Search results for: optimum learning outcomes
10245 The Factors Affecting the Use of Massive Open Online Courses in Blended Learning by Lecturers in Universities
Authors: Taghreed Alghamdi, Wendy Hall, David Millard
Abstract:
Massive Open Online Courses (MOOCs) have recently gained widespread interest in the academic world, starting a wide range of discussion of a number of issues. One of these issues, using MOOCs in teaching and learning in the higher education by integrating MOOCs’ contents with traditional face-to-face activities in blended learning format, is called blended MOOCs (bMOOCs) and is intended not to replace traditional learning but to enhance students learning. Most research on MOOCs has focused on students’ perception and institutional threats whereas there is a lack of published research on academics’ experiences and practices. Thus, the first aim of the study is to develop a classification of blended MOOCs models by conducting a systematic literature review, classifying 19 different case studies, and identifying the broad types of bMOOCs models namely: Supplementary Model and Integrated Model. Thus, the analyses phase will emphasize on these different types of bMOOCs models in terms of adopting MOOCs by lecturers. The second aim of the study is to improve the understanding of lecturers’ acceptance of bMOOCs by investigate the factors that influence academics’ acceptance of using MOOCs in traditional learning by distributing an online survey to lecturers who participate in MOOCs platforms. These factors can help institutions to encourage their lecturers to integrate MOOCs with their traditional courses in universities.Keywords: acceptance, blended learning, blended MOOCs, higher education, lecturers, MOOCs, professors
Procedia PDF Downloads 13110244 Perceptions toward Adopting Virtual Reality as a Learning Aid in Information Technology
Authors: S. Alfalah, J. Falah, T. Alfalah, M. Elfalah, O. Falah
Abstract:
The field of education is an ever-evolving area constantly enriched by newly discovered techniques provided by active research in all areas of technologies. The recent years have witnessed the introduction of a number of promising technologies and applications to enhance the teaching and learning experience. Virtual Reality (VR) applications are considered one of the evolving methods that have contributed to enhancing education in many fields. VR creates an artificial environment, using computer hardware and software, which is similar to the real world. This simulation provides a solution to improve the delivery of materials, which facilitates the teaching process by providing a useful aid to instructors, and enhances the learning experience by providing a beneficial learning aid. In order to assure future utilization of such systems, students’ perceptions were examined toward utilizing VR as an educational tool in the Faculty of Information Technology (IT) in The University of Jordan. A questionnaire was administered to IT undergraduates investigating students’ opinions about the potential opportunities that VR technology could offer and its implications as learning and teaching aid. The results confirmed the end users’ willingness to adopt VR systems as a learning aid. The result of this research forms a solid base for investing in a VR system for IT education.Keywords: information, technology, virtual reality, education
Procedia PDF Downloads 29010243 Optimized Preprocessing for Accurate and Efficient Bioassay Prediction with Machine Learning Algorithms
Authors: Jeff Clarine, Chang-Shyh Peng, Daisy Sang
Abstract:
Bioassay is the measurement of the potency of a chemical substance by its effect on a living animal or plant tissue. Bioassay data and chemical structures from pharmacokinetic and drug metabolism screening are mined from and housed in multiple databases. Bioassay prediction is calculated accordingly to determine further advancement. This paper proposes a four-step preprocessing of datasets for improving the bioassay predictions. The first step is instance selection in which dataset is categorized into training, testing, and validation sets. The second step is discretization that partitions the data in consideration of accuracy vs. precision. The third step is normalization where data are normalized between 0 and 1 for subsequent machine learning processing. The fourth step is feature selection where key chemical properties and attributes are generated. The streamlined results are then analyzed for the prediction of effectiveness by various machine learning algorithms including Pipeline Pilot, R, Weka, and Excel. Experiments and evaluations reveal the effectiveness of various combination of preprocessing steps and machine learning algorithms in more consistent and accurate prediction.Keywords: bioassay, machine learning, preprocessing, virtual screen
Procedia PDF Downloads 27410242 AutoML: Comprehensive Review and Application to Engineering Datasets
Authors: Parsa Mahdavi, M. Amin Hariri-Ardebili
Abstract:
The development of accurate machine learning and deep learning models traditionally demands hands-on expertise and a solid background to fine-tune hyperparameters. With the continuous expansion of datasets in various scientific and engineering domains, researchers increasingly turn to machine learning methods to unveil hidden insights that may elude classic regression techniques. This surge in adoption raises concerns about the adequacy of the resultant meta-models and, consequently, the interpretation of the findings. In response to these challenges, automated machine learning (AutoML) emerges as a promising solution, aiming to construct machine learning models with minimal intervention or guidance from human experts. AutoML encompasses crucial stages such as data preparation, feature engineering, hyperparameter optimization, and neural architecture search. This paper provides a comprehensive overview of the principles underpinning AutoML, surveying several widely-used AutoML platforms. Additionally, the paper offers a glimpse into the application of AutoML on various engineering datasets. By comparing these results with those obtained through classical machine learning methods, the paper quantifies the uncertainties inherent in the application of a single ML model versus the holistic approach provided by AutoML. These examples showcase the efficacy of AutoML in extracting meaningful patterns and insights, emphasizing its potential to revolutionize the way we approach and analyze complex datasets.Keywords: automated machine learning, uncertainty, engineering dataset, regression
Procedia PDF Downloads 6110241 The Effect of Visual Access to Greenspace and Urban Space on a False Memory Learning Task
Authors: Bryony Pound
Abstract:
This study investigated how views of green or urban space affect learning performance. It provides evidence of the value of visual access to greenspace in work and learning environments, and builds on the extensive research into the cognitive and learning-related benefits of access to green and natural spaces, particularly in learning environments. It demonstrates that benefits of visual access to natural spaces whilst learning can produce statistically significant faster responses than those facing urban views after only 5 minutes. The primary hypothesis of this research was that a greenspace view would improve short-term learning. Participants were randomly assigned to either a view of parkland or of urban buildings from the same room. They completed a psychological test of two stages. The first stage consisted of a presentation of words from eight different categories (four manmade and four natural). Following this a 2.5 minute break was given; participants were not prompted to look out of the window, but all were observed doing so. The second stage of the test involved a word recognition/false memory test of three types. Type 1 was presented words from each category; Type 2 was non-presented words from those same categories; and Type 3 was non-presented words from different categories. Participants were asked to respond with whether they thought they had seen the words before or not. Accuracy of responses and reaction times were recorded. The key finding was that reaction times for Type 2 words (highest difficulty) were significantly different between urban and green view conditions. Those with an urban view had slower reaction times for these words, so a view of greenspace resulted in better information retrieval for word and false memory recognition. Importantly, this difference was found after only 5 minutes of exposure to either view, during winter, and with a sample size of only 26. Greenspace views improve performance in a learning task. This provides a case for better visual access to greenspace in work and learning environments.Keywords: benefits, greenspace, learning, restoration
Procedia PDF Downloads 12710240 Analysis of Learning Difficulties among Preservice Students towards Science Education
Authors: Nahla Khatib
Abstract:
This study investigated several learning difficulties that affected the classroom learning experience of preservice students who are studying general science and methods of teaching science students at Faculty of Educational Studies at the Arab Open University (AOU) in Amman, Jordan. The focus questions for this study were to find answers for the following: 1. What are the main areas of learning difficulty among preservice students towards science education? 2. What are the main aspects of reducing obstacles towards success in science education? To achieve this goal, the researcher prepared a questionnaire which included 30 items to point out the learning difficulties among preservice students towards science education. The questionnaire was distributed among students enrolled in the general science courses 1&2 and methods of teaching science courses at the beginning of the spring semester of year (2013-2014). After collecting the filled questionnaire a descriptive statistical analysis was carried out (means and standard deviation) for the items of the questionnaire. After analyzing the data statistically our findings showed that student control–factors as well as course controlled factor, factors related to the nature of science, and factors related to the role of instructor affected student success toward science education. The study was concluded with a number of recommendations.Keywords: nature of science, preservice teachers, science education, learning difficulties
Procedia PDF Downloads 35210239 Discussing Embedded versus Central Machine Learning in Wireless Sensor Networks
Authors: Anne-Lena Kampen, Øivind Kure
Abstract:
Machine learning (ML) can be implemented in Wireless Sensor Networks (WSNs) as a central solution or distributed solution where the ML is embedded in the nodes. Embedding improves privacy and may reduce prediction delay. In addition, the number of transmissions is reduced. However, quality factors such as prediction accuracy, fault detection efficiency and coordinated control of the overall system suffer. Here, we discuss and highlight the trade-offs that should be considered when choosing between embedding and centralized ML, especially for multihop networks. In addition, we present estimations that demonstrate the energy trade-offs between embedded and centralized ML. Although the total network energy consumption is lower with central prediction, it makes the network more prone for partitioning due to the high forwarding load on the one-hop nodes. Moreover, the continuous improvements in the number of operations per joule for embedded devices will move the energy balance toward embedded prediction.Keywords: central machine learning, embedded machine learning, energy consumption, local machine learning, wireless sensor networks, WSN
Procedia PDF Downloads 15310238 Mammotome Vacuum-Assisted Breast Biopsy versus Conventional Open Surgery: A Meta-Analysis
Authors: Dylan Shiting Lu, Samson Okello, Anita Chunyan Wei, Daniel Xiao Li
Abstract:
Mammotome vacuum-assisted breast biopsy (MVB) introduced in 1995 can be used for the removal of benign breast lesions. Whether or not MVB is a better option compared to conventional open surgery is inconclusive. We aim to compare the clinical and patient-related outcomes between MVB and open surgery to remove benign breast tumors less than 5 cm in women. We searched English and Chinese electronic databases with the keywords of Mammotome, clinical trial (CT), vacuum-assisted breast biopsy for studies comparing MVB and open surgery until May 2021. We performed a systematic review and random-effects meta-analysis to compare incision size, operation time, intraoperative blood loss, healing time, scar length, patient satisfaction, postoperative hematoma rate, wound infection rate, postoperative ecchymosis, and postoperative sunken skin among those who have Mammotome and those who have surgery. Our analysis included nine randomized CTs with 1155 total patients (575 Mammotome, 580 surgery) and mean age 40.32 years (standard deviation 3.69). We found statistically significant favorable outcomes for Mammotome including blood loss (ml) [standardized mean difference SMD -5.03, 95%CI (-7.30, -2.76)], incision size (cm) [SMD -12.22, 95%CI (-17.40, -7.04)], operation time (min) [SMD -6.66, 95%CI (-9.01, -4.31)], scar length (cm) [SMD -7.06, 95%CI (-10.76, -3.36)], healing time (days) [SMD -6.57, 95%CI (-10.18, -2.95)], and patient satisfaction [relative risk RR 0.38, 95%CI (0.13, 1.08)]. In conclusion, Mammotome vacuum-assisted breast biopsy compared to open surgery shows better clinical and patient-related outcomes. Further studies should be done on whether or not MVB is a better option for benign breast tumors excision.Keywords: clinical and patient outcomes, open surgery, Mammotome vacuum-assisted breast biopsy, meta-analysis
Procedia PDF Downloads 21710237 Deep Learning Approach for Chronic Kidney Disease Complications
Authors: Mario Isaza-Ruget, Claudia C. Colmenares-Mejia, Nancy Yomayusa, Camilo A. González, Andres Cely, Jossie Murcia
Abstract:
Quantification of risks associated with complications development from chronic kidney disease (CKD) through accurate survival models can help with patient management. A retrospective cohort that included patients diagnosed with CKD from a primary care program and followed up between 2013 and 2018 was carried out. Time-dependent and static covariates associated with demographic, clinical, and laboratory factors were included. Deep Learning (DL) survival analyzes were developed for three CKD outcomes: CKD stage progression, >25% decrease in Estimated Glomerular Filtration Rate (eGFR), and Renal Replacement Therapy (RRT). Models were evaluated and compared with Random Survival Forest (RSF) based on concordance index (C-index) metric. 2.143 patients were included. Two models were developed for each outcome, Deep Neural Network (DNN) model reported C-index=0.9867 for CKD stage progression; C-index=0.9905 for reduction in eGFR; C-index=0.9867 for RRT. Regarding the RSF model, C-index=0.6650 was reached for CKD stage progression; decreased eGFR C-index=0.6759; RRT C-index=0.8926. DNN models applied in survival analysis context with considerations of longitudinal covariates at the start of follow-up can predict renal stage progression, a significant decrease in eGFR and RRT. The success of these survival models lies in the appropriate definition of survival times and the analysis of covariates, especially those that vary over time.Keywords: artificial intelligence, chronic kidney disease, deep neural networks, survival analysis
Procedia PDF Downloads 13410236 Ingratiation as a Moderator of the Impact of the Perception of Organizational Politics on Job Satisfaction
Authors: Triana Fitriastuti, Pipiet Larasatie, Alex Vanderstraten
Abstract:
Many scholars have demonstrated the negative impacts of the perception of organizational politics on organizational outcomes. The model proposed in this study analyzes the impact of the perception of organizational politics on job satisfaction. In the same way, ingratiation as a moderator variable is tested. We applied regression analysis to test the hypothesis. The findings of the current research, which was conducted with 240 employees in the public sector in Indonesia, show that the perception of organizational politics has a negative effect on job satisfaction. In contrast, ingratiation plays a role that fully moderates the relationship between organizational politics and organizational outcomes and changes the correlation between the perception of organizational politics on job satisfaction. Employees who use ingratiation as a coping mechanism tend to do so when they perceive a high degree of organizational politics.Keywords: ingratiation, impression management, job satisfaction, perception of organizational politics
Procedia PDF Downloads 15410235 Practices of Self-Directed Professional Development of Teachers in South African Public Schools
Authors: Rosaline Govender
Abstract:
This research study is an exploration of the self-directed professional development of teachers who teach in public schools in an era of democracy and educational change in South Africa. Amidst an ever-changing educational system, the teachers in this study position themselves as self-directed teacher-learners where they adopt particular learning practices which enable change within the broader discourses of public schooling. Life-story interviews were used to enter into the private and public spaces of five teachers which offer glimpses of how particular systems shaped their identities, and how the meanings of self-directed teacher-learner shaped their learning practices. Through the Multidimensional framework of analysis and interpretation the teachers’ stories were analysed through three lenses: restorying the field texts - the self through story; the teacher-learner in relation to social contexts, and practices of self-directed learning.This study shows that as teacher-learners learn for change through self-directed learning practices, they develop their agency as transformative intellectuals, which is necessary for the reworking of South African public schools.Keywords: professional development, professionality, professionalism, self-directed learning
Procedia PDF Downloads 42910234 Category-Base Theory of the Optimum Signal Approximation Clarifying the Importance of Parallel Worlds in the Recognition of Human and Application to Secure Signal Communication with Feedback
Authors: Takuro Kida, Yuichi Kida
Abstract:
We show a base of the new trend of algorithm mathematically that treats a historical reason of continuous discrimination in the world as well as its solution by introducing new concepts of parallel world that includes an invisible set of errors as its companion. With respect to a matrix operator-filter bank that the matrix operator-analysis-filter bank H and the matrix operator-sampling-filter bank S are given, firstly, we introduce the detailed algorithm to derive the optimum matrix operator-synthesis-filter bank Z that minimizes all the worst-case measures of the matrix operator-error-signals E(ω) = F(ω) − Y(ω) between the matrix operator-input-signals F(ω) and the matrix operator-output signals Y(ω) of the matrix operator-filter bank at the same time. Further, feedback is introduced to the above approximation theory and it is indicated that introducing conversations with feedback does not superior automatically to the accumulation of existing knowledge of signal prediction. Secondly, the concept of category in the field of mathematics is applied to the above optimum signal approximation and is indicated that the category-based approximation theory is applied to the set-theoretic consideration of the recognition of humans. Based on this discussion, it is shown naturally why the narrow perception that tends to create isolation shows an apparent advantage in the short term and, often, why such narrow thinking becomes intimate with discriminatory action in a human group. Throughout these considerations, it is presented that, in order to abolish easy and intimate discriminatory behavior, it is important to create a parallel world of conception where we share the set of invisible error signals, including the words and the consciousness of both worlds.Keywords: signal prediction, pseudo inverse matrix, artificial intelligence, conditional optimization
Procedia PDF Downloads 15610233 An Evaluation Framework for Virtual Reality Learning Environments in Sports Education
Authors: Jonathan J. Foo, Keng Hao Chew
Abstract:
Interest in virtual reality (VR) technologies as virtual learning environments have been on the rise in recent years. With thanks to the aggressively competitive consumer electronics environment, VR technology has been made affordable and accessible to the average person with developments like Google Cardboard and Oculus Go. While the promise of virtual access to unique virtual learning environments with the benefits of experiential learning sounds extremely attractive, there are still concerns over user comfort in the psychomotor, cognitive, and affective domains. Reports of motion sickness and short durations create doubt and have stunted its growth. In this paper, a multidimensional framework is proposed for the evaluation of VR learning environments within the three dimensions: tactual quality, didactic quality, and autodidactic quality. This paper further proposes a mixed-methods experimental research plan that sets out to evaluate a virtual reality training simulator in the context of amateur sports fencing. The study will investigate if an immersive VR learning environment can effectively simulate an authentic learning environment suitable for instruction, practice, and assessment while providing the user comfort in the tactual, didactic, and autodidactic dimensions. The models and recommendations developed for this study are designed in the context of fencing, but the potential impact is a guide for the future design and evaluation of all VR developments across sports and technical classroom education.Keywords: autodidactic quality, didactic quality, tactual quality, virtual reality
Procedia PDF Downloads 13510232 Language Learning, Drives and Context: A Grounded Theory of Learning Behavior
Authors: Julian Pigott
Abstract:
This paper introduces the Language Learning as a Means of Drive Engagement (LLMDE) theory, derived from a grounded theory analysis of interviews with Japanese university students. According to LLMDE theory, language learning can be understood as a means of engaging one or more of four self-fulfillment drives: the drive to expand one’s horizons (perspective drive); the drive to make a success of oneself (status drive); the drive to engage in interaction with others (communication drive); and the drive to obtain intellectual and affective stimulation (entertainment drive). While many theories of learner psychology focus on conscious agency, LLMDE theory addresses the role of the unconscious. In addition, supplementary thematic analysis of the data revealed the role of context in mediating drive engagement. Unexpected memorable events, for example, play a key role in instigating and, indirectly, in regulating learning, as do institutional and cultural contexts. Given the apparent importance of such factors beyond the immediate control of the learner, and given the pervasive role of habit and drives, it is argued that the concept of motivation merits theoretical reappraisal. Rather than an underlying force determining language learning success or failure, it can be understood to emerge sporadically in consciousness to promote behavioral change, or to protect habitual behavior from disruption.Keywords: drives, grounded theory, motivation, significant events
Procedia PDF Downloads 14910231 The Influence of Guided and Independent Training Toward Teachers’ Competence to Plan Early Childhood Education Learning Program
Authors: Sofia Hartati
Abstract:
This research is aimed at describing training in early childhood education program empirically, describing teachers ability to plan lessons empirically, and acquiring empirical data as well as analyzing the influence of guided and independent training toward teachers competence in planning early childhood learning program. The method used is an experiment. It collected data with a population of 76 early childhood educators in Tunjung Teja Sub District area through random sampling technique and grouped into two namely 38 people in an experiment class and 38 people in a controlled class. The technique used for data collections is a test. The result of the research shows that there is a significant influence between training for guided educators toward Teachers Ability toward Planning Early Childhood Learning Program. Guided training has been proven to improve the ability to comprehend planning a learning program. The ability to comprehend planning a learning program owned by teachers of early childhood program comprises of 1) determining the characteristics and competence of students prior to learning; 2) formulating the objective of the learning; 3) selecting materials and its sequences; 4) selecting teaching methods; 5) determining the means or learning media; 6) selecting evaluation strategy as a part of teachers pedagogic competence. The result of this research describes a difference in the competence level of teachers who have joined guided training which is relatively higher than the teachers who joined the independent training. Guided training is one of an effective way to improve the knowledge and competence of early childhood educators.Keywords: competence, planning, teachers, training
Procedia PDF Downloads 26410230 Psychological Impact of the COVID-19 Pandemic on Health Care Workers in Tunisia: Risk and Protective Factor
Authors: Ahmed Sami Hammami, Mohamed Jellazi
Abstract:
Background: The aim of the study is to evaluate the magnitude of different psychological outcomes among Tunisian health care professionals (HCP) during the COVID-19 pandemic and to identify the associated factors. Methods: HCP completed a cross-sectional questionnaire from April 4th to April, 28th 2020. The survey collected demographic information, factors that may interfere with the psychological outcomes, behavior changes and mental health measurements. The latter was assessed through 3 scales; the 7-item questions Insomnia Severity Index, the 2-item Patient Health Questionnaire and the 2-item Generalized Anxiety Disorder. Multivariable logistic regression was conducted to identify factors associated with psychological outcomes. Results: A total of 503 HCP successfully completed the survey; among those, n=493 consented to enroll in the study, 411 [83.4%] were physicians, 323 [64.2%] were women and 271 [55%] had a second-line working position. A significant proportion of HCP had anxiety 35.7%, depression 35.1% and insomnia 23.7%. Females, those with psychiatric history and those using public transport exhibited the highest proportions for overall symptoms compared to other groups e.g., depression among females vs. males: 44,9% vs. 18,2%, P=0.00. Those with a previous medical history and nurses, had more anxiety and insomnia compared to other groups e.g. anxiety among nurses vs. interns/residents vs. attending 45,1% vs 36,1% vs 27,5%; p=0.04. Multivariable logistic regression showed that female gender was a risk factor for all psychological outcomes e.g. female sex increased the odds of anxiety by 2.86; 95% confidence interval [CI], 1, 78-4, 60; P=0.00, whereas having a psychiatric history was a risk factor for both anxiety and insomnia. (e.g. for insomnia OR=2,86; 95% [CI], 1,78-4,60; P=0.00), Having protective equipment was associated with lower risk for depression (OR=0,41; 95% CI, 0,27-0,62; P=0.00) and anxiety. Physical activity was also protective against depression and anxiety (OR=0,41, 95% CI, 0,25-0,67, P=0.00). Conclusion: Psychological symptoms are usually undervalued among HCP, though the COVID-19 pandemic played a major role in exacerbating this burden. Prompt psychological support should be endorsed and simple measures such as physical activity and ensuring the necessary protection are paramount to improve mental health outcomes and the quality of care provided to patients.Keywords: COVID-19 pandemic, health care professionals, mental health, protective factors, psychological symptoms, risk factors
Procedia PDF Downloads 19610229 Water Repellent Finishing of Cotton: Teaching and Learning Materials
Authors: C. W. Kan
Abstract:
Fabrics can be treated to equip them with certain functional properties in which water repellency is one of the important functional effects. In this study, commercial water repellent agent was used under different application conditions to cotton fabric. Finally, the water repellent effect was evaluated by standard testing method. Thus, the aim of this study is to illustrate the proper application of water repellent finishing to cotton fabric and the results could provide guidance note to the students in learning this topic. Acknowledgment: Authors would like to thank the financial support from the Hong Kong Polytechnic University for this work.Keywords: learning materials, water repellent, textiles, cotton
Procedia PDF Downloads 23910228 Attitudes to Thinking and Learning in Sustainability Education: Case Basics of Natural Stone Industry in Circular Economy
Authors: Anne-Marie Tuomala
Abstract:
Education for sustainable development (ESD) aims to provide students with the attitudes, values, and behaviors necessary for the contribution to sustainability. The research was implemented as a part of the Horizons Europe research project, where each partner organization had at least one pilot project locally. The pilot in question was an online course about the basics of the natural stone industry in Finland and its sustainability and circular economy aspects. The course was open to all students of applied universities in Finland, and it was implemented twice during the research. The Stone from Finland association participated in the course design, and it was also an expert in the local context and real-life provider. The multiple case-study method was chosen, as it enables purposeful sampling of cases that are tailored to the specific study. It was also assumed that it predicts quite comparable results of two different course implementations of the course with the same topic and content. The Curtin University of Technology’s Attitudes Towards Thinking and Learning Survey was adapted. The results show the importance of the trans-disciplinary nature of sustainability education. In addition, the new industry areas with the general - but also industry-specific sustainability issues - must be introduced to students and encourage them to do critically reflective learning. Surveys that guide them to analyze their own attitudes to thinking and learning may expose students to their weaknesses but also result in forms of more active sustainability interaction.Keywords: education for sustainable development, learning attitudes, learning of circular economy, virtual learning
Procedia PDF Downloads 4310227 Usage of “Flowchart of Diagnosis and Treatment” Software in Medical Education
Authors: Boy Subirosa Sabarguna, Aria Kekalih, Irzan Nurman
Abstract:
Introduction: Software in the form of Clinical Decision Support System could help students in understanding the mind set of decision-making in diagnosis and treatment at the stage of general practitioners. This could accelerate and ease the learning process which previously took place by using books and experience. Method: Gather 1000 members of the National Medical Multimedia Digital Community (NM2DC) who use the “flowchart of diagnosis and treatment” software, and analyse factors related to: display, speed in learning, convenience in learning, helpfulness and usefulness in the learning process, by using the Likert Scale through online questionnaire which will further be processed using percentage. Results and Discussions: Out of the 1000 members of NM2DC, apparently: 97.0% of the members use the software and 87.5% of them are students. In terms of the analysed factors related to: display, speed in learning, convenience in learning, helpfulness and usefulness of the software’s usage, the results indicate a 90.7% of fairly good performance. Therefore, the “Flowchart of Diagnosis and Treatment” software has helped students in understanding the decision-making of diagnosis and treatment. Conclusion: the use of “Flowchart of Diagnosis and Treatment” software indicates a positive role in helping students understand decision-making of diagnosis and treatment.Keywords: usage, software, diagnosis and treatment, medical education
Procedia PDF Downloads 35910226 Physics-Informed Machine Learning for Displacement Estimation in Solid Mechanics Problem
Authors: Feng Yang
Abstract:
Machine learning (ML), especially deep learning (DL), has been extensively applied to many applications in recently years and gained great success in solving different problems, including scientific problems. However, conventional ML/DL methodologies are purely data-driven which have the limitations, such as need of ample amount of labelled training data, lack of consistency to physical principles, and lack of generalizability to new problems/domains. Recently, there is a growing consensus that ML models need to further take advantage of prior knowledge to deal with these limitations. Physics-informed machine learning, aiming at integration of physics/domain knowledge into ML, has been recognized as an emerging area of research, especially in the recent 2 to 3 years. In this work, physics-informed ML, specifically physics-informed neural network (NN), is employed and implemented to estimate the displacements at x, y, z directions in a solid mechanics problem that is controlled by equilibrium equations with boundary conditions. By incorporating the physics (i.e. the equilibrium equations) into the learning process of NN, it is showed that the NN can be trained very efficiently with a small set of labelled training data. Experiments with different settings of the NN model and the amount of labelled training data were conducted, and the results show that very high accuracy can be achieved in fulfilling the equilibrium equations as well as in predicting the displacements, e.g. in setting the overall displacement of 0.1, a root mean square error (RMSE) of 2.09 × 10−4 was achieved.Keywords: deep learning, neural network, physics-informed machine learning, solid mechanics
Procedia PDF Downloads 15010225 Educating the Education Student: Technology as the Link between Theory and Praxis
Authors: Rochelle Botha-Marais
Abstract:
When lecturing future educators in South Africa, praxis is an indispensable aspect that is often neglected. Without properly understanding how the theory taught in lecture halls relates to their future position as educators, we can not expect these students to be fully equipped future teachers. To enable education students at the Vaal Campus of the North West University - who have the Afrikaans language as major - to discover the link between theory and practice, the author created an assignment on phonetics in which the use of technology was incorporated. In the past, students had to submit an assignment or worksheet and they did not get the opportunity to apply their newly found knowledge in a practical manner. For potential future teachers, this application is essential. This paper will demonstrate how technology is used in the second year Afrikaans education module to promote student engagement and self-directed learning. Students were introduced to innovative new technologies alongside more familiar applications to shape a 21st century learning environment where students can think, communicate, solve problems, collaborate and take responsibility for their own teaching and learning. The paper will also reflect on student feedback pertaining the use and efficiency of technology in the Afrikaans module and the possible impact thereof on their own teaching and learning landscape. The aim of this paper is to showcase how technology can be used to maximize the students learning experience and equip future education students with the tools and knowledge to introduce technology-enhanced learning in their own teaching practice.Keywords: education students, theory and practice, self-directed learning, student engagement, technology
Procedia PDF Downloads 28710224 Bioelectrochemical System: An Alternative Technology for Metal Removal from Industrial Wastewater and Factors Affecting Its Efficiency
Authors: A. G. More
Abstract:
Bioelectrochemical system (BES) is an alternative technology for chromium Cr (VI) removal from industrial wastewater to overcome the existing drawbacks of high chemical and energy consumption by conventional metal removal technologies. A well developed anaerobic sludge was developed in laboratory and used in the batch study of BES at different Cr (VI) concentrations (10, 20, 50, and 50 mg/L) with different COD concentrations (500, 1000, 1500 and 2000 mg/L). Sodium acetate was used as carbon source, whereas Cr (VI) contaminated synthetic wastewater was prepared and added to the cathode chamber. Initially, operating conditions for the BES experiments were optimized. During the study, optimum cathode pH of 2, whereas optimum HRT of 72 hr was obtained. During the study, cathode pH 2 ± 0.1 showed maximum chromium removal efficicency (CRE) of 88.36 ± 8.16% as compared to other pH (1-7) in the cathode chamber. Maximum CRE obtained was 85.93 ± 9.62% at 40°C within the temperature range of 25°C to 45°C. Conducting the BES experiments at optimized operating conditions, CRE of 90.2 %, 93.7 %, 83.75 % and 74.6 % were obtained at cathodic Cr concentration of 10, 20, 50, and 50 mg/L, respectively. BES is a sustainable, energy efficient technology which can be suitably used for metal removal from industrial wastewater.Keywords: bioelectrochemical system, metal removal, microorganisms, pH and temperature, substrate
Procedia PDF Downloads 13410223 Evaluation of Combined System of Constructed Wetland/Expended Clay Aggregate in Greywater Treatment
Authors: Eya Hentati, Mona Lamine, Jalel Bouzid
Abstract:
In this study, a laboratory-scale was designed and fabricated to treat single house greywater in the north of Tunisia with a combination of physical and natural treatments systems. The combined system includes a bio-filter composed of LECA® (lightweight expanded clay aggregate) followed by a vertical up-flow constructed wetland planted with Iris pseudacorus and Typha Latifolia. Applied two hydraulic retention times (HRTs) with two different plants types showed that a bio-filter planted with Typha Latifolia has an optimum removal efficiency for degradation of organic matter and transformation of nitrogen and phosphate at HRT of 30 h. The optimum removal efficiency of biochemical oxygen demand (BOD), chemical oxygen demand (COD), and suspended solids (SS) ranged between 48-65%, between while the nutrients removal was in the range of 70% to 90%. Fecal coliforms dropped by three to four orders of magnitude from their initial concentration, but this steel does not meet current regulations for unlimited irrigation. Hence further improvement procedures are suggested.Keywords: constructed wetland, greywater treatment, nutriments, organics
Procedia PDF Downloads 16710222 Evaluation of a Staffing to Workload Tool in a Multispecialty Clinic Setting
Authors: Kristin Thooft
Abstract:
— Increasing pressure to manage healthcare costs has resulted in shifting care towards ambulatory settings and is driving a focus on cost transparency. There are few nurse staffing to workload models developed for ambulatory settings, less for multi-specialty clinics. Of the existing models, few have been evaluated against outcomes to understand any impact. This evaluation took place after the AWARD model for nurse staffing to workload was implemented in a multi-specialty clinic at a regional healthcare system in the Midwest. The multi-specialty clinic houses 26 medical and surgical specialty practices. The AWARD model was implemented in two specialty practices in October 2020. Donabedian’s Structure-Process-Outcome (SPO) model was used to evaluate outcomes based on changes to the structure and processes of care provided. The AWARD model defined and quantified the processes, recommended changes in the structure of day-to-day nurse staffing. Cost of care per patient visit, total visits, a total nurse performed visits used as structural and process measures, influencing the outcomes of cost of care and access to care. Independent t-tests were used to compare the difference in variables pre-and post-implementation. The SPO model was useful as an evaluation tool, providing a simple framework that is understood by a diverse care team. No statistically significant changes in the cost of care, total visits, or nurse visits were observed, but there were differences. Cost of care increased and access to care decreased. Two weeks into the post-implementation period, the multi-specialty clinic paused all non-critical patient visits due to a second surge of the COVID-19 pandemic. Clinic nursing staff was re-allocated to support the inpatient areas. This negatively impacted the ability of the Nurse Manager to utilize the AWARD model to plan daily staffing fully. The SPO framework could be used for the ongoing assessment of nurse staffing performance. Additional variables could be measured, giving a complete picture of the impact of nurse staffing. Going forward, there must be a continued focus on the outcomes of care and the value of nursingKeywords: ambulatory, clinic, evaluation, outcomes, staffing, staffing model, staffing to workload
Procedia PDF Downloads 17310221 Learning through Reflective Practice of Nursing Students in the Delivery Room: A Qualitative Research
Authors: Peeranan Wisanskoonwong, Sumitta Sawangtook
Abstract:
Practicum in Midwifery II is the subject that affects most students to be stressed and anxious because they lack of experiences and self-confidence in delivery baby. This study is a qualitative research. That research objectives were (1) to study learning through reflective practice of nursing students (2) to explain the effects of learning through reflective practice of nursing students in the delivery room. The selected key informant method was criterion-based selection. Thirty-two of fourth-year nursing students in Kuakarun Faculty of nursing who practiced in Delivery room at Taksin Hospital in academic year 2014 were selected. Data collection was data triangulation which consisted of in-depth interview, group discussion and reading students’ reflective practice journal. The research instruments were students’ reflective practice journal, semi-structured questionnaires for in-depth interview, group discussion. Data analysis was thematic analysis. The research result found that: The learning method through reflective practice of nursing students in the delivery room were (1) reflective practice journal (2) dialogue (3) critical thinking and problem solving (4) incident analysis (5) self-criticism (6) observation and evaluation of practice. There were eight issues that students learned through their reflective practice were that (1) students' ethics and morality. (2) students' knowledge and comprehension (3) creative thinking of students (4) communications and collaboration (5) experiential learning of students (6) students’memories and impressions (7) students’experience in delivery baby (8) self-learning of students. Learning through reflective practice supported students’ awareness in improving knowledge and learning continuously and systematically. It helped to adjust the attitude to learning and leadership to be careful which help develop their skills, including critical thinking and understand themselves and understand others. Recommendation for applying research results: midwifery and nursing lecturers can apply these results to be a guide for development their clinical teaching in delivery rooms and other wards.Keywords: learning, reflection, birth, qualitative research
Procedia PDF Downloads 28010220 Resources-Based Ontology Matching to Access Learning Resources
Authors: A. Elbyed
Abstract:
Nowadays, ontologies are used for achieving a common understanding within a user community and for sharing domain knowledge. However, the de-centralized nature of the web makes indeed inevitable that small communities will use their own ontologies to describe their data and to index their own resources. Certainly, accessing to resources from various ontologies created independently is an important challenge for answering end user queries. Ontology mapping is thus required for combining ontologies. However, mapping complete ontologies at run time is a computationally expensive task. This paper proposes a system in which mappings between concepts may be generated dynamically as the concepts are encountered during user queries. In this way, the interaction itself defines the context in which small and relevant portions of ontologies are mapped. We illustrate application of the proposed system in the context of Technology Enhanced Learning (TEL) where learners need to access to learning resources covering specific concepts.Keywords: resources query, ontologies, ontology mapping, similarity measures, semantic web, e-learning
Procedia PDF Downloads 31210219 Scalable Learning of Tree-Based Models on Sparsely Representable Data
Authors: Fares Hedayatit, Arnauld Joly, Panagiotis Papadimitriou
Abstract:
Many machine learning tasks such as text annotation usually require training over very big datasets, e.g., millions of web documents, that can be represented in a sparse input space. State-of the-art tree-based ensemble algorithms cannot scale to such datasets, since they include operations whose running time is a function of the input space size rather than a function of the non-zero input elements. In this paper, we propose an efficient splitting algorithm to leverage input sparsity within decision tree methods. Our algorithm improves training time over sparse datasets by more than two orders of magnitude and it has been incorporated in the current version of scikit-learn.org, the most popular open source Python machine learning library.Keywords: big data, sparsely representable data, tree-based models, scalable learning
Procedia PDF Downloads 26310218 Geography Undergraduates 360⁰ Academic Peer Learning And Mentoring 2021 – 2023: A Pilot Study
Authors: N. Ayob, N. C. Nkosi, R. P. Burger, S. J. Piketh, F. Letlaila, O. Maphosa
Abstract:
South African higher tertiary institution have been faced with high dropout rates. About 50 to 60% of first years drop out to due to various reasons one being inadequate academic support. Geography 111 (GEOG 111) module is historically known for having below 50% pass rate, high dropout rate and identified as a first year risk module. For the first time GEOG 111 (2021) on the Mahikeng Campus admitted 150 students pursuing more than 6 different qualifications (BA and BSc) from the Humanities Faculty and FNAS. First year students had difficulties transitioning from secondary to tertiary institutions as we shifted to remote learning while we navigate through the Covid-19 pandemic. The traditional method of teaching does not encourage students to help each other. With remote learning we do not have control over what the students share and perhaps this can be a learning opportunity to embrace peer learning and change the manner in which we assess the students. The purpose of this pilot study was to assist GEOG111 students with academic challenges whilst improving their University experience. This was a qualitative study open to all GEOG111, repeaters, students who are not confident in their Geographical knowledge and never did Geography at high school level. The selected 9 Golden Key International Honour Society Geography mentors attended an academic mentor training program with module lecturers. About 17.6% of the mentees did not have a geography background however, 94% of the mentees passed, 1 mentee had a mark of 38%. 11 of the participants had a mark >60% with one student that excelled 70%. It is evident that mentorship helped students reach their academic potential. Peer learning and mentoring are associated with improved academic performance and allows the students to take charge of their learning and academic experience. Thus an important element as we transform pedagogies at higher learning institutions.Keywords: geography, risk module, peer mentoring, peer learning
Procedia PDF Downloads 15510217 Stackelberg Security Game for Optimizing Security of Federated Internet of Things Platform Instances
Authors: Violeta Damjanovic-Behrendt
Abstract:
This paper presents an approach for optimal cyber security decisions to protect instances of a federated Internet of Things (IoT) platform in the cloud. The presented solution implements the repeated Stackelberg Security Game (SSG) and a model called Stochastic Human behaviour model with AttRactiveness and Probability weighting (SHARP). SHARP employs the Subjective Utility Quantal Response (SUQR) for formulating a subjective utility function, which is based on the evaluations of alternative solutions during decision-making. We augment the repeated SSG (including SHARP and SUQR) with a reinforced learning algorithm called Naïve Q-Learning. Naïve Q-Learning belongs to the category of active and model-free Machine Learning (ML) techniques in which the agent (either the defender or the attacker) attempts to find an optimal security solution. In this way, we combine GT and ML algorithms for discovering optimal cyber security policies. The proposed security optimization components will be validated in a collaborative cloud platform that is based on the Industrial Internet Reference Architecture (IIRA) and its recently published security model.Keywords: security, internet of things, cloud computing, stackelberg game, machine learning, naive q-learning
Procedia PDF Downloads 35410216 Resin Finishing of Cotton: Teaching and Learning Materials
Authors: C. W. Kan
Abstract:
Cotton is the most commonly used material for apparel purpose because of its durability, good perspiration absorption characteristics, comfort during wear and dyeability. However, proneness to creasing and wrinkling give cotton garments a poor rating during actual wear. Resin finishing is a process to bring out crease or wrinkle free/resistant effect to cotton fabric. Thus, the aim of this study is to illustrate the proper application of resin finishing to cotton fabric, and the results could provide guidance note to the students in learning this topic. Acknowledgment: Authors would like to thank the financial support from the Hong Kong Polytechnic University for this work.Keywords: learning materials, resin, textiles, wrinkle
Procedia PDF Downloads 254