Search results for: shrinking dimensions
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2048

Search results for: shrinking dimensions

548 Y-Y’ Calculus in Physical Sciences and Engineering with Particular Reference to Fundamentals of Soil Consolidation

Authors: Sudhir Kumar Tewatia, Kanishck Tewatia, Anttriksh Tewatia

Abstract:

Advancements in soil consolidation are discussed, and further improvements are proposed with particular reference to Tewatia’s Y-Y’ Approach, which is called the Settlement versus Rate of Settlement Approach in consolidation. A branch of calculus named Y-Y' (or y versus dy/dx) is suggested (as compared to the common X-Y', x versus dy/dx, dy/dx versus x or Newton-Leibniz branch) that solves some complicated/unsolved theoretical and practical problems in physical sciences (Physics, Chemistry, Mathematics, Biology, and allied sciences) and engineering in an amazingly simple and short manner, particularly when independent variable X is unknown and X-Y' Approach can’t be used. Complicated theoretical and practical problems in 1D, 2D, 3D Primary and Secondary consolidations with non-uniform gradual loading and irregularly shaped clays are solved with elementary school level Y-Y' Approach, and it is interesting to note that in X-Y' Approach, equations become more difficult while we move from one to three dimensions, but in Y-Y' Approach even 2D/3D equations are very simple to derive, solve, and use; rather easier sometimes. This branch of calculus will have a far-reaching impact on understanding and solving the problems in different fields of physical sciences and engineering that were hitherto unsolved or difficult to be solved by normal calculus/numerical/computer methods. Some particular cases from soil consolidation that basically creeps and diffusion equations in isolation and in combination with each other are taken for comparison with heat transfer. The Y-Y’ Approach can similarly be applied in wave equations and other fields wherever normal calculus works or fails. Soil mechanics uses mathematical analogies from other fields of physical sciences and engineering to solve theoretical and practical problems; for example, consolidation theory is a replica of the heat equation from thermodynamics with the addition of the effective stress principle. An attempt is made to give them mathematical analogies.

Keywords: calculus, clay, consolidation, creep, diffusion, heat, settlement

Procedia PDF Downloads 82
547 In-Cylinder Exhaust Heat Recovery of an I. C. Engine Using Water Injection

Authors: Jayakrishnan U.

Abstract:

A concept of adding two strokes to a four stroke Otto or Diesel engine cycle presented here for the waste heat recovery in a four stroke internal combustion engine. Four stroke Diesel cycle and Otto cycle engines have very low thermal efficiency due to high amount of energy loss in exhaust and also on the cooling of the engine. It is estimated about 35 percent of fuel energy is lost in exhaust of engine and 30 percent in cooling of engine. So by modifying a four-stroke Otto or Diesel engine by adding two-stroke heat recovery steam cycle is presented here. Water injection is used to get an additional power stroke by partial compression of the exhaust gases at the end of third stroke in a four stroke I.C.Engine. It is the conversion of a four-stroke cycle to a six-stroke cycle. By taking a four stroke petrol engine of known dimensions, an ideal thermodynamic model is used to analyse and calculate the events of exhaust gas compression and following two strokes of water injection. By changing the exhaust valve closing timing during exhaust stroke and analysing it on various points, an optimum amount of exhaust gas re-compression and amount of water injection can be found for maximizing efficiency and fuel economy. It is achieved by changing the exhaust valve timing and finding an optimum amount of exhaust re-compression, maximizing the net mean effective pressure of the steam expansion stroke (MEPsteam). Specific fuel consumption of the engine also decreases increasing the fuel economy. The valve closing timings for maximum MEPsteam is limited by either 1 bar or dew point temperature of expansion gas or moisture mixture to avoid moisture formation. By modifying the four-stroke Otto or Diesel cycle by adding two water injection stroke has the potential to significantly increase the engine efficiency and fuel economy.

Keywords: internal combustion engine, engine efficiency, six-stroke cycle, water injection, specific fuel consumption

Procedia PDF Downloads 292
546 Topology Enhancement of a Straight Fin Using a Porous Media Computational Fluid Dynamics Simulation Approach

Authors: S. Wakim, M. Nemer, B. Zeghondy, B. Ghannam, C. Bouallou

Abstract:

Designing the optimal heat exchanger is still an essential objective to be achieved. Parametrical optimization involves the evaluation of the heat exchanger dimensions to find those that best satisfy certain objectives. This method contributes to an enhanced design rather than an optimized one. On the contrary, topology optimization finds the optimal structure that satisfies the design objectives. The huge development in metal additive manufacturing allowed topology optimization to find its way into engineering applications especially in the aerospace field to optimize metal structures. Using topology optimization in 3d heat and mass transfer problems requires huge computational time, therefore coupling it with CFD simulations can reduce this it. However, existed CFD models cannot be coupled with topology optimization. The CFD model must allow creating a uniform mesh despite the initial geometry complexity and also to swap the cells from fluid to solid and vice versa. In this paper, a porous media approach compatible with topology optimization criteria is developed. It consists of modeling the fluid region of the heat exchanger as porous media having high porosity and similarly the solid region is modeled as porous media having low porosity. The switching from fluid to solid cells required by topology optimization is simply done by changing each cell porosity using a user defined function. This model is tested on a plate and fin heat exchanger and validated by comparing its results to experimental data and simulations results. Furthermore, this model is used to perform a material reallocation based on local criteria to optimize a plate and fin heat exchanger under a constant heat duty constraint. The optimized fin uses 20% fewer materials than the first while the pressure drop is reduced by about 13%.

Keywords: computational methods, finite element method, heat exchanger, porous media, topology optimization

Procedia PDF Downloads 144
545 The Relation of Motivation and Reward with Volunteer Satisfaction: Empirical Evidence from Omani Non-Profit Organization

Authors: Ali Al Shamli, Talal AlMamari

Abstract:

Background: The relationship between motivation and satisfaction is posited to be mediated by reward. In this study, the motivation construct was measured by a motivation scale. The scale when factor analysed generated five factors. These factors were referred as; 1) leisure motivation, 2) egoistic motivation, 3) external motivation, 4) purposive, and 5) material motivation. The reward construct was measured by using a five-item scale whereas the satisfaction construct was measured by using a 13-item scale. The scale when factor analysed produced three factors which are referred as; 1) satisfaction A, 2) satisfaction B, and 3) satisfaction C. Objective: The main purpose of the present paper was to find out the relation of motivation and reward with volunteer satisfaction at national sports organizations (NPSOs) in Oman. Methods: This current study adopts a cross-sectional design as the data collection is done only once whereas the mode of administration was postal questionnaire where each questionnaire was posted, completed, and returned using the self-addressed envelope after its completion. The population of the study consisted of (160) boards and directors members of NPSOs (Non-Profit Sports Organization Services) in Oman from all 43 sports club. Results: The findings provided new empirical evidence that supported the argument of the relationship between motivation and satisfaction is indeed, mediated by reward. However, this study differs in that the relationship was tested based on the first-order constructs which were derived from the underlying dimensions of both motivation and satisfaction constructs. It was established that the relationships between motivation B and motivation C with satisfaction A are mediated by reward. Conclusion: In light of study findings, there is a direct relationship between developmental motivation and experiential satisfaction, a direct relationship between social motivation and relational satisfaction, as well as personal motivation and relational satisfaction, is mediated by reward. Therefore, Omani volunteers are less reliant on the reward as evidenced by the direct relationship between motivation A and satisfaction and between motivation C and satisfaction A. More tests in different settings will provide more understanding on volunteer motivation.

Keywords: non-profit sports organization, sport and reward, volunteers in sport, satisfaction in sport

Procedia PDF Downloads 454
544 Acculturation of Iranian Students in Europe

Authors: Shirin Sadat Ahmadi

Abstract:

The number of people, particularly university students, migrating from Iran and applying for American and European universities has been rising during recent years. Different people may have various reasons and goals for migration, but one of the common issues among all these people is the cultural challenges they experience when living in the adopted society. Immigrants usually confront obstacles during the Intercultural transition and adaption process. Different variables such as age, religion, gender, education, knowing the spoken language in destination country, financial condition, interactions with natives, and using social media can affect the cultural challenges people face after migration and how they conquer issues appearing due to intercultural differences and conflicts. In this research we have interviewed a sample consisted of 15 Iranian students living and studying abroad found by using snowball sampling technique via video call to realize what cultural challenges they have experienced in the new society, how the mentioned variables above eased these challenges or made them harder and what approaches and solutions they adopted to adjust themselves to the new society and its cultural dimensions. Based on John Berry's acculturation theory of migrant-host relationship, we have classified these 15 people in five different categories: Assimilation, Separation, Marginalization, and Integration. In addition we have considered Y.Y. Kim's communication-based theory of cross-cultural adaption to explain how communications helped migrant populations in adaption process. Based on the findings of this study, 12 of 15 interviewed members of the study used the integration strategy to adapt to the new cultural environment, 3 of them used the assimilation strategy, and none of them used marginalization or separation strategies. Communicating with natives, knowing the language, and education were the factors that helped all the interviewed members of the sample to overcome the difficulties of intercultural transition.

Keywords: acculturation, culture, intercultural transition, migration

Procedia PDF Downloads 53
543 Finite Element Modeling of Aortic Intramural Haematoma Shows Size Matters

Authors: Aihong Zhao, Priya Sastry, Mark L Field, Mohamad Bashir, Arvind Singh, David Richens

Abstract:

Objectives: Intramural haematoma (IMH) is one of the pathologies, along with acute aortic dissection, that present as Acute Aortic Syndrome (AAS). Evidence suggests that unlike aortic dissection, some intramural haematomas may regress with medical management. However, intramural haematomas have been traditionally managed like acute aortic dissections. Given that some of these pathologies may regress with conservative management, it would be useful to be able to identify which of these may not need high risk emergency intervention. A computational aortic model was used in this study to try and identify intramural haematomas with risk of progression to aortic dissection. Methods: We created a computational model of the aorta with luminal blood flow. Reports in the literature have identified 11 mm as the radial clot thickness that is associated with heightened risk of progression of intramural haematoma. Accordingly, haematomas of varying sizes were implanted in the modeled aortic wall to test this hypothesis. The model was exposed to physiological blood flows and the stresses and strains in each layer of the aortic wall were recorded. Results: Size and shape of clot were seen to affect the magnitude of aortic stresses. The greatest stresses and strains were recorded in the intima of the model. When the haematoma exceeded 10 mm in all dimensions, the stress on the intima reached breaking point. Conclusion: Intramural clot size appears to be a contributory factor affecting aortic wall stress. Our computer simulation corroborates clinical evidence in the literature proposing that IMH diameter greater than 11 mm may be predictive of progression. This preliminary report suggests finite element modelling of the aortic wall may be a useful process by which to examine putative variables important in predicting progression or regression of intramural haematoma.

Keywords: intramural haematoma, acute aortic syndrome, finite element analysis,

Procedia PDF Downloads 420
542 Promises versus Realities: A Critical Assessment of the Integrated Design Process

Authors: Firdous Nizar, Carmela Cucuzzella

Abstract:

This paper explores how the integrated design process (IDP) was adopted for an architectural project. The IDP is a relatively new approach to collaborative design in architectural design projects in Canada. It has gained much traction recently as the closest possible approach to the successful management of low energy building projects and has been advocated as a productive method for multi-disciplinary collaboration within complex projects. This study is based on the premise that there are explicit and implicit dimensions of power within the integrated design process (IDP) in the green building industry that may or may not lead to irreconcilable differences in a process that demands consensus. To gain insight on the potential gap between the theoretical promises and practical realities of the IDP, a review of existing IDP literature is compared with a case study analysis of a competition-based architectural project in Canada, a first to incorporate the IDP in its overall design format. This paper aims to address the undertheorized power relations of the IDP in a real project. It presents a critical assessment through the lens of the combined theories of deliberative democracy by Jürgen Habermas, with that of agonistic pluralism by political theorist Chantal Mouffe. These two theories are intended to more appropriately embrace the conflictual situations in collaborative environments, and shed light on the relationships of power, between engineers, city officials, architects, and designers in this conventional consensus-based model. In addition, propositions for a shift in approach that embraces conflictual differences among its participants are put forth based on concepts of critical spatial practice by Markus Meissen. As IDP is a relatively new design process, it requires much deliberation on its structure from the theoretical framework built in this paper in order to unlock its true potential.

Keywords: agonistic pluralism, critical spatial practice, deliberative democracy, integrated design process

Procedia PDF Downloads 166
541 Impact of Individual Resilience on Organizational Resilience: An Exploratory Study

Authors: Mitansha, Suzanne Wilkinson, Regan Potangaroa

Abstract:

The built environment is designed, maintained, operated, and decommissioned by construction organisations, which play a significant role in providing physical resources and rebuilding infrastructures during major crises and disasters. It is evident that enhancing the resilience of construction organisations allows better responding ability and speedy recovery from disasters and acts as a boon for the nation in the face of significant disruptions. As individuals are the integral component of any organisation, hence, individual resilience is considered a critical aspect, which may boost organisational resilience of construction sector. It has been observed that individual resilience is indirectly supported by organisation’s citizenship behaviour, job performance, and career success. Not only this, it also tends to hold a directly proportional relation with job satisfaction, physical and emotional well-being affected by organisation’s work culture, whereas the resilience of organisation increases as a result of positive adaption, growth and collective learning of the employees as an entity. Moreover, indicators like Situation awareness in staff and crisis related issues, effective vulnerability management, organisational leadership and culture ensured by approachable, encouraging and people-oriented leaders, are prominent for achieving organisational resilience. It, thus, becomes perceptible that both, organisational and individual resiliencies have the potential to influence each other. Consequently, it arises a major question that how these characteristics are associated and tend to behave with respect to each other The study, thus, aims to explore the overlapping dimensions of organisational and individual resilience to determine the impact boundaries. The research methodology of the paper would be based on systematic literature review specifically focused on the resilience of construction industry. This would provide a direct comparison of characteristics influencing individual and organisational resilience and will present the most significant indicators of individual resilience, that can eventually help to enhance the resilience of construction organisations amidst any disaster or crisis.

Keywords: construction industry, individual resilience, organizational resilience, overlapping dimension

Procedia PDF Downloads 91
540 Relative Importance of Contact Constructs to Acute Respiratory Illness in General Population in Hong Kong

Authors: Kin On Kwok, Vivian Wei, Benjamin Cowling, Steven Riley, Jonathan Read

Abstract:

Background: The role of social contact behavior measured in different contact constructs in the transmission of respiratory pathogens with acute respiratory illness (ARI) remains unclear. We, therefore, aim to depict the individual pattern of ARI in the community and investigate the association between different contact dimensions and ARI in Hong Kong. Methods: Between June 2013 and September 2013, 620 subjects participated in the last two waves of recruitment of the population based longitudinal phone social contact survey. Some of the subjects in this study are from the same household. They are also provided with the symptom diaries to self-report any acute respiratory illness related symptoms between the two days of phone recruitment. Data from 491 individuals who were not infected on the day of phone recruitment and returned the symptom diaries after the last phone recruitment were used for analysis. Results: After adjusting different follow-up periods among individuals, the overall incidence rate of ARI was 1.77 per 100 person-weeks. Over 75% ARI episodes involve running nose, cough, sore throat, which are followed by headache (55%), malagia (35%) and fever (18%). Using a generalized estimating equation framework accounting for the cluster effect of subjects living in the same household, we showed that both daily number of locations visited with contacts and the number of contacts, explained the ARI incidence rate better than only one single contact construct. Conclusion: Our result suggests that it is the intertwining property of contact quantity (number of contacts) and contact intensity (ratio of subject-to-contact) that governs the infection risk by a collective set of respiratory pathogens. Our results provide empirical evidence that multiple contact constructs should be incorporated in the mathematical transmission models to feature a more realistic dynamics of respiratory disease.

Keywords: acute respiratory illness, longitudinal study, social contact, symptom diaries

Procedia PDF Downloads 247
539 Surface and Bulk Magnetization Behavior of Isolated Ferromagnetic NiFe Nanowires

Authors: Musaab Salman Sultan

Abstract:

The surface and bulk magnetization behavior of template released isolated ferromagnetic Ni60Fe40 nanowires of relatively thick diameters (~200 nm), deposited from a dilute suspension onto pre-patterned insulating chips have been investigated experimentally, using a highly sensitive Magneto-Optical Ker Effect (MOKE) magnetometry and Magneto-Resistance (MR) measurements, respectively. The MR data were consistent with the theoretical predictions of the anisotropic magneto-resistance (AMR) effect. The MR measurements, in all the angles of investigations, showed large features and a series of nonmonotonic "continuous small features" in the resistance profiles. The extracted switching fields from these features and from MOKE loops were compared with each other and with the switching fields reported in the literature that adopted the same analytical techniques on the similar compositions and dimensions of nanowires. A large difference between MOKE and MR measurments was noticed. The disparate between MOKE and MR results is attributed to the variance in the micro-magnetic structure of the surface and the bulk of such ferromagnetic nanowires. This result was ascertained using micro-magnetic simulations on an individual: cylindrical and rectangular cross sections NiFe nanowires, with the same diameter/thickness of the experimental wires, using the Object Oriented Micro-magnetic Framework (OOMMF) package where the simulated loops showed different switching events, indicating that such wires have different magnetic states in the reversal process and the micro-magnetic spin structures during switching behavior was complicated. These results further supported the difference between surface and bulk magnetization behavior in these nanowires. This work suggests that a combination of MOKE and MR measurements is required to fully understand the magnetization behavior of such relatively thick isolated cylindrical ferromagnetic nanowires.

Keywords: MOKE magnetometry, MR measurements, OOMMF package, micromagnetic simulations, ferromagnetic nanowires, surface magnetic properties

Procedia PDF Downloads 241
538 The Formation of Thin Copper Films on Graphite Surface Using Magnetron Sputtering Method

Authors: Zydrunas Kavaliauskas, Aleksandras Iljinas, Liutauras Marcinauskas, Mindaugas Milieska, Vitas Valincius

Abstract:

The magnetron sputtering deposition method is often used to obtain thin film coatings. The main advantage of magnetron vaporization compared to other deposition methods is the high rate erosion of the cathode material (e.g., copper, aluminum, etc.) and the ability to operate under low-pressure conditions. The structure of the formed coatings depends on the working parameters of the magnetron deposition system, which is why it is possible to influence the properties of the growing film, such as morphology, crystal orientation, and dimensions, stresses, adhesion, etc. The properties of these coatings depend on the distance between the substrate and the magnetron surface, the vacuum depth, the gas used, etc. Using this deposition technology, substrates are most often placed near the anode. The magnetic trap of the magnetrons for localization of electrons in the cathode region is formed using a permanent magnet system that is on the side of the cathode. The scientific literature suggests that, after insertion of a small amount of copper into graphite, the electronic conductivity of graphite increase. The aim of this work is to create thin (up to 300 nm) layers on a graphite surface using a magnetron evaporation method, to investigate the formation peculiarities and microstructure of thin films, as well as the mechanism of copper diffusion into graphite inner layers at different thermal treatment temperatures. The electron scanning microscope was used to investigate the microrelief of the coating surface. The chemical composition is determined using the EDS method, which shows that, with an increase of the thermal treatment of the copper-carbon layer from 200 °C to 400 °C, the copper content is reduced from 8 to 4 % in atomic mass units. This is because the EDS method captures only the amount of copper on the graphite surface, while the temperature of the heat treatment increases part of the copper because of the diffusion processes penetrates into the inner layers of the graphite. The XRD method shows that the crystalline copper structure is not affected by thermal treatment.

Keywords: carbon, coatings, copper, magnetron sputtering

Procedia PDF Downloads 273
537 Influence of Thermal Damage on the Mechanical Strength of Trimmed CFRP

Authors: Guillaume Mullier, Jean François Chatelain

Abstract:

Carbon Fiber Reinforced Plastics (CFRPs) are widely used for advanced applications, in particular in aerospace, automotive and wind energy industries. Once cured to near net shape, CFRP parts need several finishing operations such as trimming, milling or drilling in order to accommodate fastening hardware and meeting the final dimensions. The present research aims to study the effect of the cutting temperature in trimming on the mechanical strength of high performance CFRP laminates used for aeronautics applications. The cutting temperature is of great importance when dealing with trimming of CFRP. Temperatures higher than the glass-transition temperature (Tg) of the resin matrix are highly undesirable: they cause degradation of the matrix in the trimmed edges area, which can severely affect the mechanical performance of the entire component. In this study, a 9.50 mm diameter CVD diamond coated carbide tool with six flutes was used to trim 24-plies CFRP laminates. A 300 m/min cutting speed and 1140 mm/min feed rate were used in the experiments. The tool was heated prior to trimming using a blowtorch, for temperatures ranging from 20°C to 300°C. The temperature at the cutting edge was measured using embedded K-Type thermocouples. Samples trimmed for different cutting temperatures, below and above Tg, were mechanically tested using three-points bending short-beam loading configurations. New cutting tools as well as worn cutting tools were utilized for the experiments. The experiments with the new tools could not prove any correlation between the length of cut, the cutting temperature and the mechanical performance. Thus mechanical strength was constant, regardless of the cutting temperature. However, for worn tools, producing a cutting temperature rising up to 450°C, thermal damage of the resin was observed. The mechanical tests showed a reduced mean resistance in short beam configuration, while the resistance in three point bending decreases with increase of the cutting temperature.

Keywords: composites, trimming, thermal damage, surface quality

Procedia PDF Downloads 315
536 An Experimental Investigation of the Surface Pressure on Flat Plates in Turbulent Boundary Layers

Authors: Azadeh Jafari, Farzin Ghanadi, Matthew J. Emes, Maziar Arjomandi, Benjamin S. Cazzolato

Abstract:

The turbulence within the atmospheric boundary layer induces highly unsteady aerodynamic loads on structures. These loads, if not accounted for in the design process, will lead to structural failure and are therefore important for the design of the structures. For an accurate prediction of wind loads, understanding the correlation between atmospheric turbulence and the aerodynamic loads is necessary. The aim of this study is to investigate the effect of turbulence within the atmospheric boundary layer on the surface pressure on a flat plate over a wide range of turbulence intensities and integral length scales. The flat plate is chosen as a fundamental geometry which represents structures such as solar panels and billboards. Experiments were conducted at the University of Adelaide large-scale wind tunnel. Two wind tunnel boundary layers with different intensities and length scales of turbulence were generated using two sets of spires with different dimensions and a fetch of roughness elements. Average longitudinal turbulence intensities of 13% and 26% were achieved in each boundary layer, and the longitudinal integral length scale within the three boundary layers was between 0.4 m and 1.22 m. The pressure distributions on a square flat plate at different elevation angles between 30° and 90° were measured within the two boundary layers with different turbulence intensities and integral length scales. It was found that the peak pressure coefficient on the flat plate increased with increasing turbulence intensity and integral length scale. For example, the peak pressure coefficient on a flat plate elevated at 90° increased from 1.2 to 3 with increasing turbulence intensity from 13% to 26%. Furthermore, both the mean and the peak pressure distribution on the flat plates varied with turbulence intensity and length scale. The results of this study can be used to provide a more accurate estimation of the unsteady wind loads on structures such as buildings and solar panels.

Keywords: atmospheric boundary layer, flat plate, pressure coefficient, turbulence

Procedia PDF Downloads 128
535 Comparison between the Performances of Different Boring Bars in the Internal Turning of Long Overhangs

Authors: Wallyson Thomas, Zsombor Fulop, Attila Szilagyi

Abstract:

Impact dampers are mainly used in the metal-mechanical industry in operations that generate too much vibration in the machining system. Internal turning processes become unstable during the machining of deep holes, in which the tool holder is used with long overhangs (high length-to-diameter ratios). The devices coupled with active dampers, are expensive and require the use of advanced electronics. On the other hand, passive impact dampers (PID – Particle Impact Dampers) are cheaper alternatives that are easier to adapt to the machine’s fixation system, once that, in this last case, a cavity filled with particles is simply added to the structure of the tool holder. The cavity dimensions and the diameter of the spheres are pre-determined. Thus, when passive dampers are employed during the machining process, the vibration is transferred from the tip of the tool to the structure of the boring bar, where it is absorbed by the fixation system. This work proposes to compare the behaviors of a conventional solid boring bar and a boring bar with a passive impact damper in turning while using the highest possible L/D (length-to-diameter ratio) of the tool and an Easy Fix fixation system (also called: Split Bushing Holding System). It is also intended to optimize the impact absorption parameters, as the filling percentage of the cavity and the diameter of the spheres. The test specimens were made of hardened material and machined in a Computer Numerical Control (CNC) lathe. The laboratory tests showed that when the cavity of the boring bar is totally filled with minimally spaced spheres of the largest diameter, the gain in absorption allowed of obtaining, with an L/D equal to 6, the same surface roughness obtained when using the solid boring bar with an L/D equal to 3.4. The use of the passive particle impact damper resulted in, therefore, increased static stiffness and reduced deflexion of the tool.

Keywords: active damper, fixation system, hardened material, passive damper

Procedia PDF Downloads 203
534 A Penny for Your Thoughts: Mind Wandering Tendencies of Individuals with Autistic Traits

Authors: Leilani Forby, Farid Pazhoohi, Alan Kingstone

Abstract:

There is abundant research on the nature and content of mind wandering (MW) in neurotypical (NT) adults, however, there is little to no research in these areas on autistic individuals. The objective of the current study was to uncover any differences between low and high autistic trait individuals in their MW. In particular, we examined their attitudes toward, and the themes and temporal dimensions (past, present, future) of, their MW episodes. For our online study, we recruited 518 students (394 women and 124 men), between the ages of 18 and 51 years (M = 20.93, SD = 3.40) from the undergraduate Human Subject Pool at the University of British Columbia. Participants completed the Short Imaginal Processes Inventory (SIPI), which includes the three subscales Positive-Constructive Daydreaming (SIPI-PC), Guilt and Fear of Failure Daydreaming (SIPI-GFF), and Poor Attentional Control (SIPI-PAC). Participants also completed the Past (IPI-past) and Present (IPI-present) subscales of the Imaginal Processes Inventory (IPI), the Deliberate (MW-D) and Spontaneous (MW-S) Mind Wandering scales, the Short Form Perceived Stress Scale (PSS-4), and the 10-item Autism Quotient (AQ-10). Results showed that overall, participant AQ-10 scores were significantly correlated with MW-S, SIPI-GFF, and PSS-4 scores, such that as the number of autistic traits endorsed by participants increased, so did their reports of spontaneous mind wandering, guilt and fear of failure themed day dreaming, and stress levels. This same pattern held for female participants, however, AQ-10 scores were positively correlated with only PSS-4 scores for males. These results suggest that compared to males with autistic traits, MW in females with autistic traits is more similar to individuals with low autistic traits in terms of content and intentionality. Results are discussed in terms of clinical implications, their limitations, and suggested directions for future research.

Keywords: autism, deliberate, mind wandering, spontaneous, perceived stress

Procedia PDF Downloads 134
533 The State of Employee Motivation During Covid-19 Outbreak in Sri Lankan Construction Sector

Authors: Tharaki Hetti Arachchi

Abstract:

Sri Lanka has undergone numerous changes in the fields of social-economic and cultural processors during the past decades. Consequently, the Sri Lankan construction industry was subjected to rapid growth while contributing a considerable amount to the national economy. The prevailing situation under the Covid-19 pandemic exhibited challenges to almost all of the sectors of the country in attaining success. Although productivity is one of the dimensions that measure the degree of project success, achieving sufficient productivity has become challengeable due to the Covid-19 outbreak. As employee motivation is an influential factor in defining productivity, the present study becomes significant in discovering ways of enhancing construction productivity via employee motivation. The study has adopted a combination of qualitative and quantitative methodologies in attaining the study objectives. While the research population refers to construction professionals in Sri Lanka, the study sample is aimed at Quantity Surveyors in the bottom and middle managements of organizational hierarchies. The data collection was implemented via primary and secondary sources. The primary data collection was accomplished by undertaking semi-structured interviews and online questionnaire surveys while sampling the overall respondents based on the purposive sample method. The responses of the questionnaire survey were gathered in a form of a ‘Likert Scale’ to examine the degree of applicability on each respondent. Overall, 76.36% of primary data were recovered from the expected count while obtaining 60 responses from the questionnaire survey and 24 responses from interviews. Secondary data were obtained by reviewing sources such as research articles, journals, newspapers, books, etc. The findings suggest adopting and enhancing sixteen motivational factors in achieving greater productivity in the Sri Lankan construction sector.

Keywords: Covid 19 pandemic, motivation, quantity surveying, Sri Lanka

Procedia PDF Downloads 82
532 A Framework for Assessing and Implementing Ecological-Based Adaptation Solutions in Urban Areas of Shanghai

Authors: Xin Li

Abstract:

The uncertainty and the complexity of the urban environment combining with the threat of climate change are contributing factors to the vulnerability in multiple-dimensions in Chinese megacities, especially in Shanghai. The urban area occupied high valuable technological infrastructure and density buildings is under the threats of climate change and can provide insufficient ecological service to remain the trade-off on urban sustainable development. Urban ecological-based adaptation (UEbA) combines practices and theoretical work and integrates ecological services into multiple-layers of urban environment planning in order to reduce the impact of the complexity and uncertainty. To understand and to respond to the challenges in the urban level, this paper considers Shanghai as the research objective. It is necessary that its urban adaptation strategies should be reflected and contain the concept and knowledge of EbA. In this paper, we firstly use software to illustrates the visualizing patterns and trends of UEBA research in the current 10 years. Specifically, Citespace software was used for interpreting the significant hubs, landmarks points of peer-reviewed literature on the context of ecological service research in recent 10 years. Secondly, 135 evidence-based EbA literature were reviewed for categorizing the methodologies and framework of evidence-based EbA by the systematic map protocol. Finally, a conceptual framework combined with culture, economic and social components was developed in order to assess the current adaptation strategies in Shanghai. This research founds that the key to reducing urban vulnerability does not only focus on co-benefit arguments but also should pay more attention to the concept of trade-off. This research concludes that the designed framework can provide key knowledge and indicates the essential gap as a valuable tool against climate variability in the process of urban adaptation in Shanghai.

Keywords: urban ecological-based adaptation, climate change, sustainable development, climate variability

Procedia PDF Downloads 146
531 Towards an Enhanced Quality of IPTV Media Server Architecture over Software Defined Networking

Authors: Esmeralda Hysenbelliu

Abstract:

The aim of this paper is to present the QoE (Quality of Experience) IPTV SDN-based media streaming server enhanced architecture for configuring, controlling, management and provisioning the improved delivery of IPTV service application with low cost, low bandwidth, and high security. Furthermore, it is given a virtual QoE IPTV SDN-based topology to provide an improved IPTV service based on QoE Control and Management of multimedia services functionalities. Inside OpenFlow SDN Controller there are enabled in high flexibility and efficiency Service Load-Balancing Systems; based on the Loading-Balance module and based on GeoIP Service. This two Load-balancing system improve IPTV end-users Quality of Experience (QoE) with optimal management of resources greatly. Through the key functionalities of OpenFlow SDN controller, this approach produced several important features, opportunities for overcoming the critical QoE metrics for IPTV Service like achieving incredible Fast Zapping time (Channel Switching time) < 0.1 seconds. This approach enabled Easy and Powerful Transcoding system via FFMPEG encoder. It has the ability to customize streaming dimensions bitrates, latency management and maximum transfer rates ensuring delivering of IPTV streaming services (Audio and Video) in high flexibility, low bandwidth and required performance. This QoE IPTV SDN-based media streaming architecture unlike other architectures provides the possibility of Channel Exchanging between several IPTV service providers all over the word. This new functionality brings many benefits as increasing the number of TV channels received by end –users with low cost, decreasing stream failure time (Channel Failure time < 0.1 seconds) and improving the quality of streaming services.

Keywords: improved quality of experience (QoE), OpenFlow SDN controller, IPTV service application, softwarization

Procedia PDF Downloads 136
530 Geometry of the Right Ventricular Outflow Tract - Clinical Significance in Electrocardiological Procedures

Authors: Marcin Jakiel, Maria Kurek, Karolina Gutkowska, Sylwia Sanakiewicz, Dominika Stolarczyk, Jakub Batko, Rafał Jakiel, Mateusz K. Hołda

Abstract:

The geometry of RVOT is extremely complicated. It is an irregular block with an ellipsoidal cross-section, whose dimensions decrease toward the pulmonary valve and measure 33.82 (IQR 30,51-39,36), 28.82 (IQR 26,11-32,22), 27.95 ± 4,11 for width [mm] and 33.41 ± 6,14, 26.99 ± 4,41, 26.91 ± 4,00 [mm] for depth, in the basal, middle and subpulmonary parts, respectively. In a sagittal section view, the RVOT heads upward and slightly backward. Its anterior perimeter has an average length of 41.96 mm and inclines to the transverse plane at an angle of 50.77° (IQR 46,53°-58,70°). In the posterior region, the RVOT is shorter (18.17mm) and flexes anteriorly. Therefore, the slope of the upper part of the rear wall to the transverse plane is an acute angle (open toward the rear) of 44,58° (IQR 37,30°-51,25°), while in the lower part it is an angle close to a right angle of 94,30°±15,44°. In addition, the thickness of the RVOT wall in the diastolic phase, at the posterior perimeter at the base, in the middle of the length and subpulmonary measure 3,80 mm ± 0,88 mm, 3,56 mm ± 0,73 mm, 3,56 mm ± 0,65 mm, respectively. In frontal cross-section, the RVOT rises on the interventricular septum, which makes it possible to distinguish the septal and supraseptal parts on its left periphery. The angles (facing the vertices to the right) of the inclination of these parts to the transverse plane are 75.5° (IQR 66,44°-81,11°) and 107.01° (IQR 99,09 – 115,23°), respectively, which allows us to conclude that the direction of the RVOT long axis changes from left to right. The above analysis shows that there is no single RVOT axis. Two axes can be distinguished, the one for the upper RVOT being more backward and leftward. The aforementioned forward deflection of the posterior wall and the RVOT's elevation over the interventricular septum, suggest that access to the subpulmonary region may be difficult. It should be emphasized that this area is often the target for ablation of ventricular arrhythmias. The small thickness of the RVOT posterior wall, with its difficult geometry, may favor its perforation into the pericardium or ascending aorta.

Keywords: angle, geometry, operation access, position, RVOT, shape

Procedia PDF Downloads 98
529 Identification of Ideal Plain Sufu (Fermented Soybean Curds) Based on Ideal Profile Method and Assessment of the Consistency of Ideal Profiles Obtained from Consumers

Authors: Yan Ping Chen, Hau Yin Chung

Abstract:

The Ideal Profile Method (IPM) is a newly developed descriptive sensory analysis conducted by consumers without previous training. To perform this test, both the perceived and the ideal intensities from the judgements of consumers on products’ attributes, as well as their hedonic ratings were collected for formulating an ideal product (the most liked one). In addition, Ideal Profile Analysis (IPA) was conducted to check the consistency of the ideal data at both the panel and consumer levels. In this test, 12 commercial plain sufus bought from Hong Kong local market were tested by 113 consumers according to the IPM, and rated on 22 attributes. Principal component analysis was used to profile the perceived and the ideal spaces of tested products. The consistency of ideal data was then checked by IPA. The result showed that most consumers shared a common ideal. It was observed that the sensory product space and the ideal product space were structurally similar. Their first dimensions all opposed products with intense fermented related aroma to products with less fermented related aroma. And the predicted ideal profile (the estimated liking score around 7.0 in a 9.0-point scale) got higher hedonic score than the tested products (the average liking score around 6.0 in a 9.0-point scale). For the majority of consumers (95.2%), the stated ideal product considered as a potential ideal through checking the R2 coefficient value. Among all the tested products, sample-6 was the most popular one with consumer liking percentage around 30%. This product with less fermented and moldy flavour but easier to melt in mouth texture possessed close sensory profile according to the ideal product. This experiment validated that data from untrained consumers could be guided as useful information. Appreciated sensory characteristics could be served as reference in the optimization of the commercial plain sufu.

Keywords: ideal profile method, product development, sensory evaluation, sufu (fermented soybean curd)

Procedia PDF Downloads 179
528 Review of Student-Staff Agreements in Higher Education: Creating a Framework

Authors: Luke Power, Paul O'Leary

Abstract:

Research has long described the enhancement of student engagement as a fundamental aim of delivering a consistent, lifelong benefit to student success across the multitude of dimensions a quality HE (higher education) experience offers. Engagement may take many forms, with Universities and Institutes across the world attempting to define the parameters which constitutes a successful student engagement framework and implementation strategy. These efforts broadly include empowering students, encouraging involvement, and the transfer of decision-making power through a variety of methods with the goal of obtaining a meaningful partnership between students and staff. As the Republic of Ireland continues to observe an increasing population transferring directly from secondary education to HE institutions, it falls on these institutions to research and develop effective strategies which insures the growing student population have every opportunity to engage with their education, research community, and staff. This research systematically reviews SPAs (student partnership agreements) which are currently in the process of being defined, and/or have been adopted at HE institutions, worldwide. Despite the demonstrated importance of a student-staff partnership to the overall student engagement experience, there is no obvious framework or model by which to begin this process. This work will therefore provide a novel analysis of student-staff agreements which will focus on examining the factors of success common to each and builds towards a workable and applicable framework using critical review, analysis of the key words, phraseology, student involvement, and the broadly applicable HE traits and values. Following the analysis, this work proposes SPA ‘toolkit’ with input from key stakeholders such as students, staff, faculty, and alumni. The resulting implications for future research and the lessons learned from the development and implementation of the SPA will aid the systematic implementation of student-staff agreements in Ireland and beyond.

Keywords: student engagement, student partnership agreements, student-staff partnerships, higher education, systematic review, democratising students, empowering students, student unions

Procedia PDF Downloads 163
527 Crystalline Particles Dispersed Cu-Based Metallic Glassy Composites Fabricated by Spark Plasma Sintering

Authors: Sandrine Cardinal, Jean-Marc Pelletier, Guang Xie, Florian Mercier, Florent Delmas

Abstract:

Bulk metallic glasses exhibit several superior properties, compared to their corresponding crystalline counterpart, such as high strength, high elastic limit or good corrosion resistance. Therefore they can be considered as good candidates for structural applications in many sectors. However, they are generally brittle and do not exhibit plastic deformation at room temperature. These materials are mainly obtained by rapid cooling from a liquid state to prevent crystallization, which limits their size. To overcome these two drawbacks: fragility and limited dimensions, composite metallic glass matrix reinforced by a second phase whose role is to slow crack growth are developed. Concerning the limited size of the pieces, the proposed solution is to get the material from amorphous powders by densifying under load. In this study, Cu50Zr45Al5 bulk metallic glassy matrix composites (MGMCs) containing different volume fraction (Vf) of Zr crystalline particles were manufactured by spark plasma sintering (SPS). Microstructure, thermal stability and mechanical properties of the MGMCs were investigated. Matrix of the composites remains a fully amorphous phase after consolidation at 420°C under 600 MPa. A good dispersion of the particles in the glassy matrix is obtained. Results show that the compressive strength decreases with Vf : 1670 MPa (Vf=0%) to 1300MPa (Vf=30%), the elastic modulus decreases but only slighty respectively 97.3GPa and 94.5 GPa and plasticity is improved from 0 to 4%. Fractographic investigation indicates a good bonding between amorphous and crystalline particles. In conclusion, present study has demonstrated that SPS method is useful for the synthesis of the bulk glassy composites. Large controlled microstructure specimens with interesting ductility can be obtained compared with others methods.

Keywords: composite, mechanical properties, metallic glasses, spark plasma sintering

Procedia PDF Downloads 267
526 Quality Assessment of Hollow Sandcrete Blocks in Minna, Nigeria

Authors: M. Abdullahi, S. Sadiku, Bashar S. Mohammed, J. I. Aguwa

Abstract:

The properties of hollow sandcrete blocks produced in Minna, Nigeria are presented. Sandcrete block is made of cement, water and sand bound together in certain mix proportions. For the purpose of this work, fifty (50) commercial sandcrete block industries were visited in Minna, Nigeria to obtain block samples and aggregates used for the manufacture, and to also take inventory of the mix composition and the production process. Sieve analysis tests were conduction on the soil sample from various block industries to ascertain their quality to be used for block making. The mix ratios were also investigated. Five (5) nine inches (9’’ or 225mm) blocks were obtained from each block industry and tested for dimensional compliance and compressive strength. The result of test shows that the grading of the sand falls within the limit required by BS 882: 1990. The sand particles generally satisfy the grading requirement of overall grading and also fall in at least one of the classification of coarse grading, medium grading or fine grading. This clearly indicates that the quality of the aggregates used for the production of sandcrete blocks in Minna, Nigeria are of good quality in terms of grading and workable mix can easily be achieved to obtain high quality product. Physical examinations of the block sizes show slight deviation from the standard requirement in NIS 87:2000. Compressive strength of hollow sandcrete blocks in range of 0.12 N/mm2 to 0.54 N/mm2 was obtained which is below the recommendable value of 3.45 N/mm2 for load bearing hollow sandcrete blocks. This indicates that these blocks are below the standard for load-bearing sandcrete blocks and cannot be used as load bearing walling units. The mix composition also indicated low cement content resulting in low compressive strength. Most of the commercial block industries visited do not take curing very serious. Water were only sprinkled ones or twice before the blocks were stacked and made readily available for sale. It is recommended that a mix ratio of 1:4 to 1:6 should be used for the production of sandcrete blocks and proper curing practice should be adhered to. Blocks should also be cured for 14 days before making them available for consumers.

Keywords: compressive strength, dimensions, mix proportions, sandcrete blocks

Procedia PDF Downloads 375
525 The Role of Trust in Intention to Use Prescribed and Non-prescribed Connected Devices

Authors: Jean-michel Sahut, Lubica Hikkerova, Wissal Ben Arfi

Abstract:

The Internet of Things (IoT) emerged over the last few decades in many fields. Healthcare can significantly benefit from IoT. This study aims to examine factors influencing the adoption of IoT in eHealth. To do so, an innovative framework has been developed which applies both the Technology Acceptance Model (TAM) and the United Theory of Acceptance and Use of Technology (UTAUT) model and builds on them by analyzing trust and perceived-risk dimensions to predict intention to use IoT in eHealth. In terms of methodology, a Partial Least Approach Structural Equation Modelling was carried out on a sample of 267 French users. The findings of this research support the significant positive effect of constructs set out in the TAM (perceived ease of use) on predicting behavioral intention by adding the effects identified for UTAUT variables. This research also demonstrates how perceived risk and trust are significant factors for models examining behavioral intentions to use IoT. Perceived risk enhanced by the trust has a significant effect on patients’ behavioral intentions. Moreover, the results highlight the key role of prescription as a moderator of IoT adoption in eHealth. Depending on whether an individual has a prescription to use connected devices or not, ease of use has a stronger impact on adoption, while trust has a negative impact on adoption for users without a prescription. In accordance with the empirical results, several practical implications can be proposed. All connected devices applied in a medical context should be divided into groups according to their functionality: whether they are essential for the patient’s health and whether they require a prescription or not. Devices used with a prescription are easily accepted because the intention to use them is moderated by the medical trust (discussed above). For users without a prescription, ease of use is a more significant factor than for users who have a prescription. This suggests that currently, connected e-Health devices and online healthcare systems have to take this factor into account to better meet the needs and expectations of end-users.

Keywords: internet of things, Healthcare, trust, consumer acceptance

Procedia PDF Downloads 131
524 Shear Stress and Oxygen Concentration Manipulation in a Micropillars Microfluidic Bioreactor

Authors: Deybith Venegas-Rojas, Jens Budde, Dominik Nörz, Manfred Jücker, Hoc Khiem Trieu

Abstract:

Microfluidics is a promising approach for biomedicine cell culture experiments with microfluidic bioreactors (MBR), which can provide high precision in volume and time control over mass transport and microenvironments in small-scale studies. Nevertheless, shear stress and oxygen concentration are important factors that affect the microenvironment and then the cell culture. It is presented a novel MBR design in which differences in geometry, shear stress, and oxygen concentration were studied and optimized for cell culture. The aim is to mimic the in vivo condition with biocompatible materials and continuous perfusion of nutrients, a healthy shear stress, and oxygen concentration. The design consists of a capture system of PDMS micropillars which keep cells in place, so it is not necessary any hydrogel or complicated scaffolds for cells immobilization. Besides, the design allows continuous supply with nutrients or even any other chemical for cell experimentation. Finite element method simulations were used to study and optimize the effect of parameters such as flow rate, shear stress, oxygen concentration, micropillars shape, and dimensions. The micropillars device was fabricated with microsystem technology such as soft-lithography, deep reactive ion etching, self-assembled monolayer, replica molding, and oxygen plasma bonding. Eight different geometries were fabricated and tested, with different flow rates according to the simulations. During the experiments, it was observed the effect of micropillars size, shape, and configuration for stability and shear stress control when increasing flow rate. The device was tested with several successful HepG2 3D cell cultures. With this MBR, the aforementioned parameters can be controlled in order to keep a healthy microenvironment according to specific necessities of different cell types, with no need of hydrogels and can be used for a wide range of experiments with cells.

Keywords: cell culture, micro-bioreactor, microfluidics, micropillars, oxygen concentration, shear stress

Procedia PDF Downloads 275
523 Research on the Spatio-Temporal Evolution Pattern of Traffic Dominance in Shaanxi Province

Authors: Leng Jian-Wei, Wang Lai-Jun, Li Ye

Abstract:

In order to measure and analyze the transportation situation within the counties of Shaanxi province over a certain period of time and to promote the province's future transportation planning and development, this paper proposes a reasonable layout plan and compares model rationality. The study uses entropy weight method to measure the transportation advantages of 107 counties in Shaanxi province from three dimensions: road network density, trunk line influence and location advantage in 2013 and 2021, and applies spatial autocorrelation analysis method to analyze the spatial layout and development trend of county-level transportation, and conducts ordinary least square (OLS)regression on transportation impact factors and other influencing factors. The paper also compares the regression fitting degree of the Geographically weighted regression(GWR) model and the OLS model. The results show that spatially, the transportation advantages of Shaanxi province generally show a decreasing trend from the Weihe Plain to the surrounding areas and mainly exhibit high-high clustering phenomenon. Temporally, transportation advantages show an overall upward trend, and the phenomenon of spatial imbalance gradually decreases. People's travel demands have changed to some extent, and the demand for rapid transportation has increased overall. The GWR model regression fitting degree of transportation advantages is 0.74, which is higher than the OLS regression model's fitting degree of 0.64. Based on the evolution of transportation advantages, it is predicted that this trend will continue for a period of time in the future. To improve the transportation advantages of Shaanxi province increasing the layout of rapid transportation can effectively enhance the transportation advantages of Shaanxi province. When analyzing spatial heterogeneity, geographic factors should be considered to establish a more reliable model

Keywords: traffic dominance, GWR model, spatial autocorrelation analysis, temporal and spatial evolution

Procedia PDF Downloads 76
522 The Library as a Metaphor: Perceptions, Evolution, and the Shifting Role in Society Through a Librarian's Lens

Authors: Nihar Kanta Patra, Akhtar Hussain

Abstract:

This comprehensive study, through the perspective of librarians, explores the library as a metaphor and its profound significance in representing knowledge and learning. It delves into how librarians perceive the library as a metaphor and the ways in which it symbolizes the acquisition, preservation, and dissemination of knowledge. The research investigates the most common metaphors used to describe libraries, as witnessed by librarians, and analyzes how these metaphors reflect the evolving role of libraries in society. Furthermore, the study examines how the library metaphor influences the perception of librarians regarding academic libraries as physical places and academic library websites as virtual spaces, exploring their potential for learning and exploration. It investigates the evolving nature of the library as a metaphor over time, as seen by librarians, considering the changing landscape of information and technology. The research explores the ways in which the library metaphor has expanded beyond its traditional representation, encompassing digital resources, online connectivity, and virtual realms, and provides insights into its potential evolution in the future. Drawing on the experiences of librarians in their interactions with library users, the study uncovers any specific cultural or generational differences in how people interpret or relate to the library as a metaphor. It sheds light on the diverse perspectives and interpretations of the metaphor based on cultural backgrounds, educational experiences, and technological familiarity. Lastly, the study investigates the evolving roles of libraries as observed by librarians and explores how these changing roles can influence the metaphors we use to represent them. It examines the dynamic nature of libraries as they adapt to societal needs, technological advancements, and new modes of information dissemination. By analyzing these various dimensions, this research provides a comprehensive understanding of the library as a metaphor through the lens of librarians, illuminating its significance, evolution, and its transformative impact on knowledge, learning, and the changing role of libraries in society.

Keywords: library, librarians, metaphor, perception

Procedia PDF Downloads 76
521 The Emancipatory Methodological Approach to the Organizational Problems Management

Authors: Slavica P. Petrovic

Abstract:

One of the key dimensions of management problems in organizations refers to the relations between stakeholders. The management problems that are characterized by conflict and coercion, in which participants do not agree on the ends and means, in which different groups, i.e., individuals, strive to – using the power they have – impose on others their favoured strategy and decisions represent the relevant research subject. Creatively managing the coercive problems in organizations, in which the sources of power can be identified, implies the emancipatory paradigm and the use of corresponding systems methodology. The main research aim is to critically reassess the theoretical foundations and methodological and methodical development of Critical Systems Heuristics (CSH) – as a valid representative of the emancipatory paradigm – in order to determine the conditions, ways, and achievements of its application in managing the coercive problems in organizations. The basic hypothesis is that CSH, as the emancipatory methodology, given its own theoretical foundations and methodological-methodical development, can be employed in a scientifically based and practically useful manner in creative addressing the coercive problems. The scientific instrumentarium corresponding to this research aim is critical systems thinking with its three key commitments to: a) Critical awareness of the strengths and weaknesses of each research instrument (theory, methodology, method, technique, model) for structuring the problem situations in organizations, b) Improvement of managing the coercive problems in organizations, and c) Pluralism – respect the different perceptions and interpretations of problem situations, and enable the combined use of research instruments. The relevant research result is that CSH – considering its theoretical foundations, methodological and methodical development – enables to reveal the normative content of the proposed or existing designs of organizational systems. Accordingly, it can be concluded that through the use of critically heuristic categories and dialectical debate between those involved and those affected by the designs, but who are not included in designing organizational systems, CSH endeavours to – in the application – support the process of improving position of all stakeholders.

Keywords: coercion and conflict in organizations, creative management, critical systems heuristics, the emancipatory systems methodology

Procedia PDF Downloads 427
520 Tribal Food Security Assessment and Its Measurement Index: A Study of Tribes and Particularly Vulnerable Tribal Groups in Jharkhand, India

Authors: Ambika Prasad Gupta, Harshit Sosan Lakra

Abstract:

Food security is an important issue that has been widely discussed in literature. However, there is a lack of research on the specific food security challenges faced by tribal communities. Tribal food security refers to the ability of indigenous or tribal communities to consistently access and afford an adequate and nutritious supply of food. These communities often have unique cultural, social, and economic contexts that can impact their food security. The study aims to assess the food security status of all thirty-two major tribes, including Particularly Vulnerable Tribal Groups (PVTG) people living in various blocks of Jharkhand State. The methodology of this study focuses on measuring the food security index of indigenous people by developing and redefining a new Tribal Food Security Index (TFSI) as per the indigenous community-level indicators identified by the Global Food Security Index and other indicators relevant to food security. Affordability, availability, quality and safety, and natural resources were the dimensions used to calculate the overall Tribal Food Security Index. A survey was conducted for primary data collection of tribes and PVTGs at the household level in various districts of Jharkhand with a considerable tribal population. The result shows that due to the transition from rural to urban areas, there is a considerable change in TFSI and a decrease in forest dependency of tribal communities. Socioeconomic factors like occupation and household size had a significant correlation with TFSI. Tribal households living in forests have a higher food security index than tribal households residing in urban transition areas. The study also shows that alternative methodology adopted to measure specific community-level food security creates high significant impact than using commonly used indices.

Keywords: indigenous people, tribal food security, particularly vulnerable tribal groups, Jharkhand

Procedia PDF Downloads 67
519 Calculation of Fractal Dimension and Its Relation to Some Morphometric Characteristics of Iranian Landforms

Authors: Mitra Saberi, Saeideh Fakhari, Amir Karam, Ali Ahmadabadi

Abstract:

Geomorphology is the scientific study of the characteristics of form and shape of the Earth's surface. The existence of types of landforms and their variation is mainly controlled by changes in the shape and position of land and topography. In fact, the interest and application of fractal issues in geomorphology is due to the fact that many geomorphic landforms have fractal structures and their formation and transformation can be explained by mathematical relations. The purpose of this study is to identify and analyze the fractal behavior of landforms of macro geomorphologic regions of Iran, as well as studying and analyzing topographic and landform characteristics based on fractal relationships. In this study, using the Iranian digital elevation model in the form of slopes, coefficients of deposition and alluvial fan, the fractal dimensions of the curves were calculated through the box counting method. The morphometric characteristics of the landforms and their fractal dimension were then calculated for 4criteria (height, slope, profile curvature and planimetric curvature) and indices (maximum, Average, standard deviation) using ArcMap software separately. After investigating their correlation with fractal dimension, two-way regression analysis was performed and the relationship between fractal dimension and morphometric characteristics of landforms was investigated. The results show that the fractal dimension in different pixels size of 30, 90 and 200m, topographic curves of different landform units of Iran including mountain, hill, plateau, plain of Iran, from1.06in alluvial fans to1.17in The mountains are different. Generally, for all pixels of different sizes, the fractal dimension is reduced from mountain to plain. The fractal dimension with the slope criterion and the standard deviation index has the highest correlation coefficient, with the curvature of the profile and the mean index has the lowest correlation coefficient, and as the pixels become larger, the correlation coefficient between the indices and the fractal dimension decreases.

Keywords: box counting method, fractal dimension, geomorphology, Iran, landform

Procedia PDF Downloads 75