (MOF), intensive computational and experimental studies have been done. However, the lack of fundamental studies of MOFs on the graphene backbone is observed. This work studies Fe and Ni as metal and tetracyanoquinodimethane (TCNQ) with a high electron affinity as an organic linker functionalized on graphene. Here we present DFT calculations results to unveil the electronic and magnetic properties of iron and nickel-TCNQ physisorbed on graphene. Adsorption and Fermi energies, structural, and magnetic properties will be reported. Our experimental observations prove Fe- and NiTCNQ@Gr/Ir(111) are thermally highly stable up to 500 and 250°C, respectively, making them promising materials for single-atom catalysts or high-density storage media.

Keywords: DFT, graphene, MTCNQ, self-assembly

Procedia PDF Downloads 132
12292 Surface Defect-engineered Ceo₂−x by Ultrasound Treatment for Superior Photocatalytic H₂ Production and Water Treatment

Authors: Nabil Al-Zaqri

Abstract:

Semiconductor photocatalysts with surface defects display incredible light absorption bandwidth, and these defects function as highly active sites for oxidation processes by interacting with the surface band structure. Accordingly, engineering the photocatalyst with surface oxygen vacancies will enhance the semiconductor nanostructure's photocatalytic efficiency. Herein, a CeO2₋ₓ nanostructure is designed under the influence of low-frequency ultrasonic waves to create surface oxygen vacancies. This approach enhances the photocatalytic efficiency compared to many heterostructures while keeping the intrinsiccrystal structure intact. Ultrasonic waves induce the acoustic cavitation effect leading to the dissemination of active elements on the surface, which results in vacancy formation in conjunction with larger surface area and smaller particle size. The structural analysis of CeO₂₋ₓ revealed higher crystallinity, as well as morphological optimization, and the presence of oxygen vacancies is verified through Raman, X-rayphotoelectron spectroscopy, temperature-programmed reduction, photoluminescence, and electron spinresonance analyses. Oxygen vacancies accelerate the redox cycle between Ce₄+ and Ce₃+ by prolongingphotogenerated charge recombination. The ultrasound-treated pristine CeO₂ sample achieved excellenthydrogen production showing a quantum efficiency of 1.125% and efficient organic degradation. Ourpromising findings demonstrated that ultrasonic treatment causes the formation of surface oxygenvacancies and improves photocatalytic hydrogen evolution and pollution degradation. Conclusion: Defect engineering of the ceria nanoparticles with oxygen vacancies was achieved for the first time using low-frequency ultrasound treatment. The U-CeO₂₋ₓsample showed high crystallinity, and morphological changes were observed. Due to the acoustic cavitation effect, a larger surface area and small particle size were observed. The ultrasound treatment causes particle aggregation and surface defects leading to oxygen vacancy formation. The XPS, Raman spectroscopy, PL spectroscopy, and ESR results confirm the presence of oxygen vacancies. The ultrasound-treated sample was also examined for pollutant degradation, where 1O₂was found to be the major active species. Hence, the ultrasound treatment influences efficient photocatalysts for superior hydrogen evolution and an excellent photocatalytic degradation of contaminants. The prepared nanostructure showed excellent stability and recyclability. This work could pave the way for a unique post-synthesis strategy intended for efficient photocatalytic nanostructures.

Keywords: surface defect, CeO₂₋ₓ, photocatalytic, water treatment, H₂ production

Procedia PDF Downloads 141
12291 Polyvinyl Alcohol Processed Templated Polyaniline Films: Preparation, Characterization and Assessment of Tensile Strength

Authors: J. Subbalakshmi, G. Dhruvasamhith, S. M. Hussain

Abstract:

Polyaniline (PANI) is one of the most extensively studied material among the conducting polymers due to its simple synthesis by chemical and electrochemical routes. PANIs have advantages of chemical stability and high conductivity making their commercial applications quite attractive. However, to our knowledge, very little work has been reported on the tensile strength properties of templated PANIs processed with polyvinyl alcohol and also, detailed study has not been carried out. We have investigated the effect of small molecule and polymers as templates on PANI. Stable aqueous colloidal suspensions of trisodium citrate (TSC), poly(ethylenedioxythiophene)-polystyrene sulfonate (PEDOT-PSS), and polyethylene glycol (PEG) templated PANIs were prepared through chemical synthesis, processed with polyvinyl alcohol (PVA) and were fabricated into films by solution casting. Absorption and infra-red spectra were studied to gain insight into the possible molecular interactions. Surface morphology was studied through scanning electron microscope and optical microscope. Interestingly, tensile testing studies revealed least strain for pure PVA when compared to the blends of templated PANI. Furthermore, among the blends, TSC templated PANI possessed maximum elasticity. The ultimate tensile strength for PVA processed, PEG-templated PANI was found to be five times more than other blends considered in this study. We establish structure–property correlation with morphology, spectral characterization and tensile testing studies.

Keywords: surface morphology, processed films, polyvinyl alcohol, templated polyanilines, tensile testing

Procedia PDF Downloads 214
12290 Optimizing of Machining Parameters of Plastic Material Using Taguchi Method

Authors: Jumazulhisham Abdul Shukor, Mohd. Sazali Said, Roshanizah Harun, Shuib Husin, Ahmad Razlee Ab Kadir

Abstract:

This paper applies Taguchi Optimization Method in determining the best machining parameters for pocket milling process on Polypropylene (PP) using CNC milling machine where the surface roughness is considered and the Carbide inserts cutting tool are used. Three machining parameters; speed, feed rate and depth of cut are investigated along three levels; low, medium and high of each parameter (Taguchi Orthogonal Arrays). The setting of machining parameters were determined by using Taguchi Method and the Signal-to-Noise (S/N) ratio are assessed to define the optimal levels and to predict the effect of surface roughness with assigned parameters based on L9. The final experimental outcomes are presented to prove the optimization parameters recommended by manufacturer are accurate.

Keywords: inserts, milling process, signal-to-noise (S/N) ratio, surface roughness, Taguchi Optimization Method

Procedia PDF Downloads 637
12289 Synthesis and Characterization of Lactic Acid Grafted TiO2 Nanocomposites

Authors: Qasar Saleem

Abstract:

The aim of this project was to synthesize and analyze Polylactic acid-grafted TiO2 nanocomposite. When dispersed at the nanoscale TiO2 can behave as see through transparent UV filters and thermomechanical materials. The synthesis plan involved three stages. First, dispersion of TiO2 white powder in water/ethanol solvent system. Second grafting TiO2 surface by oligomers of lactic acid aimed at changing its surface features. Third polymerization of lactic acid monomer with grafted TiO2 in the presence of anhydrous stannous chloride as a catalyst. Polylactic acid grafted-TiO2 nanocomposite was synthesized by melt polycondensation in situ of lactic acid onto titanium oxide (TiO2) nanoparticles surface. The product was characterized by TGA, DSC, FTIR, and UV analysis and degradation observation. An idea regarding bonds between the grafting polymer and surface modified titanium oxide nanoparticles. Characteristics peaks of Ti–carbonyl bond, the related intensities of the Fourier transmission absorption peaks of graft composite, the melt and decomposition behavior stages of Polylactic acid-grafted TiO2 nanocomposite convinced that oligomers of polylactic acid were chemically bonded on the surface of TiO2 nanoparticles. Through grafting polylactic acid, the Polylactic acid grafted -TiO2 sample shown good absorption in UV region and degradation behavior under normal atmospheric conditions. Regaining transparency of degraded white opaque Polylactic acid-grafted TiO2 nanocomposite on heating was another character. Polylactic acid-grafted TiO2 nanocomposite will be a potential candidate in future for biomedical, UV shielding and environment friendly material.

Keywords: condensation, nanocomposites, oligomers, polylactic

Procedia PDF Downloads 209
12288 Tribological Behavior of Hybrid Nanolubricants for Internal Combustion Engines

Authors: José M. Liñeira Del Río, Ramón Rial, Khodor Nasser, María J.G. Guimarey

Abstract:

The need to develop new lubricants that offer better anti-friction and anti-wear performance in internal combustion vehicles is one of the great challenges of lubrication in the automotive field. The addition of nanoparticles has emerged as a possible solution and, combined with the lubricating power of ionic liquids, may become one of the alternatives to reduce friction losses and wear of the contact surfaces in the conditions to which tribo-pairs are subjected, especially in the contact of the piston rings and the cylinder liner surface. In this study, the improvement in SAE 10W-40 engine oil tribological performance after the addition of magnesium oxide (MgO) nanoadditives and two different phosphonium-based ionic liquids (ILs) was investigated. The nanoparticle characterization was performed by means of transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray diffraction (XRD), and scanning electron microscopy (SEM). The tribological properties, friction coefficients and wear parameters of the formulated oil modified with 0.01 wt.% MgO and 1 wt.% ILs compared with the neat 10W-40 oil were performed and analyzed using a ball-on-three-pins tribometer and a 3D optical profilometer, respectively. Further analysis on the worn surface was carried out by Raman spectroscopy and SEM microscopy, illustrating the formation of the protective IL and MgO tribo-films as hybrid additives. In friction tests with sliding steel-steel tribo-pairs, IL3-based hybrid nanolubricant decreased the friction coefficient and wear volume by 7% and 59%, respectively, in comparison with the neat SAE 10W-40, while the one based on IL1 only achieved a reduction of these parameters by 6% and 39%, respectively. Thus, the tribological characterization also revealed that the MgO and IL3 addition has a positive synergy over the commercial lubricant, adequately meeting the requirements for their use in internal combustion engines. In summary, this study has shown that the addition of ionic liquids to MgO nanoparticles can improve the stability and lubrication behavior of MgO nanolubricant and encourages more investigations on using nanoparticle additives with green solvents such as ionic liquids to protect the environment as well as prolong the lifetime of machinery. The improvement in the lubricant properties was attributed to the following wear mechanisms: the formation of a protective tribo-film and the ability of nanoparticles to fill out valleys between asperities, thereby effectively smoothing out the shearing surfaces.

Keywords: lubricant, nanoparticles, phosphonium-based ionic liquids, tribology

Procedia PDF Downloads 82
12287 Dielectric Thickness Modulation Based Optically Transparent Leaky Wave Antenna Design

Authors: Waqar Ali Khan

Abstract:

A leaky-wave antenna design is proposed which is based on the realization of a certain kind of surface impedance profile that allows the existence of a perturbed surface wave (fast wave) that radiates. The antenna is realized by using optically transparent material Plexiglas. Plexiglas behaves as a dielectric at radio frequencies and is transparent at optical frequencies. In order to have a ground plane for the microwave frequencies, metal strips are used parallel to the E field of the operating mode. The microwave wavelength chosen is large enough such that it does not resolve the metal strip ground plane and sees it to be a uniform ground plane. While, at optical frequencies, the metal strips do have some shadowing effect. However still, about 62% of optical power can be transmitted through the antenna.

Keywords: Plexiglass, surface-wave, optically transparent, metal strip

Procedia PDF Downloads 144