Search results for: fuzzy page identification
2338 Screening and Improved Production of an Extracellular β-Fructofuranosidase from Bacillus Sp
Authors: Lynette Lincoln, Sunil S. More
Abstract:
With the rising demand of sugar used today, it is proposed that world sugar is expected to escalate up to 203 million tonnes by 2021. Hydrolysis of sucrose (table sugar) into glucose and fructose equimolar mixture is catalyzed by β-D-fructofuranoside fructohydrolase (EC 3.2.1.26), commonly called as invertase. For fluid filled center in chocolates, preparation of artificial honey, as a sweetener and especially to ensure that food stuffs remain fresh, moist and soft for longer spans invertase is applied widely and is extensively being used. From an industrial perspective, properties such as increased solubility, osmotic pressure and prevention of crystallization of sugar in food products are highly desired. Screening for invertase does not involve plate assay/qualitative test to determine the enzyme production. In this study, we use a three-step screening strategy for identification of a novel bacterial isolate from soil which is positive for invertase production. The primary step was serial dilution of soil collected from sugarcane fields (black soil, Maddur region of Mandya district, Karnataka, India) was grown on a Czapek-Dox medium (pH 5.0) containing sucrose as the sole C-source. Only colonies with the capability to utilize/breakdown sucrose exhibited growth. Bacterial isolates released invertase in order to take up sucrose, splitting the disaccharide into simple sugars. Secondly, invertase activity was determined from cell free extract by measuring the glucose released in the medium at 540 nm. Morphological observation of the most potent bacteria was examined by several identification tests using Bergey’s manual, which enabled us to know the genus of the isolate to be Bacillus. Furthermore, this potent bacterial colony was subjected to 16S rDNA PCR amplification and a single discrete PCR amplicon band of 1500 bp was observed. The 16S rDNA sequence was used to carry out BLAST alignment search tool of NCBI Genbank database to obtain maximum identity score of sequence. Molecular sequencing and identification was performed by Xcelris Labs Ltd. (Ahmedabad, India). The colony was identified as Bacillus sp. BAB-3434, indicating to be the first novel strain for extracellular invertase production. Molasses, a by-product of the sugarcane industry is a dark viscous liquid obtained upon crystallization of sugar. An enhanced invertase production and optimization studies were carried out by one-factor-at-a-time approach. Crucial parameters such as time course (24 h), pH (6.0), temperature (45 °C), inoculum size (2% v/v), N-source (yeast extract, 0.2% w/v) and C-source (molasses, 4% v/v) were found to be optimum demonstrating an increased yield. The findings of this study reveal a simple screening method of an extracellular invertase from a rapidly growing Bacillus sp., and selection of best factors that elevate enzyme activity especially utilization of molasses which served as an ideal substrate and also as C-source, results in a cost-effective production under submerged conditions. The invert mixture could be a replacement for table sugar which is an economic advantage and reduce the tedious work of sugar growers. On-going studies involve purification of extracellular invertase and determination of transfructosylating activity as at high concentration of sucrose, invertase produces fructooligosaccharides (FOS) which possesses probiotic properties.Keywords: Bacillus sp., invertase, molasses, screening, submerged fermentation
Procedia PDF Downloads 2332337 The Crisis of Turkey's Downing the Russian Warplane within the Concept of Country Branding: The Examples of BBC World, and Al Jazeera English
Authors: Derya Gül Ünlü, Oguz Kuş
Abstract:
The branding of a country means that the country has its own position different from other countries in its region and thus it is perceived more specifically. It is made possible by the branding efforts of a country and the uniqueness of all the national structures, by presenting it in a specific way, by creating the desired image and attracting tourists and foreign investors. Establishing a national brand involves, in a sense, the process of managing the perceptions of the citizens of the other country about the target country, by structuring the image of the country permanently and holistically. By this means, countries are not easily affected by their crisis of international relations. Therefore, within the scope of the research that will be carried out from this point, it is aimed to show how the warplane downing crisis between Turkey and Russia is perceived on social media. The Russian warplane was downed by Turkey on November 24, 2015, on the grounds that Turkey violated the airspace on the Syrian border. Whereupon the relations between the two countries have been tensed, and Russia has called on its citizens not to go to Turkey and citizens in Turkey to return to their countries. Moreover, relations between two countries have been weakened, for example, tourism tours organized in Russia to Turkey and visa-free travel were canceled and all military dialogue was cut off. After the event, various news sites on social media published plenty of news related to topic and the readers made various comments about the event and Turkey. In this context, an investigation into the perception of Turkey's national brand before and after the warplane downing crisis has been conducted. through comments fetched from the reports on the BBC World, and from Al Jazeera English news sites on Facebook accounts, which takes place widely in the social media. In order to realize study, user comments were fetched from jet downing-related news which are published on Facebook fan-page of BBC World Service, and Al Jazeera English. Regarding this, all the news published between 24.10.2015-24.12.2015 and containing Turk and Turkey keyword in its title composed data set of our study. Afterwards, comments written to these news were analyzed via text mining technique. Furthermore, by sentiment analysis, it was intended to reveal reader’s emotions before and after the crisis.Keywords: Al Jazeera English, BBC World, country branding, social media, text mining
Procedia PDF Downloads 2252336 Dynamic Two-Way FSI Simulation for a Blade of a Small Wind Turbine
Authors: Alberto Jiménez-Vargas, Manuel de Jesús Palacios-Gallegos, Miguel Ángel Hernández-López, Rafael Campos-Amezcua, Julio Cesar Solís-Sanchez
Abstract:
An optimal wind turbine blade design must be able of capturing as much energy as possible from the wind source available at the area of interest. Many times, an optimal design means the use of large quantities of material and complicated processes that make the wind turbine more expensive, and therefore, less cost-effective. For the construction and installation of a wind turbine, the blades may cost up to 20% of the outline pricing, and become more important due to they are part of the rotor system that is in charge of transmitting the energy from the wind to the power train, and where the static and dynamic design loads for the whole wind turbine are produced. The aim of this work is the develop of a blade fluid-structure interaction (FSI) simulation that allows the identification of the major damage zones during the normal production situation, and thus better decisions for design and optimization can be taken. The simulation is a dynamic case, since we have a time-history wind velocity as inlet condition instead of a constant wind velocity. The process begins with the free-use software NuMAD (NREL), to model the blade and assign material properties to the blade, then the 3D model is exported to ANSYS Workbench platform where before setting the FSI system, a modal analysis is made for identification of natural frequencies and modal shapes. FSI analysis is carried out with the two-way technic which begins with a CFD simulation to obtain the pressure distribution on the blade surface, then these results are used as boundary condition for the FEA simulation to obtain the deformation levels for the first time-step. For the second time-step, CFD simulation is reconfigured automatically with the next time-step inlet wind velocity and the deformation results from the previous time-step. The analysis continues the iterative cycle solving time-step by time-step until the entire load case is completed. This work is part of a set of projects that are managed by a national consortium called “CEMIE-Eólico” (Mexican Center in Wind Energy Research), created for strengthen technological and scientific capacities, the promotion of creation of specialized human resources, and to link the academic with private sector in national territory. The analysis belongs to the design of a rotor system for a 5 kW wind turbine design thought to be installed at the Isthmus of Tehuantepec, Oaxaca, Mexico.Keywords: blade, dynamic, fsi, wind turbine
Procedia PDF Downloads 4822335 Evaluation of the Quality of Education Offered to Students with Special Needs in Public Schools in the City of Bauru, Brazil
Authors: V. L. M. F. Capellini, A. P. P. M. Maturana, N. C. M. Brondino, M. B. C. L. B. M. Peixoto, A. J. Broughton
Abstract:
A paradigm shift is a process. The process of implementing inclusive education, a system constructed to support all learners, requires planning, identification, experimentation, and evaluation. In this vein, the purpose of the present study was to evaluate the capacity of one Brazilian state school systems to provide special education students with a quality inclusive education. This study originated at the behest of concerned families of students with special needs who filed complaints with the Municipality of Bauru, São Paulo. These families claimed, 1) children with learning differences and educational needs had not been identified for services, and 2) those who had been identified had not received sufficient specialized educational assistance (SEA) in schools across the City of Bauru. Hence, the Office of Civil Rights for the state of São Paulo (Ministério Público de São Paulo) summoned the local higher education institution, UNESP, to design a research study to investigate these allegations. In this exploratory study, descriptive data were gathered from all elementary and middle schools including 58 state schools and 17 city schools, for a total of 75 schools overall. Data collection consisted of each school's annual strategic action plan, surveys and interviews with all school stakeholders to determine their perceptions of the inclusive education available to students with Special Education Needs (SEN). The data were collected as one of four stages in a larger study which also included field observations of a focal students' experience and a continuing education course for all teachers and administrators in both state and city schools. For the purposes of this study, the researchers were interested in understanding the perceptions of school staff, parents, and students across all schools. Therefore, documents and surveys from 75 schools were analyzed for adherence to federal legislation guaranteeing students with SEN the right to special education assistance within the regular school setting. Results shows that while some schools recognized the legal rights of SEN students to receive special education, the plans to actually deliver services were absent. In conclusion, the results of this study revealed both school staff and families have insufficient planning and accessibility resources, and the schools have inadequate infrastructure for full-time support to SEN students, i.e., structures and systems to support the identification of SEN and delivery of services within schools of Bauru, SP. Having identified the areas of need, the city is now prepared to take next steps in the process toward preparing all schools to be inclusive.Keywords: inclusion, school, special education, special needs
Procedia PDF Downloads 1602334 High Resolution Satellite Imagery and Lidar Data for Object-Based Tree Species Classification in Quebec, Canada
Authors: Bilel Chalghaf, Mathieu Varin
Abstract:
Forest characterization in Quebec, Canada, is usually assessed based on photo-interpretation at the stand level. For species identification, this often results in a lack of precision. Very high spatial resolution imagery, such as DigitalGlobe, and Light Detection and Ranging (LiDAR), have the potential to overcome the limitations of aerial imagery. To date, few studies have used that data to map a large number of species at the tree level using machine learning techniques. The main objective of this study is to map 11 individual high tree species ( > 17m) at the tree level using an object-based approach in the broadleaf forest of Kenauk Nature, Quebec. For the individual tree crown segmentation, three canopy-height models (CHMs) from LiDAR data were assessed: 1) the original, 2) a filtered, and 3) a corrected model. The corrected CHM gave the best accuracy and was then coupled with imagery to refine tree species crown identification. When compared with photo-interpretation, 90% of the objects represented a single species. For modeling, 313 variables were derived from 16-band WorldView-3 imagery and LiDAR data, using radiance, reflectance, pixel, and object-based calculation techniques. Variable selection procedures were employed to reduce their number from 313 to 16, using only 11 bands to aid reproducibility. For classification, a global approach using all 11 species was compared to a semi-hierarchical hybrid classification approach at two levels: (1) tree type (broadleaf/conifer) and (2) individual broadleaf (five) and conifer (six) species. Five different model techniques were used: (1) support vector machine (SVM), (2) classification and regression tree (CART), (3) random forest (RF), (4) k-nearest neighbors (k-NN), and (5) linear discriminant analysis (LDA). Each model was tuned separately for all approaches and levels. For the global approach, the best model was the SVM using eight variables (overall accuracy (OA): 80%, Kappa: 0.77). With the semi-hierarchical hybrid approach, at the tree type level, the best model was the k-NN using six variables (OA: 100% and Kappa: 1.00). At the level of identifying broadleaf and conifer species, the best model was the SVM, with OA of 80% and 97% and Kappa values of 0.74 and 0.97, respectively, using seven variables for both models. This paper demonstrates that a hybrid classification approach gives better results and that using 16-band WorldView-3 with LiDAR data leads to more precise predictions for tree segmentation and classification, especially when the number of tree species is large.Keywords: tree species, object-based, classification, multispectral, machine learning, WorldView-3, LiDAR
Procedia PDF Downloads 1362333 Neural Network in Fixed Time for Collision Detection between Two Convex Polyhedra
Authors: M. Khouil, N. Saber, M. Mestari
Abstract:
In this paper, a different architecture of a collision detection neural network (DCNN) is developed. This network, which has been particularly reviewed, has enabled us to solve with a new approach the problem of collision detection between two convex polyhedra in a fixed time (O (1) time). We used two types of neurons, linear and threshold logic, which simplified the actual implementation of all the networks proposed. The study of the collision detection is divided into two sections, the collision between a point and a polyhedron and then the collision between two convex polyhedra. The aim of this research is to determine through the AMAXNET network a mini maximum point in a fixed time, which allows us to detect the presence of a potential collision.Keywords: collision identification, fixed time, convex polyhedra, neural network, AMAXNET
Procedia PDF Downloads 4252332 The Significance of Childhood in Shaping Family Microsystems from the Perspective of Biographical Learning: Narratives of Adults
Authors: Kornelia Kordiak
Abstract:
The research is based on a biographical approach and serves as a foundation for understanding individual human destinies through the analysis of the context of life experiences. It focuses on the significance of childhood in shaping family micro-worlds from the perspective of biographical learning. In this case, the family micro-world is interpreted as a complex of beliefs and judgments about elements of the ‘total universe’ based on the individual's experiences. The main aim of the research is to understand the importance of childhood in shaping family micro-worlds from the perspective of reflection on biographical learning. Additionally, it contributes to a deeper understanding of the familial experiences of the studied individuals who form these family micro-worlds and the course of the biographical learning process in the subjects. Biographical research aligns with an interpretative paradigm, where individuals are treated as active interpreters of the world, giving meaning to their experiences and actions based on their own values and beliefs. The research methods used in the project—narrative interview method and analysis of personal documents—enable obtaining a multidimensional perspective on the phenomenon under study. Narrative interviews serve as the main data collection method, allowing researchers to delve into various life contexts of individuals. Analysis of these narratives identifies key moments and life patterns, as well as discovers the significance of childhood in shaping family micro-worlds. Moreover, analysis of personal documents such as diaries or photographs enriches the understanding of the studied phenomena by providing additional contexts and perspectives. The research will be conducted in three phases: preparatory, main, and final. The anticipated schedule includes preparation of research tools, selection of research sample, conducting narrative interviews and analysis of personal documents, as well as analysis and interpretation of collected research material. The narrative interview method and document analysis will be utilized to capture various contexts and interpretations of childhood experiences and family relations. The research will contribute to a better understanding of family dynamics and individual developmental processes. It will allow for the identification and understanding of mechanisms of biographical learning and their significance in shaping identity and family relations. Analysis of adult narratives will enable the identification of factors determining patterns of behavior and attitudes in adult life, which may have significant implications for pedagogical practice.Keywords: childhood, adulthood, biographical learning, narrative interview, analysis of personal documents, family micro-worlds
Procedia PDF Downloads 312331 Technical and Economic Potential of Partial Electrification of Railway Lines
Authors: Rafael Martins Manzano Silva, Jean-Francois Tremong
Abstract:
Electrification of railway lines allows to increase speed, power, capacity and energetic efficiency of rolling stocks. However, this process of electrification is complex and costly. An electrification project is not just about design of catenary. It also includes installation of structures around electrification, as substation installation, electrical isolation, signalling, telecommunication and civil engineering structures. France has more than 30,000 km of railways, whose only 53% are electrified. The others 47% of railways use diesel locomotive and represent only 10% of the circulation (tons.km). For this reason, a new type of electrification, less expensive than the usual, is requested to enable the modernization of these railways. One solution could be the use of hybrids trains. This technology opens up new opportunities for less expensive infrastructure development such as the partial electrification of railway lines. In a partially electrified railway, the power supply of theses hybrid trains could be made either by the catenary or by the on-board energy storage system (ESS). Thus, the on-board ESS would feed the energetic needs of the train along the non-electrified zones while in electrified zones, the catenary would feed the train and recharge the on-board ESS. This paper’s objective deals with the technical and economic potential identification of partial electrification of railway lines. This study provides different scenarios of electrification by replacing the most expensive places to electrify using on-board ESS. The target is to reduce the cost of new electrification projects, i.e. reduce the cost of electrification infrastructures while not increasing the cost of rolling stocks. In this study, scenarios are constructed in function of the electrification’s cost of each structure. The electrification’s cost varies considerably because of the installation of catenary support in tunnels, bridges and viaducts is much more expensive than in others zones of the railway. These scenarios will be used to describe the power supply system and to choose between the catenary and the on-board energy storage depending on the position of the train on the railway. To identify the influence of each partial electrification scenario in the sizing of the on-board ESS, a model of the railway line and of the rolling stock is developed for a real case. This real case concerns a railway line located in the south of France. The energy consumption and the power demanded at each point of the line for each power supply (catenary or on-board ESS) are provided at the end of the simulation. Finally, the cost of a partial electrification is obtained by adding the civil engineering costs of the zones to be electrified plus the cost of the on-board ESS. The study of the technical and economic potential ends with the identification of the most economically interesting scenario of electrification.Keywords: electrification, hybrid, railway, storage
Procedia PDF Downloads 4312330 Emulation of a Wind Turbine Using Induction Motor Driven by Field Oriented Control
Authors: L. Benaaouinate, M. Khafallah, A. Martinez, A. Mesbahi, T. Bouragba
Abstract:
This paper concerns with the modeling, simulation, and emulation of a wind turbine emulator for standalone wind energy conversion systems. By using emulation system, we aim to reproduce the dynamic behavior of the wind turbine torque on the generator shaft: it provides the testing facilities to optimize generator control strategies in a controlled environment, without reliance on natural resources. The aerodynamic, mechanical, electrical models have been detailed as well as the control of pitch angle using Fuzzy Logic for horizontal axis wind turbines. The wind turbine emulator consists mainly of an induction motor with AC power drive with torque control. The control of the induction motor and the mathematical models of the wind turbine are designed with MATLAB/Simulink environment. The simulation results confirm the effectiveness of the induction motor control system and the functionality of the wind turbine emulator for providing all necessary parameters of the wind turbine system such as wind speed, output torque, power coefficient and tip speed ratio. The findings are of direct practical relevance.Keywords: electrical generator, induction motor drive, modeling, pitch angle control, real time control, renewable energy, wind turbine, wind turbine emulator
Procedia PDF Downloads 2352329 The Sociolinguistics of Prison Slang
Authors: Jonathan M. Watt, Regina L. Sturiale
Abstract:
The linguistic idiosyncrasies of prison populations have been studied with great interest by scholarly and popular writers alike, whose interests range from curiosity to a disciplined understanding of its function. This paper offers a formalized nomenclature for the four relevant terms (slang, jargon, argot, and cant) and brings together key sociolinguistic concepts such as domain and register with research on institutional dynamics as well as culture and identity. It presents a fresh body of data drawn from interviews with prison staff in the American NE and with awareness of selected publications. The paper then draws a correlation between a person’s competence in prison antilanguage and their status as part of the in-group. This is a distinctive marker of identification that is essential to inmate survival and staff effectiveness.Keywords: slang, jargon, argot, sociolinguistics, antilanguage, identity
Procedia PDF Downloads 612328 Analyzing the Job Satisfaction of Silver Workers Using Structural Equation Modeling
Authors: Valentin Nickolai, Florian Pfeffel, Christian Louis Kühner
Abstract:
In many industrialized nations, the demand for skilled workers rises, causing the current market for employees to be more candidate-driven than employer-driven. Therefore, losing highly skilled and experienced employees due to early or partial retirement negatively impacts firms. Therefore, finding new ways to incentivize older employees (Silver Workers) to stay longer with the company and in their job can be crucial for the success of a firm. This study analyzes how working remotely can be a valid incentive for experienced Silver Workers to stay in their job and instead work from home with more flexible working hours. An online survey with n = 684 respondents, who are employed in the service sector, has been conducted based on 13 constructs that influence job satisfaction. These have been further categorized into three groups “classic influencing factors,” “influencing factors changed by remote working,” and new remote working influencing factors,” and were analyzed using structural equation modeling (SEM). Here, Cronbach’s alpha of the individual constructs was shown to be suitable. Furthermore, the construct validity of the constructs was confirmed by face validity, content validity, convergent validity (AVE > 0.5: CR > 0.7), and discriminant validity. Additionally, confirmatory factor analysis (CFA) confirmed the model fit for the investigated sample (CMIN/DF: 2.567; CFI: 0.927; RMSEA: 0.048). It was shown in the SEM-analysis that the influencing factor on job satisfaction, “identification with the work,” is the most significant with β = 0.540, followed by “Appreciation” (β = 0.151), “Compensation” (β = 0.124), “Work-Life-Balance” (β = 0.116), and “Communication and Exchange of Information” (β = 0.105). While the significance of each factor can vary depending on the work model, the SEM-analysis also shows that the identification with the work is the most significant factor in all three work models mentioned above and, in the case of the traditional office work model, it is the only significant influencing factor. The study shows that employees between the ages of 56 and 65 years have the highest job satisfaction when working entirely from home or remotely. Furthermore, their job satisfaction score of 5.4 on a scale from 1 (very dissatisfied) to 7 (very satisfied) is the highest amongst all age groups in any of the three work models. Due to the significantly higher job satisfaction, it can be argued that giving Silver Workers the offer to work from home or remotely can incentivize them not to opt for early retirement or partial retirement but to stay in their job full-time Furthermore, these findings can indicate that employees in the Silver Worker age are much more inclined to leave their job for early retirement if they have to entirely work in the office.Keywords: home office, remote work instead of early or partial retirement, silver worker, structural equation modeling
Procedia PDF Downloads 752327 Optimisation of the Input Layer Structure for Feedforward Narx Neural Networks
Authors: Zongyan Li, Matt Best
Abstract:
This paper presents an optimization method for reducing the number of input channels and the complexity of the feed-forward NARX neural network (NN) without compromising the accuracy of the NN model. By utilizing the correlation analysis method, the most significant regressors are selected to form the input layer of the NN structure. An application of vehicle dynamic model identification is also presented in this paper to demonstrate the optimization technique and the optimal input layer structure and the optimal number of neurons for the neural network is investigated.Keywords: correlation analysis, F-ratio, levenberg-marquardt, MSE, NARX, neural network, optimisation
Procedia PDF Downloads 3732326 Molecular Diagnosis of a Virus Associated with Red Tip Disease and Its Detection by Non Destructive Sensor in Pineapple (Ananas comosus)
Authors: A. K. Faizah, G. Vadamalai, S. K. Balasundram, W. L. Lim
Abstract:
Pineapple (Ananas comosus) is a common crop in tropical and subtropical areas of the world. Malaysia once ranked as one of the top 3 pineapple producers in the world in the 60's and early 70's, after Hawaii and Brazil. Moreover, government’s recognition of the pineapple crop as one of priority commodities to be developed for the domestics and international markets in the National Agriculture Policy. However, pineapple industry in Malaysia still faces numerous challenges, one of which is the management of disease and pest. Red tip disease on pineapple was first recognized about 20 years ago in a commercial pineapple stand located in Simpang Renggam, Johor, Peninsular Malaysia. Since its discovery, there has been no confirmation on its causal agent of this disease. The epidemiology of red tip disease is still not fully understood. Nevertheless, the disease symptoms and the spread within the field seem to point toward viral infection. Bioassay test on nucleic acid extracted from the red tip-affected pineapple was done on Nicotiana tabacum cv. Coker by rubbing the extracted sap. Localised lesions were observed 3 weeks after inoculation. Negative staining of the fresh inoculated Nicotiana tabacum cv. Coker showed the presence of membrane-bound spherical particles with an average diameter of 94.25nm under transmission electron microscope. The shape and size of the particles were similar to tospovirus. SDS-PAGE analysis of partial purified virions from inoculated N. tabacum produced a strong and a faint protein bands with molecular mass of approximately 29 kDa and 55 kDa. Partial purified virions of symptomatic pineapple leaves from field showed bands with molecular mass of approximately 29 kDa, 39 kDa and 55kDa. These bands may indicate the nucleocapsid protein identity of tospovirus. Furthermore, a handheld sensor, Greenseeker, was used to detect red tip symptoms on pineapple non-destructively based on spectral reflectance, measured as Normalized Difference Vegetation Index (NDVI). Red tip severity was estimated and correlated with NDVI. Linear regression models were calibrated and tested developed in order to estimate red tip disease severity based on NDVI. Results showed a strong positive relationship between red tip disease severity and NDVI (r= 0.84).Keywords: pineapple, diagnosis, virus, NDVI
Procedia PDF Downloads 7932325 Development of Geo-computational Model for Analysis of Lassa Fever Dynamics and Lassa Fever Outbreak Prediction
Authors: Adekunle Taiwo Adenike, I. K. Ogundoyin
Abstract:
Lassa fever is a neglected tropical virus that has become a significant public health issue in Nigeria, with the country having the greatest burden in Africa. This paper presents a Geo-Computational Model for Analysis and Prediction of Lassa Fever Dynamics and Outbreaks in Nigeria. The model investigates the dynamics of the virus with respect to environmental factors and human populations. It confirms the role of the rodent host in virus transmission and identifies how climate and human population are affected. The proposed methodology is carried out on a Linux operating system using the OSGeoLive virtual machine for geographical computing, which serves as a base for spatial ecology computing. The model design uses Unified Modeling Language (UML), and the performance evaluation uses machine learning algorithms such as random forest, fuzzy logic, and neural networks. The study aims to contribute to the control of Lassa fever, which is achievable through the combined efforts of public health professionals and geocomputational and machine learning tools. The research findings will potentially be more readily accepted and utilized by decision-makers for the attainment of Lassa fever elimination.Keywords: geo-computational model, lassa fever dynamics, lassa fever, outbreak prediction, nigeria
Procedia PDF Downloads 952324 Cocoa Stimulates the Production Bioactive Components of Lactobacillus Casei and Competitively Excludes Foodborne Pathogens
Authors: Mengfei Peng, Serajus Salaheen, Debabrata Biswas
Abstract:
Lactobacillus casei found in the human intestine and mouth is commonly applied for dairy production. Recently, it was found that some byproducts produced by Lactobacillus exhibited antimicrobial activities against multiple bacteria. Meanwhile, introduction of prebiotic-like foods (e.g. cocoa) or probiotics or both of them as food supplements in human diets as well as in farm animal feeds is believed to be an effective ways in control/reduce the colonization of foodborne bacterial pathogens infection in the gut environment. We hypothesized that cocoa may stimulate the production antimicrobial components of Lactobacillus casei and may potentially inhibit/reduce the colonization and infection of foodborne bacterial pathogens in the gut. Mixed culture of L. casei (LC) with enterohemorrhagic E. coli EDL933 (EHEC), Salmonella Typhimurium LT2 (ST), or Listeria monocytogenes LM2 (LM) showed that LC could competitively exclude (100%) them within 72 h. Further, investigation of cell-free culture supernatant (CFCS) revealed that the antimicrobial effects of LC came from CFCS. CFCS of LC eliminated (100%) EHEC, ST, and LM within 72 h, and 2 h CFCS treatment increased the hydrophobicity of EHEC (5.10 folds), ST (8.48 folds), and LM (2.03 folds). In addition, LC cells exhibited more inhibitive effects than CFCS on cell adhesive and invasive activities of EHEC (52.14% & 90.45%), ST (66.89% & 93.83%), and LM (61.10% & 83.40%). Two clusters of poly-peptides in CFCS were identified by SDS-PAGE, the molecular weights of which are ≈5 KD and 40-45 KD. LC CFCS with overnight growth in the presence of 3% strengthened all of the antimicrobial activities (growth inhibition, outer membrane disruption, and cell infective ability reduction). Liquid chromatography/Mass spectrometry analysis detected 5 unique components in class of flavonoids in LC CFCS with overnight 3% cocoa supplement. Furthermore, qPCR results showed that CFCSs up-regulated the expression level of genes responsible for flagellin synthesis and motility, but down-regulated genes for specific binding and invasion-associated proteins synthesis. The stimulatory effects of cocoa in producing bioactive components of probiotics may aid prevention of foodborne illness caused by major foodborne enteric bacterial pathogens.Keywords: foodborne pathogens, probiotics, prebiotics, pathogen exclusion
Procedia PDF Downloads 4362323 Image Segmentation with Deep Learning of Prostate Cancer Bone Metastases on Computed Tomography
Authors: Joseph M. Rich, Vinay A. Duddalwar, Assad A. Oberai
Abstract:
Prostate adenocarcinoma is the most common cancer in males, with osseous metastases as the commonest site of metastatic prostate carcinoma (mPC). Treatment monitoring is based on the evaluation and characterization of lesions on multiple imaging studies, including Computed Tomography (CT). Monitoring of the osseous disease burden, including follow-up of lesions and identification and characterization of new lesions, is a laborious task for radiologists. Deep learning algorithms are increasingly used to perform tasks such as identification and segmentation for osseous metastatic disease and provide accurate information regarding metastatic burden. Here, nnUNet was used to produce a model which can segment CT scan images of prostate adenocarcinoma vertebral bone metastatic lesions. nnUNet is an open-source Python package that adds optimizations to deep learning-based UNet architecture but has not been extensively combined with transfer learning techniques due to the absence of a readily available functionality of this method. The IRB-approved study data set includes imaging studies from patients with mPC who were enrolled in clinical trials at the University of Southern California (USC) Health Science Campus and Los Angeles County (LAC)/USC medical center. Manual segmentation of metastatic lesions was completed by an expert radiologist Dr. Vinay Duddalwar (20+ years in radiology and oncologic imaging), to serve as ground truths for the automated segmentation. Despite nnUNet’s success on some medical segmentation tasks, it only produced an average Dice Similarity Coefficient (DSC) of 0.31 on the USC dataset. DSC results fell in a bimodal distribution, with most scores falling either over 0.66 (reasonably accurate) or at 0 (no lesion detected). Applying more aggressive data augmentation techniques dropped the DSC to 0.15, and reducing the number of epochs reduced the DSC to below 0.1. Datasets have been identified for transfer learning, which involve balancing between size and similarity of the dataset. Identified datasets include the Pancreas data from the Medical Segmentation Decathlon, Pelvic Reference Data, and CT volumes with multiple organ segmentations (CT-ORG). Some of the challenges of producing an accurate model from the USC dataset include small dataset size (115 images), 2D data (as nnUNet generally performs better on 3D data), and the limited amount of public data capturing annotated CT images of bone lesions. Optimizations and improvements will be made by applying transfer learning and generative methods, including incorporating generative adversarial networks and diffusion models in order to augment the dataset. Performance with different libraries, including MONAI and custom architectures with Pytorch, will be compared. In the future, molecular correlations will be tracked with radiologic features for the purpose of multimodal composite biomarker identification. Once validated, these models will be incorporated into evaluation workflows to optimize radiologist evaluation. Our work demonstrates the challenges of applying automated image segmentation to small medical datasets and lays a foundation for techniques to improve performance. As machine learning models become increasingly incorporated into the workflow of radiologists, these findings will help improve the speed and accuracy of vertebral metastatic lesions detection.Keywords: deep learning, image segmentation, medicine, nnUNet, prostate carcinoma, radiomics
Procedia PDF Downloads 972322 Camera Model Identification for Mi Pad 4, Oppo A37f, Samsung M20, and Oppo f9
Authors: Ulrich Wake, Eniman Syamsuddin
Abstract:
The model for camera model identificaiton is trained using pretrained model ResNet43 and ResNet50. The dataset consists of 500 photos of each phone. Dataset is divided into 1280 photos for training, 320 photos for validation and 400 photos for testing. The model is trained using One Cycle Policy Method and tested using Test-Time Augmentation. Furthermore, the model is trained for 50 epoch using regularization such as drop out and early stopping. The result is 90% accuracy for validation set and above 85% for Test-Time Augmentation using ResNet50. Every model is also trained by slightly updating the pretrained model’s weightsKeywords: One Cycle Policy, ResNet34, ResNet50, Test-Time Agumentation
Procedia PDF Downloads 2092321 Effects of Different Food Matrices on Viscosity and Protein Degradation during in vitro Digestion
Authors: Gulay Oncu Ince, Sibel Karakaya
Abstract:
Food is a worldwide concern. Among the factors that have influences on human health, food, nutrition and life style have been regarded as the most important factors since they can be intervened. While some parts of the world has been faced with food shortages and hence, chronic metabolic diseases, the other part of the world have been emerged from over consumption of food. Both situations can result in shorter life expectancy and represent a major global health problem. Hunger, satiety and appetite sensation form a balance ensures the operation of feeding behavior between food intake and energy consumption. Satiety is one of the approaches that is effective in ensuring weight control and avoid eating more in the postprandial period. By manipulating the microstructure of food macro and micronutrient bioavailability may be increased or reduced. For the food industry appearance, texture, taste structural properties as well as the gastrointestinal tract behavior of the food after the consumption is becoming increasingly important. Also, this behavior has been the subject of several researches in recent years by the scientific community. Numerous studies have been published about changing the food matrix in order to increase expected impacts. In this study, yogurts were enriched with caseinomacropeptide (CMP), whey protein (WP), CMP and sodium alginate (SA), and WP + SA in order to produce goat yogurts having different food matrices. SDS Page profiles of the samples after in vitro digestion and viscosities of the stomach digesta at different share rates were determined. Energy values were 62.11kcal/100 g, 70.27 kcal/100 g, 70.61 kcal/100 g, 71.20 kcal/100 g and 71.67 kcal/100 g for control, CMP added WP added, WP + SA added, and CMP + SA added yogurts respectively. The results of viscosity analysis showed that control yogurt had the lowest viscosity value and this was followed by CMP added, WP added, CMP + SA added and WP + SA added yogurts, respectively. Protein contents of the stomach and duedonal digests of the samples after subjected to two different in vitro digestion methods were changed between 5.34-5.91 mg protein / g sample and 16.93-19.75 mg protein /g of sample, respectively. Viscosity measurements of the stomach digests showed that CMP + SA added yogurt displayed the highest viscosity value in both in vitro digestion methods. There were differences between the protein profiles of the stomach and duedonal digests obtained by two different in vitro digestion methods (p<0.05).Keywords: caseinomacropeptide, protein profile, whey protein, yogurt
Procedia PDF Downloads 4902320 Nursing Students’ Opinions about Theoretical Lessons and Clinical Area: A Survey in a Nursing Department
Authors: Ergin Toros, Manar Aslan
Abstract:
This study was planned as a descriptive study in order to learn the opinions of the students who are studying in nursing undergraduate program about their theoretical/practical lessons and departments. The education in the undergraduate nursing programs has great importance because it contains the knowledge and skills to prepare student nurses to the clinic in the future. In order to provide quality-nursing services in the future, the quality of nursing education should be measured, and opinions of student nurses about education should be taken. The research population was composed of students educated in a university with 1-4 years of theoretical and clinical education (N=550), and the sample was composed of 460 students that accepted to take part in the study. It was reached to 83.6% of target population. Data collected through a survey developed by the researchers. Survey consists of 48 questions about sociodemographic characteristics (9 questions), theoretical courses (9 questions), laboratory applications (7 questions), clinical education (14 questions) and services provided by the faculty (9 questions). It was determined that 83.3% of the nursing students found the nursing profession to be suitable for them, 53% of them selected nursing because of easy job opportunity, and 48.9% of them stayed in state dormitory. Regarding the theoretical courses, 84.6% of the students were determined to agree that the question ‘Course schedule is prepared before the course and published on the university web page.’ 28.7% of them were determined to do not agree that the question ‘Feedback is given to students about the assignments they prepare.’. It has been determined that 41,5% of the students agreed that ‘The time allocated to laboratory applications is sufficient.’ Students said that physical conditions in laboratory (41,5%), and the materials used are insufficient (44.6%), and ‘The number of students in the group is not appropriate for laboratory applications.’ (45.2%). 71.3% of the students think that the nurses view in the clinics the students as a tool to remove the workload, 40.7% of them reported that nurses in the clinic area did not help through the purposes of the course, 39.6% of them said that nurses' communication with students is not good. 37.8% of students stated that nurses did not provide orientation to students, 37.2% of them think that nurses are not role models for students. 53.7% of the students stated that the incentive and support for the student exchange program were insufficient., %48 of the students think that career planning services, %47.2 security services,%45.4 the advisor spent time with students are not enough. It has been determined that nursing students are most disturbed by the approach of the nurses in the clinical area within the undergraduate education program. The clinical area education which is considered as an integral part of nursing education is important and affect to student satisfaction.Keywords: nursing education, student, clinical area, opinion
Procedia PDF Downloads 1762319 Lean Models Classification: Towards a Holistic View
Authors: Y. Tiamaz, N. Souissi
Abstract:
The purpose of this paper is to present a classification of Lean models which aims to capture all the concepts related to this approach and thus facilitate its implementation. This classification allows the identification of the most relevant models according to several dimensions. From this perspective, we present a review and an analysis of Lean models literature and we propose dimensions for the classification of the current proposals while respecting among others the axes of the Lean approach, the maturity of the models as well as their application domains. This classification allowed us to conclude that researchers essentially consider the Lean approach as a toolbox also they design their models to solve problems related to a specific environment. Since Lean approach is no longer intended only for the automotive sector where it was invented, but to all fields (IT, Hospital, ...), we consider that this approach requires a generic model that is capable of being implemented in all areas.Keywords: lean approach, lean models, classification, dimensions, holistic view
Procedia PDF Downloads 4352318 Remarkable Difference in Neurotoxicity Between Two Phospholipases from Russell's Viper Venom: Insight Through Molecular Approach
Authors: Kalyan S. Ghosh, B. L. Dhananjaya
Abstract:
Snake bite causes fatal injuries in multi-organs and even many deaths due to several adverse physiological effects of various phospholipases (PLA2s) present in snake venom. Though these PLA2s bear highly homologues sequences and also structure but exhibit a different extent of those pharmacological effects. In this study, we have explored the difference in the neurotoxicity of two PLA2 namely PLA2-V, PLA2-VIIIa present in the venom from Vipera russellii. Bioinformatics studies on sequences of these two proteins along with detailed structural comparison enable us to explore the differences unambiguously. The identification of the residues involved in neurotoxicity will further lead towards proper designing of inhibitors against such killing effects of the venom.Keywords: electrostatic potential, homology modeling, hydrophobicity, neurotoxicity, Phospholipase A2
Procedia PDF Downloads 4392317 Developement of a New Wearable Device for Automatic Guidance Service
Authors: Dawei Cai
Abstract:
In this paper, we present a new wearable device that provide an automatic guidance servie for visitors. By combining the position information from NFC and the orientation information from a 6 axis acceleration and terrestrial magnetism sensor, the head's direction can be calculated. We developed an algorithm to calculate the device orientation based on the data from acceleration and terrestrial magnetism sensor. If visitors want to know some explanation about an exhibit in front of him, what he has to do is just lift up his mobile device. The identification program will automatically identify the status based on the information from NFC and MEMS, and start playing explanation content for him. This service may be convenient for old people or disables or children.Keywords: wearable device, ubiquitous computing, guide sysem, MEMS sensor, NFC
Procedia PDF Downloads 4252316 Identification of Service Quality Determinants in the Hotel Sector - A Conceptual Review
Authors: Asem M. Othman
Abstract:
The expansion of the hospitality industry is unmistakable. Services, by nature, are intangible. Hence, service quality, in general, is a complicated process to be measured and evaluated. Hotels, as a service sector and part of the hospitality industry, are growing rapidly. This research paper was carried out to identify the quality determinants that may affect hotel guests’ service quality perception. In this research paper, each quality determinant will be discussed, illustrated, and justified thoroughly via a systematic literature review. The purpose of this paper is to set the stage to measure the significant influence of the service quality determinants on guest satisfaction. The knowledge produced from this study will assist practitioners and/or hotel service providers to imply into their policies.Keywords: service quality, hotel service, quality management, quality determinants
Procedia PDF Downloads 2742315 Identification of Configuration Space Singularities with Local Real Algebraic Geometry
Authors: Marc Diesse, Hochschule Heilbronn
Abstract:
We address the question of identifying the configuration space singularities of linkages, i.e., points where the configuration space is not locally a submanifold of Euclidean space. Because the configuration space cannot be smoothly parameterized at such points, these singularity types have a significantly negative impact on the kinematics of the linkage. It is known that Jacobian methods do not provide sufficient conditions for the existence of CS-singularities. Herein, we present several additional algebraic criteria that provide the sufficient conditions. Further, we use those criteria to analyze certain classes of planar linkages. These examples will also show how the presented criteria can be checked using algorithmic methods.Keywords: linkages, configuration space-singularities, real algebraic geometry, analytic geometry
Procedia PDF Downloads 1482314 Spectrogram Pre-Processing to Improve Isotopic Identification to Discriminate Gamma and Neutrons Sources
Authors: Mustafa Alhamdi
Abstract:
Industrial application to classify gamma rays and neutron events is investigated in this study using deep machine learning. The identification using a convolutional neural network and recursive neural network showed a significant improvement in predication accuracy in a variety of applications. The ability to identify the isotope type and activity from spectral information depends on feature extraction methods, followed by classification. The features extracted from the spectrum profiles try to find patterns and relationships to present the actual spectrum energy in low dimensional space. Increasing the level of separation between classes in feature space improves the possibility to enhance classification accuracy. The nonlinear nature to extract features by neural network contains a variety of transformation and mathematical optimization, while principal component analysis depends on linear transformations to extract features and subsequently improve the classification accuracy. In this paper, the isotope spectrum information has been preprocessed by finding the frequencies components relative to time and using them as a training dataset. Fourier transform implementation to extract frequencies component has been optimized by a suitable windowing function. Training and validation samples of different isotope profiles interacted with CdTe crystal have been simulated using Geant4. The readout electronic noise has been simulated by optimizing the mean and variance of normal distribution. Ensemble learning by combing voting of many models managed to improve the classification accuracy of neural networks. The ability to discriminate gamma and neutron events in a single predication approach using deep machine learning has shown high accuracy using deep learning. The paper findings show the ability to improve the classification accuracy by applying the spectrogram preprocessing stage to the gamma and neutron spectrums of different isotopes. Tuning deep machine learning models by hyperparameter optimization of neural network models enhanced the separation in the latent space and provided the ability to extend the number of detected isotopes in the training database. Ensemble learning contributed significantly to improve the final prediction.Keywords: machine learning, nuclear physics, Monte Carlo simulation, noise estimation, feature extraction, classification
Procedia PDF Downloads 1512313 Distinguishing between Bacterial and Viral Infections Based on Peripheral Human Blood Tests Using Infrared Microscopy and Multivariate Analysis
Authors: H. Agbaria, A. Salman, M. Huleihel, G. Beck, D. H. Rich, S. Mordechai, J. Kapelushnik
Abstract:
Viral and bacterial infections are responsible for variety of diseases. These infections have similar symptoms like fever, sneezing, inflammation, vomiting, diarrhea and fatigue. Thus, physicians may encounter difficulties in distinguishing between viral and bacterial infections based on these symptoms. Bacterial infections differ from viral infections in many other important respects regarding the response to various medications and the structure of the organisms. In many cases, it is difficult to know the origin of the infection. The physician orders a blood, urine test, or 'culture test' of tissue to diagnose the infection type when it is necessary. Using these methods, the time that elapses between the receipt of patient material and the presentation of the test results to the clinician is typically too long ( > 24 hours). This time is crucial in many cases for saving the life of the patient and for planning the right medical treatment. Thus, rapid identification of bacterial and viral infections in the lab is of great importance for effective treatment especially in cases of emergency. Blood was collected from 50 patients with confirmed viral infection and 50 with confirmed bacterial infection. White blood cells (WBCs) and plasma were isolated and deposited on a zinc selenide slide, dried and measured under a Fourier transform infrared (FTIR) microscope to obtain their infrared absorption spectra. The acquired spectra of WBCs and plasma were analyzed in order to differentiate between the two types of infections. In this study, the potential of FTIR microscopy in tandem with multivariate analysis was evaluated for the identification of the agent that causes the human infection. The method was used to identify the infectious agent type as either bacterial or viral, based on an analysis of the blood components [i.e., white blood cells (WBC) and plasma] using their infrared vibrational spectra. The time required for the analysis and evaluation after obtaining the blood sample was less than one hour. In the analysis, minute spectral differences in several bands of the FTIR spectra of WBCs were observed between groups of samples with viral and bacterial infections. By employing the techniques of feature extraction with linear discriminant analysis (LDA), a sensitivity of ~92 % and a specificity of ~86 % for an infection type diagnosis was achieved. The present preliminary study suggests that FTIR spectroscopy of WBCs is a potentially feasible and efficient tool for the diagnosis of the infection type.Keywords: viral infection, bacterial infection, linear discriminant analysis, plasma, white blood cells, infrared spectroscopy
Procedia PDF Downloads 2242312 GC-MS Identification of Two Major Essential Oils and their Anti-Oxidative Effect Using DPPH Assay
Authors: Mohammed Falalu Hamza
Abstract:
A phytochemical investigation conducted on the leaves extract of Cryptocarya latifolia (Lauraceae) revealed the presence of two major essential oils; Nerolidol (1) and Copaene (2) with the aid of gas chromatography-mass spectrometry (GC-MS). The compounds exhibited good anti-oxidant capacity using 2,2-diphenyl-1-picryl-hydrazyl (DPPH) radical scavenging assay. The result shows that the anti-oxidant capacity of the compounds is dependent on concentration similar to the standard (ascorbic acid). This study shows that the leaves extract of C. latifolia is a good source of important natural antioxidants.Keywords: broad-leaved quince, phytochemical, anti-oxidant, essential oils
Procedia PDF Downloads 5052311 Continuous Catalytic Hydrogenation and Purification for Synthesis Non-Phthalate
Authors: Chia-Ling Li
Abstract:
The scope of this article includes the production of 10,000 metric tons of non-phthalate per annum. The production process will include hydrogenation, separation, purification, and recycling of unprocessed feedstock. Based on experimental data, conversion and selectivity were chosen as reaction model parameters. The synthesis and separation processes of non-phthalate and phthalate were established by using Aspen Plus software. The article will be divided into six parts: estimation of physical properties, integration of production processes, purification case study, utility consumption, economic feasibility study and identification of bottlenecks. The purities of products was higher than 99.9 wt. %. Process parameters have important guiding significance to the commercialization of hydrogenation of phthalate.Keywords: economic analysis, hydrogenation, non-phthalate, process simulation
Procedia PDF Downloads 2772310 Evaluation of Hydrogen Particle Volume on Surfaces of Selected Nanocarbons
Authors: M. Ziółkowska, J. T. Duda, J. Milewska-Duda
Abstract:
This paper describes an approach to the adsorption phenomena modeling aimed at specifying the adsorption mechanisms on localized or nonlocalized adsorbent sites, when applied to the nanocarbons. The concept comes from the fundamental thermodynamic description of adsorption equilibrium and is based on numerical calculations of the hydrogen adsorbed particles volume on the surface of selected nanocarbons: single-walled nanotube and nanocone. This approach enables to obtain information on adsorption mechanism and then as a consequence to take appropriate mathematical adsorption model, thus allowing for a more reliable identification of the material porous structure. Theoretical basis of the approach is discussed and newly derived results of the numerical calculations are presented for the selected nanocarbons.Keywords: adsorption, mathematical modeling, nanocarbons, numerical analysis
Procedia PDF Downloads 2692309 Proteomic Analysis of Cytoplasmic Antigen from Brucella canis to Characterize Immunogenic Proteins Responded with Naturally Infected Dogs
Authors: J. J. Lee, S. R. Sung, E. J. Yum, S. C. Kim, B. H. Hyun, M. Her, H. S. Lee
Abstract:
Canine brucellosis is a critical problem in dogs leading to reproductive diseases which are mainly caused by Brucella canis. There are, nonetheless, not clear symptoms so that it may go unnoticed in most of the cases. Serodiagnosis for canine brucellosis has not been confirmed. Moreover, it has substantial difficulties due to broad cross-reactivity between the rough cell wall antigens of B. canis and heterospecific antibodies present in normal, uninfected dogs. Thus, this study was conducted to characterize the immunogenic proteins in cytoplasmic antigen (CPAg) of B. canis, which defined the antigenic sensitivity of the humoral antibody responses to B. canis-infected dogs. In analysis of B. canis CPAg, first, we extracted and purified the cytoplasmic proteins from cultured B. canis by hot-saline inactivation, ultrafiltration, sonication, and ultracentrifugation step by step according to the sonicated antigen extract method. For characterization of this antigen, we checked the sort and range of each protein on SDS-PAGE and verified the immunogenic proteins leading to reaction with antisera of B. canis-infected dogs. Selected immunodominant proteins were identified using MALDI-MS/MS. As a result, in an immunoproteomic assay, several polypeptides in CPAg on one or two-dimensional electrophoresis (DE) were specifically reacted to antisera from B. canis-infected dogs but not from non-infected dogs. The polypeptides with approximate 150, 80, 60, 52, 33, 26, 17, 15, 13, 11 kDa on 1-DE were dominantly recognized by antisera from B. canis-infected dogs. In the immunoblot profiles on 2-DE, ten immunodominant proteins in CPAg were detected with antisera of infected dogs between pI 3.5-6.5 at approximate 35 to 10 KDa, without any nonspecific reaction with sera in non-infected dogs. Ten immunodominant proteins identified by MALDI-MS/MS were identified as superoxide dismutase, bacteroferritin, amino acid ABC transporter substrate-binding protein, extracellular solute-binding protein family3, transaldolase, 26kDa periplasmic immunogenic protein, Rhizopine-binding protein, enoyl-CoA hydratase, arginase and type1 glyceraldehyde-3-phosphate dehydrogenase. Most of these proteins were determined by their cytoplasmic or periplasmic localization with metabolism and transporter functions. Consequently, this study discovered and identified the prominent immunogenic proteins in B. canis CPAg, highlighting that those antigenic proteins may accomplish a specific serodiagnosis for canine brucellosis. Furthermore, we will evaluate those immunodominant proteins for applying to the advanced diagnostic methods with high specificity and accuracy.Keywords: Brucella canis, Canine brucellosis, cytoplasmic antigen, immunogenic proteins
Procedia PDF Downloads 147