Search results for: reduced glutathione (GSH)
2762 Cascaded Multi-Level Single-Phase Switched Boost Inverter
Authors: Van-Thuan Tran, Minh-Khai Nguyen, Geum-Bae Cho
Abstract:
Recently, multilevel inverters have become more attractive for researchers due to low total harmonic distortion (THD) in the output voltage and low electromagnetic interference (EMI). This paper proposes a single-phase cascaded H-bridge quasi switched boost inverter (CHB-qSBI) for renewable energy sources applications. The proposed inverter has the advantage over the cascaded H-bridge quasi-Z-source inverter (CHB-qZSI) in reducing two capacitors and two inductors. As a result, cost, weight, and size are reduced. Furthermore, the dc-link voltage of each module is controlled by individual shoot-through duty cycle to get the same values. Therefore, the proposed inverter solves the imbalance problem of dc-link voltage in traditional CHB inverter. This paper shows the operating principles and analysis of the single-phase cascaded H-bridge quasi switched boost inverter. Also, a control strategy for the proposed inverter is shown. Experimental and simulation results are shown to verify the operating principle of the proposed inverter.Keywords: renewable energy sources, cascaded h-bridge inverter, quasi switched boost inverter, quasi z-source inverter, multilevel inverter
Procedia PDF Downloads 3352761 Sustainable Reinforcement: Investigating the Mechanical Properties of Concrete with Recycled Aggregates and Sisal Fibers
Authors: Salahaldein Alsadey, Issa Amaish
Abstract:
Recycled aggregates (RA) have the potential to compromise concrete performance, contributing to issues such as reduced strength and increased susceptibility to cracking. This study investigates the impact of sisal fiber (SF) on the mechanical properties of concrete, with the objective of utilizing sisal fibers as a reinforcing element in concrete compositions containing natural aggregate and varying percentages (25%, 50%, and 75%) of coarse recycled aggregate replacement. The investigation aims to discern the positive and negative effects on compressive and flexural strength, thereby assessing the viability of sisal fiber-reinforced recycled concrete in comparison to conventional concrete composed of natural aggregate without sisal fiber. Test results revealed that concrete samples incorporating sisal fiber exhibited elevated compressive and flexural strength. Comparative analysis of these strength values was conducted with reference to samples devoid of sisal fiber.Keywords: sustainable construction, construction materials, recycled aggregate, sisal fibers, compressive strength, flexural strength, eco-friendly concrete, natural fiber composites, recycled materials, construction waste management
Procedia PDF Downloads 772760 Drying Kinetics of Vacuum Dried Beef Meat Slices
Authors: Elif Aykin Dincer, Mustafa Erbas
Abstract:
The vacuum drying behavior of beef slices (10 x 4 x 0.2 cm3) was experimentally investigated at the temperature of 60, 70, and 80°C under 25 mbar ultimate vacuum pressure and the mathematical models (Lewis, Page, Midilli, Two-term, Wangh and Singh and Modified Henderson and Pabis) were used to fit the vacuum drying of beef slices. The increase in drying air temperature resulted in a decrease in drying time. It took approximately 206, 180 and 157 min to dry beef slices from an initial moisture content to a final moisture content of 0.05 kg water/kg dry matter at 60, 70 and 80 °C of vacuum drying, respectively. It is also observed that the drying rate increased with increasing drying temperature. The coefficients (R2), the reduced chi-square (x²) and root mean square error (RMSE) values were obtained by application of six models to the experimental drying data. The best model with the highest R2 and, the lowest x² and RMSE values was selected to describe the drying characteristics of beef slices. The Page model has shown a better fit to the experimental drying data as compared to other models. In addition, the effective moisture diffusivities of beef slices in the vacuum drying at 60 - 80 °C varied in the range of 1.05 – 1.09 x 10-10 m2/s. Consequently, this results can be used to simulate vacuum drying process of beef slices and improve efficiency of the drying process.Keywords: beef slice, drying models, effective diffusivity, vacuum
Procedia PDF Downloads 2932759 Effect of Ultrasonic Treatment on the Suspension Stability, Zeta Potential and Contact Angle of Celestite
Authors: Kiraz Esmeli, Alper Ozkan
Abstract:
In this study, firstly, the effect of ultrasonic treatment on the stability of celestite suspension was investigated. In this context, the variations of the suspension stability with ultrasonic power, treatment time, immersion depth of ultrasonic probe, and treatment regime (batch and continuous) were determined. The experimental results showed that the suspension stability and zeta potential of celestite decreased with ultrasonic treatment. Also, the treatment time, immersion depth of probe, and treatment regime affected the stability of celestite suspension. Secondly, the effect of pre-treatment of the suspension with the ultrasonic process on the shear flocculation of celestite using sodium dodecyl sulfate (SDS) was studied and the variations of the flocculation, zeta potential, and contact angle of the mineral with SDS concentration were presented. It was found that the ultrasonic pre-treatment slightly improved the shear flocculation of celestite particles in accordance with the increase in the contact angles. In addition, the ultrasonic process again relatively reduced the magnitude of the negative potential of celestite particles in the presence of SDS.Keywords: celestite, contact angle, suspension stability, ultrasonic treatment, zeta potential
Procedia PDF Downloads 2292758 Formulation of Optimal Shifting Sequence for Multi-Speed Automatic Transmission
Authors: Sireesha Tamada, Debraj Bhattacharjee, Pranab K. Dan, Prabha Bhola
Abstract:
The most important component in an automotive transmission system is the gearbox which controls the speed of the vehicle. In an automatic transmission, the right positioning of actuators ensures efficient transmission mechanism embodiment, wherein the challenge lies in formulating the number of actuators associated with modelling a gearbox. Data with respect to actuation and gear shifting sequence has been retrieved from the available literature, including patent documents, and has been used in this proposed heuristics based methodology for modelling actuation sequence in a gear box. This paper presents a methodological approach in designing a gearbox for the purpose of obtaining an optimal shifting sequence. The computational model considers factors namely, the number of stages and gear teeth as input parameters since these two are the determinants of the gear ratios in an epicyclic gear train. The proposed transmission schematic or stick diagram aids in developing the gearbox layout design. The number of iterations and development time required to design a gearbox layout is reduced by using this approach.Keywords: automatic transmission, gear-shifting, multi-stage planetary gearbox, rank ordered clustering
Procedia PDF Downloads 3292757 Auricular Electroacupuncture Rescued Epilepsy Seizure by Attenuating TLR-2 Inflammatory Pathway in the Kainic Acid-Induced Rats
Authors: I-Han Hsiao, Chun-Ping Huang, Ching-Liang Hsieh, Yi-Wen Lin
Abstract:
Epilepsy is chronic brain disorder that results in the sporadic occurrence of spontaneous seizures in the temporal lobe, cerebral cortex, and hippocampus. Clinical antiepileptic medicines are often ineffective or little benefits in the small amount of patients and usually initiate severe side effects. This inflammation contributes to enhanced neuronal excitability and the onset of epilepsy. Auricular electric-stimulation (AES) can increase parasympathetic activity and stimulate the solitary tract nucleus to induce the cholinergic anti-inflammatory pathway. Furthermore, it may be a therapeutic strategy for the treatment of epilepsy. In the present study, we want to investigate the effects of AES on inflammatory mediators in kainic acid (KA)-induced epileptic seizure rats. Experimental KA injection increased expression of TLR-2 pathway associated inflammatory mediators, were further reduced by either 2Hz or 15 Hz AES in the prefrontal cortex, hippocampus, and somatosensory cortex. We suggest that AES can successfully control the epileptic seizure by down-regulation of inflammation signaling pathway.Keywords: auricular electric-stimulation, epileptic seizures, anti-inflammation
Procedia PDF Downloads 1882756 A Quantitative and Exploratory Study of the Changing Ideals and Challenges Involving the Modern Olympic Movement
Authors: Ram Dayal
Abstract:
Since inception of the modern Olympic Games in 1896 in Athens, Greece, it has undergone a paradigm shift over a period of more than a century. It originated with the purpose of inculcating physical and moral qualities, sense of aesthetics, ethical and spiritual value and educating young people, through the spread of the philosophy of amateurism, which is free from the vices of racial discrimination, any country’s domination, corruption, doping menace and political interference. Now, it has metamorphosed into the arena where only professionalism matters and has been reduced to the show of strength for countries analogous to the cold war. Rather than spirit of sports, the economics of sports is the more relevant underpinning. Changes in medal tally over a period of time and its correlation with the changing geo-political structure have been evaluated quantitatively using regression analyses, which have yielded statistically significant relationship among variables. The present study also tries to explore this shift in Olympic spirit through historical approach, using books, thesis, dissertations, articles, related documents. The present study will help evaluate the Olympic ideals with modern perspective and the need to replace or reinstall the same in order to nurture and rejuvenate the modern Olympic movement.Keywords: challenges, games, olympic, sports
Procedia PDF Downloads 2282755 Immobilization Strategy of Recombinant Xylanase from Trichoderma reesei by Cross-Linked Enzyme Aggregates
Authors: S. Md. Shaarani, J. Md. Jahim, R. A. Rahman, R. Md. Illias
Abstract:
Modern developments in biotechnology have paved the way for extensive use of biocatalysis in industries. Although it offers immense potential, industrial application is usually hampered by lack of operational stability, difficulty in recovery as well as limited re-use of the enzyme. These drawbacks, however, can be overcome by immobilization. Cross-linked enzyme aggregates (CLEAs), a versatile carrier-free immobilization technique is one that is currently capturing global interest. This approach involves precipitating soluble enzyme with an appropriate precipitant and subsequent crosslinking by a crosslinking reagent. Without ineffective carriers, CLEAs offer high enzymatic activity, stability and reduced production cost. This study demonstrated successful CLEA synthesis of recombinant xylanase from Trichoderma reesei using ethanol as aggregating agent and glutaraldehyde (2% (v/v); 100 mM) as crosslinker. Effects of additives including proteic feeder such as bovine serum albumin (BSA) and poly-L-Lysine were investigated to reveal its significance in enhancing the performance of enzyme. Addition of 0.1 mg BSA/U xylanase showed considerable increment in CLEA development with approximately 50% retained activity.Keywords: cross-linked, immobilization, recombinant, xylanase
Procedia PDF Downloads 3632754 Effects of Directivity and Fling Step on Buildings Equipped with J-Hook Sandwich Composite Walls and Reinforced Concrete Shear Walls
Authors: Majid Saaly, Shahriar Tavousi Tafreshi, Mehdi Nazari Afshar
Abstract:
The structural systems with the sandwich composite wall (SCSSC) are of very popular due to their ductileness and competency to swallow more energy and power than standard reinforced concrete shear walls. The purpose of this enhanced system is in high-rise building, Nuclear power plant facilities, and bridge slabs are much more. SCSSCs showed acceptable seismic performance under experimental tests and cyclic loading from the points of view of in-plane and out-of-plane shear and flexural interaction, in-plane punching shear, and compressive behavior. The use of sandwich composite walls with J-hook connectors has a significant effect on energy dissipation and reduction of dynamic responses of mid-rise and high-rise structural models. By changing the systems of the building from SW to SCWJ, the maximum inter-story drift values of ten- and fifteen-story models are reduced by up to 25% and 35%, respectively.Keywords: J-Hook sandwich composite walls, fling step, directivity, IDA analyses, fractile curves
Procedia PDF Downloads 1612753 The Prediction of Sound Absorbing Coefficient for Multi-Layer Non-Woven
Authors: Un-Hwan Park, Jun-Hyeok Heo, In-Sung Lee, Tae-Hyeon Oh, Dae-Gyu Park
Abstract:
Automotive interior material consisting of several material layers has the sound-absorbing function. It is difficult to predict sound absorbing coefficient because of several material layers. So, many experimental tunings are required to achieve the target of sound absorption. Therefore, while the car interior materials are developed, so much time and money is spent. In this study, we present a method to predict the sound absorbing performance of the material with multi-layer using physical properties of each material. The properties are predicted by Foam-X software using the sound absorption coefficient data measured by impedance tube. Then, we will compare and analyze the predicted sound absorption coefficient with the data measured by scaled reverberation chamber and impedance tubes for a prototype. If the method is used instead of experimental tuning in the development of car interior material, the time and money can be saved, and then, the development effort can be reduced because it can be optimized by simulation.Keywords: multi-layer nonwoven, sound absorption coefficient, scaled reverberation chamber, impedance tubes
Procedia PDF Downloads 3802752 Impact of Transgenic Adipose Derived Stem Cells in the Healing of Spinal Cord Injury of Dogs
Authors: Imdad Ullah Khan, Yongseok Yoon, Kyeung Uk Choi, Kwang Rae Jo, Namyul Kim, Eunbee Lee, Wan Hee Kim, Oh-Kyeong Kweon
Abstract:
The primary spinal cord injury (SCI) causes mechanical damage to the neurons and blood vessels. It leads to secondary SCI, which activates multiple pathological pathways, which expand neuronal damage at the injury site. It is characterized by vascular disruption, ischemia, excitotoxicity, oxidation, inflammation, and apoptotic cell death. It causes nerve demyelination and disruption of axons, which perpetuate a loss of impulse conduction through the injured spinal cord. It also leads to the production of myelin inhibitory molecules, which with a concomitant formation of an astroglial scar, impede axonal regeneration. The pivotal role regarding the neuronal necrosis is played by oxidation and inflammation. During an early stage of spinal cord injury, there occurs an abundant expression of reactive oxygen species (ROS) due to defective mitochondrial metabolism and abundant migration of phagocytes (macrophages, neutrophils). ROS cause lipid peroxidation of the cell membrane, and cell death. Abundant migration of neutrophils, macrophages, and lymphocytes collectively produce pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), interleukin-1beta (IL-1β), matrix metalloproteinase, superoxide dismutase, and myeloperoxidases which synergize neuronal apoptosis. Therefore, it is crucial to control inflammation and oxidation injury to minimize the nerve cell death during secondary spinal cord injury. Therefore, in response to oxidation and inflammation, heme oxygenase-1 (HO-1) is induced by the resident cells to ameliorate the milieu. In the meanwhile, neurotrophic factors are induced to promote neuroregeneration. However, it seems that anti-stress enzyme (HO-1) and neurotrophic factor (BDNF) do not significantly combat the pathological events during secondary spinal cord injury. Therefore, optimum healing can be induced if anti-inflammatory and neurotrophic factors are administered in a higher amount through an exogenous source. During the first experiment, the inflammation and neuroregeneration were selectively targeted. HO-1 expressing MSCs (HO-1 MSCs) and BDNF expressing MSCs (BDNF MSC) were co-transplanted in one group (combination group) of dogs with subacute spinal cord injury to selectively control the expression of inflammatory cytokines by HO-1 and induce neuroregeneration by BDNF. We compared the combination group with the HO-1 MSCs group, BDNF MSCs group, and GFP MSCs group. We found that the combination group showed significant improvement in functional recovery. It showed increased expression of neural markers and growth-associated proteins (GAP-43) than in other groups, which depicts enhanced neuroregeneration/neural sparing due to reduced expression of pro-inflammatory cytokines such as TNF-alpha, IL-6 and COX-2; and increased expression of anti-inflammatory markers such as IL-10 and HO-1. Histopathological study revealed reduced intra-parenchymal fibrosis in the injured spinal cord segment in the combination group than in other groups. Thus it was concluded that selectively targeting the inflammation and neuronal growth with the combined use of HO-1 MSCs and BDNF MSCs more favorably promote healing of the SCI. HO-1 MSCs play a role in controlling the inflammation, which favors the BDNF induced neuroregeneration at the injured spinal cord segment of dogs.Keywords: HO-1 MSCs, BDNF MSCs, neuroregeneration, inflammation, anti-inflammation, spinal cord injury, dogs
Procedia PDF Downloads 1222751 Heat Transfer Coefficients of Layers of Greenhouse Thermal Screens
Authors: Vitaly Haslavsky, Helena Vitoshkin
Abstract:
The total energy saving effect of different types of greenhouse thermal/shade screens was determined by measuring and calculating the overall heat transfer coefficients (U-values) for single and several layers of screens. The measurements were carried out using the hot box method, and the calculations were performed according to the ISO Standard 15099. The goal was to examine different types of materials with a wide range of thermal radiation properties used for thermal screens in combination with a dehumidification system in order to improve greenhouse insulation. The experimental results were in good agreement with the calculated heat transfer coefficients. It was shown that a high amount of infra-red (IR) radiation can be blocked by the greenhouse covering material in combination with moveable thermal screens. The aluminum foil screen could be replaced by transparent screens, depending on shading requirements. The results indicated that using a single layer, the U-value was reduced by approximately 70% compared to covering material alone, while the contributions of additional screen layers containing aluminum foil strips could reduce the U-value by approximately 90%. It was shown that three screen layers are sufficient for effective insulation.Keywords: greenhouse insulation, heat loss, thermal screens, U-value
Procedia PDF Downloads 1202750 Jump-Like Deformation of Ultrafinegrained AZ31 at Temperature 4,2 - 0,5 K
Authors: Pavel Zabrodin
Abstract:
The drawback of magnesium alloys is poor plasticity, which complicates the forming. Effective way of improving the properties of the cast magnesium alloy AZ31 (3 wt. % Al, 0.8 wt. % Zn, 0.2 wt. % Mn)) is to combine hot extrusion at 350°C and equal-channel angular pressing (ECAP) at 180°C. Because of reduced grain sizes, changes in the nature of the grain boundaries, and enhancement of a texture that favors basal dislocation glide, after this kind of processing, increase yield stress and ductility. For study of the effect of microstructure on the mechanisms for plastic deformation, there is some interest in investigating the mechanical properties of the ultrafinegrained (UFG) Mg alloy at low temperatures, before and after annealing. It found that the amplitude and statistics at the low-temperature jump-like deformation the Mg alloy of dependent on microstructure. Reduction of the average density of dislocations and grain growth during annealing causing a reduction in the amplitude of the jump-like deformation and changes in the distribution of surges in amplitude. It found that the amplitude and statistics at the low-temperature jump-like deformation UFG alloy dependent on temperature of deformation. Plastic deformation of UFG alloy at a temperature of 10 K occurs uniformly - peculiarities is not observed. Increasing of the temperature of deformation from 4,2 to 0,5 K is causing a reduction in the amplitude and increasing the frequency of the jump-like deformation.Keywords: jump-like deformation, low temperature, plasticity, magnesium alloy
Procedia PDF Downloads 4652749 Investigation of Gas Tungsten Arc Welding Parameters on Residual Stress of Heat Affected Zone in Inconel X750 Super Alloy Welding Using Finite Element Method
Authors: Kimia Khoshdel Vajari, Saber Saffar
Abstract:
Reducing the residual stresses caused by welding is desirable for the industry. The effect of welding sequence, as well as the effect of yield stress on the number of residual stresses generated in Inconel X750 superalloy sheets and beams, have been investigated. The finite element model used in this research is a three-dimensional thermal and mechanical model, and the type of analysis is indirect coupling. This analysis is done in two stages. First, thermal analysis is performed, and then the thermal changes of the first analysis are used as the applied load in the second analysis. ABAQUS has been used for modeling, and the Dflux subroutine has been used in the Fortran programming environment to move the arc and the molten pool. The results of this study show that the amount of tensile residual stress in symmetric, discontinuous, and symmetric-discontinuous welds is reduced to a maximum of 27%, 54%, and 37% compared to direct welding, respectively. The results also show that the amount of residual stresses created by welding increases linearly with increasing yield stress with a slope of 40%.Keywords: residual stress, X750 superalloy, finite element, welding, thermal analysis
Procedia PDF Downloads 1242748 Assessment of the Efficacy of Oral Vaccination of Wild Canids and Stray Dogs against Rabies in Azerbaijan
Authors: E. N. Hasanov, K. Y. Yusifova, M. A. Ali
Abstract:
Rabies is a zoonotic disease that causes acute encephalitis in domestic and wild carnivores. The goal of our investigation was to analyze the data on oral vaccination of wild canids and stray dogs in Azerbaijan. Before the start of the vaccination campaign conducted by the International Dialogue for Environmental Action (IDEA) Animal Care Center (IACC), all rabies cases in Azerbaijan for the period of 2017-2020 were analyzed. So, 30 regions for oral immunization with the Rabadrop vaccine were selected. In total, 95.9 thousand doses of baits were scattered in 30 regions, 970 (0.97%) remained intact. In addition, a campaign to sterilize and vaccinate stray dogs and cats undoubtedly had a positive impact on reducing the dynamics of rabies incidence. During the period 2017-2020, 2339 dogs and 2962 cats were sterilized and vaccinated under this program. It can be noted that the risk of rabies infection can be reduced through special preventive measures against disease reservoirs, which include oral immunization of wild and stray animals.Keywords: rabies, vaccination, oral immunization, wild canids, stray dogs, baits, disease reservoirs
Procedia PDF Downloads 1992747 Modeling, Analysis and Control of a Smart Composite Structure
Authors: Nader H. Ghareeb, Mohamed S. Gaith, Sayed M. Soleimani
Abstract:
In modern engineering, weight optimization has a priority during the design of structures. However, optimizing the weight can result in lower stiffness and less internal damping, causing the structure to become excessively prone to vibration. To overcome this problem, active or smart materials are implemented. The coupled electromechanical properties of smart materials, used in the form of piezoelectric ceramics in this work, make these materials well-suited for being implemented as distributed sensors and actuators to control the structural response. The smart structure proposed in this paper is composed of a cantilevered steel beam, an adhesive or bonding layer, and a piezoelectric actuator. The static deflection of the structure is derived as function of the piezoelectric voltage, and the outcome is compared to theoretical and experimental results from literature. The relation between the voltage and the piezoelectric moment at both ends of the actuator is also investigated and a reduced finite element model of the smart structure is created and verified. Finally, a linear controller is implemented and its ability to attenuate the vibration due to the first natural frequency is demonstrated.Keywords: active linear control, lyapunov stability theorem, piezoelectricity, smart structure, static deflection
Procedia PDF Downloads 3912746 Clinical Pathway for Postoperative Organ Transplantation
Authors: Tahsien Okasha
Abstract:
Transplantation medicine is one of the most challenging and complex areas of modern medicine. Some of the key areas for medical management are the problems of transplant rejection, during which the body has an immune response to the transplanted organ, possibly leading to transplant failure and the need to immediately remove the organ from the recipient. When possible, transplant rejection can be reduced through serotyping to determine the most appropriate donor-recipient match and through the use of immunosuppressant drugs. Postoperative care actually begins before the surgery in terms of education, discharge planning, nutrition, pulmonary rehabilitation, and patient/family education. This also allows for expectations to be managed. A multidisciplinary approach is the key, and collaborative team meetings are essential to ensuring that all team members are "on the same page." .The following clinical pathway map and guidelines with the aim to decrease alteration in clinical practice and are intended for those healthcare professionals who look after organ transplant patients. They are also intended to be useful to both medical and surgical trainees as well as nurse specialists and other associated healthcare professionals involved in the care of organ transplant patients. This pathway is general pathway include the general guidelines that can be applicable for all types of organ transplant with special considerations to each organ.Keywords: postoperative care, organ transplant, clinical pathway, patient
Procedia PDF Downloads 4632745 Design of a Service-Enabled Dependable Integration Environment
Authors: Fuyang Peng, Donghong Li
Abstract:
The aim of information systems integration is to make all the data sources, applications and business flows integrated into the new environment so that unwanted redundancies are reduced and bottlenecks and mismatches are eliminated. Two issues have to be dealt with to meet such requirements: the software architecture that supports resource integration, and the adaptor development tool that help integration and migration of legacy applications. In this paper, a service-enabled dependable integration environment (SDIE), is presented, which has two key components, i.e., a dependable service integration platform and a legacy application integration tool. For the dependable platform for service integration, the service integration bus, the service management framework, the dependable engine for service composition, and the service registry and discovery components are described. For the legacy application integration tool, its basic organization, functionalities and dependable measures taken are presented. Due to its service-oriented integration model, the light-weight extensible container, the service component combination-oriented p-lattice structure, and other features, SDIE has advantages in openness, flexibility, performance-price ratio and feature support over commercial products, is better than most of the open source integration software in functionality, performance and dependability support.Keywords: application integration, dependability, legacy, SOA
Procedia PDF Downloads 3652744 A Deep Learning Based Method for Faster 3D Structural Topology Optimization
Authors: Arya Prakash Padhi, Anupam Chakrabarti, Rajib Chowdhury
Abstract:
Topology or layout optimization often gives better performing economic structures and is very helpful in the conceptual design phase. But traditionally it is being done in finite element-based optimization schemes which, although gives a good result, is very time-consuming especially in 3D structures. Among other alternatives machine learning, especially deep learning-based methods, have a very good potential in resolving this computational issue. Here convolutional neural network (3D-CNN) based variational auto encoder (VAE) is trained using a dataset generated from commercially available topology optimization code ABAQUS Tosca using solid isotropic material with penalization (SIMP) method for compliance minimization. The encoded data in latent space is then fed to a 3D generative adversarial network (3D-GAN) to generate the outcome in 64x64x64 size. Here the network consists of 3D volumetric CNN with rectified linear unit (ReLU) activation in between and sigmoid activation in the end. The proposed network is seen to provide almost optimal results with significantly reduced computational time, as there is no iteration involved.Keywords: 3D generative adversarial network, deep learning, structural topology optimization, variational auto encoder
Procedia PDF Downloads 1772743 Effect of Composite Material on Damping Capacity Improvement of Cutting Tool in Machining Operation Using Taguchi Approach
Authors: Siamak Ghorbani, Nikolay Ivanovich Polushin
Abstract:
Chatter vibrations, occurring during cutting process, cause vibration between the cutting tool and workpiece, which deteriorates surface roughness and reduces tool life. The purpose of this study is to investigate the influence of cutting parameters and tool construction on surface roughness and vibration in turning of aluminum alloy AA2024. A new design of cutting tool is proposed, which is filled up with epoxy granite in order to improve damping capacity of the tool. Experiments were performed at the lathe using carbide cutting insert coated with TiC and two different cutting tools made of AISI 5140 steel. Taguchi L9 orthogonal array was applied to design of experiment and to optimize cutting conditions. By the help of signal-to-noise ratio and analysis of variance the optimal cutting condition and the effect of the cutting parameters on surface roughness and vibration were determined. Effectiveness of Taguchi method was verified by confirmation test. It was revealed that new cutting tool with epoxy granite has reduced vibration and surface roughness due to high damping properties of epoxy granite in toolholder.Keywords: ANOVA, damping capacity, surface roughness, Taguchi method, vibration
Procedia PDF Downloads 3132742 Traffic Management Using Artificial Intelligence
Authors: Vamsi Krishna Movva
Abstract:
Artificial intelligence (AI) has revolutionized traffic management in modern cities by enhancing efficiency, safety, and sustainability. This study explores the transformative role of AI-driven systems, including adaptive traffic lights, real-time incident detection, and coordinated signals, in improving urban traffic flow. Additionally, AI-powered navigation systems utilizing real-time GPS and sensor data offer more efficient and safer travel options. This study employs a mixed-methods approach combining quantitative traffic data analysis and qualitative surveys from traffic management authorities. The study also delves into AI’s application in law enforcement, monitoring traffic violations, detecting distracted driving, and reconstructing accidents to analyze causes and responsibilities. Furthermore, the research highlights the environmental and economic benefits of AI in traffic management, such as reduced emissions and energy savings, while addressing challenges like data privacy concerns and high implementation costs. Ultimately, this paper emphasizes AI’s potential to shape sustainable traffic systems and promote efficient transportation networks.Keywords: artificial intelligence, traffic management, urban congestion, traffic safety, real-time data
Procedia PDF Downloads 102741 Transverse Vibration of Elastic Beam Resting on Variable Elastic Foundation Subjected to moving Load
Authors: Idowu Ibikunle Albert, Atilade Adesanya Oluwafemi, Okedeyi Abiodun Sikiru, Mustapha Rilwan Adewale
Abstract:
These present-day all areas of transport have experienced large advances characterized by increases in the speeds and weight of vehicles. As a result, this paper considered the Transverse Vibration of an Elastic Beam Resting on a Variable Elastic Foundation Subjected to a moving Load. The beam is presumed to be uniformly distributed and has simple support at both ends. The moving distributed moving mass is assumed to move with constant velocity. The governing equations, which are fourth-order partial differential equations, were reduced to second-order partial differential equations using an analytical method in terms of series solution and solved by a numerical method using mathematical software (Maple). Results show that an increase in the values of beam parameters, moving Mass M, and k-stiffness K, significantly reduces the deflection profile of the vibrating beam. In the results, it was equally found that moving mass is greater than moving force.Keywords: elastic beam, moving load, response of structure, variable elastic foundation
Procedia PDF Downloads 1272740 The Effect of Remifentanil on Emergence Agitation after Sevoflurane Anesthesia in Children: A Meta-Analysis
Authors: Jong Yeop Kim, Sung Young Park, Dae Hee Kim, Han Bum Joe, Ji Young Yoo, Jong Bum Choi, Sook Young Lee
Abstract:
Emergence agitation (EA) is commonly reported adverse events after sevoflurane anesthesia in pediatric patients. The efficacy of prophylactic remifentanil, one of mu opioid agonist, in preventing EA is controversial. This meta-analysis assessed the effectiveness of remifentanil to decrease the incidence of EA from sevoflurane anesthesia in children. We searched for randomized controlled trials comparing sevoflurane alone anesthesia with sevoflurane and remifentanil anesthesia to prevent EA in the Cochrane Library, Embase, Pubmed, and KoreaMed, and included 6 studies with 361 patients. The number of patients of reporting EA was summarized using risk ratio (RR) with 95% confidence interval (CI), with point estimates and 95CIs derived from a random effects Mantel-Haenszel method. Overall incidence of EA was about 41%. Compared with sevoflurane alone anesthesia, intravenous infusion of remifentanil with sevoflurane significantly reduced the incidence of EA (RR 0.53, 95% CI 0.39-0.73, P < 0.0001), (heterogeneity, I2 = 0, P = 0.42). This meta-analysis suggested that continuous infusion of remifentanil could be effective in decreasing the EA of about 47% after sevoflurane anesthesia. However, considering limitations of the included studies, more randomized controlled studies are required to verify our results.Keywords: emergence agitation, meta-analysis, remifentanil, pediatrics
Procedia PDF Downloads 3782739 Parallelizing the Hybrid Pseudo-Spectral Time Domain/Finite Difference Time Domain Algorithms for the Large-Scale Electromagnetic Simulations Using Massage Passing Interface Library
Authors: Donggun Lee, Q-Han Park
Abstract:
Due to its coarse grid, the Pseudo-Spectral Time Domain (PSTD) method has advantages against the Finite Difference Time Domain (FDTD) method in terms of memory requirement and operation time. However, since the efficiency of parallelization is much lower than that of FDTD, PSTD is not a useful method for a large-scale electromagnetic simulation in a parallel platform. In this paper, we propose the parallelization technique of the hybrid PSTD-FDTD (HPF) method which simultaneously possesses the efficient parallelizability of FDTD and the quick speed and low memory requirement of PSTD. Parallelization cost of the HPF method is exactly the same as the parallel FDTD, but still, it occupies much less memory space and has faster operation speed than the parallel FDTD. Experiments in distributed memory systems have shown that the parallel HPF method saves up to 96% of the operation time and reduces 84% of the memory requirement. Also, by combining the OpenMP library to the MPI library, we further reduced the operation time of the parallel HPF method by 50%.Keywords: FDTD, hybrid, MPI, OpenMP, PSTD, parallelization
Procedia PDF Downloads 1512738 Aeroelastic Stability Analysis in Turbomachinery Using Reduced Order Aeroelastic Model Tool
Authors: Chandra Shekhar Prasad, Ludek Pesek Prasad
Abstract:
In the present day fan blade of aero engine, turboprop propellers, gas turbine or steam turbine low-pressure blades are getting bigger, lighter and thus, become more flexible. Therefore, flutter, forced blade response and vibration related failure of the high aspect ratio blade are of main concern for the designers, thus need to be address properly in order to achieve successful component design. At the preliminary design stage large number of design iteration is need to achieve the utter free safe design. Most of the numerical method used for aeroelastic analysis is based on field-based methods such as finite difference method, finite element method, finite volume method or coupled. These numerical schemes are used to solve the coupled fluid Flow-Structural equation based on full Naiver-Stokes (NS) along with structural mechanics’ equations. These type of schemes provides very accurate results if modeled properly, however, they are computationally very expensive and need large computing recourse along with good personal expertise. Therefore, it is not the first choice for aeroelastic analysis during preliminary design phase. A reduced order aeroelastic model (ROAM) with acceptable accuracy and fast execution is more demanded at this stage. Similar ROAM are being used by other researchers for aeroelastic and force response analysis of turbomachinery. In the present paper new medium fidelity ROAM is successfully developed and implemented in numerical tool to simulated the aeroelastic stability phenomena in turbomachinery and well as flexible wings. In the present, a hybrid flow solver based on 3D viscous-inviscid coupled 3D panel method (PM) and 3d discrete vortex particle method (DVM) is developed, viscous parameters are estimated using boundary layer(BL) approach. This method can simulate flow separation and is a good compromise between accuracy and speed compared to CFD. In the second phase of the research work, the flow solver (PM) will be coupled with ROM non-linear beam element method (BEM) based FEM structural solver (with multibody capabilities) to perform the complete aeroelastic simulation of a steam turbine bladed disk, propellers, fan blades, aircraft wing etc. The partitioned based coupling approach is used for fluid-structure interaction (FSI). The numerical results are compared with experimental data for different test cases and for the blade cascade test case, experimental data is obtained from in-house lab experiments at IT CAS. Furthermore, the results from the new aeroelastic model will be compared with classical CFD-CSD based aeroelastic models. The proposed methodology for the aeroelastic stability analysis of gas turbine or steam turbine blades, or propellers or fan blades will provide researchers and engineers a fast, cost-effective and efficient tool for aeroelastic (classical flutter) analysis for different design at preliminary design stage where large numbers of design iteration are required in short time frame.Keywords: aeroelasticity, beam element method (BEM), discrete vortex particle method (DVM), classical flutter, fluid-structure interaction (FSI), panel method, reduce order aeroelastic model (ROAM), turbomachinery, viscous-inviscid coupling
Procedia PDF Downloads 2712737 Importance of New Policies of Process Management for Internet of Things Based on Forensic Investigation
Authors: Venkata Venugopal Rao Gudlur
Abstract:
The Proposed Policies referred to as “SOP”, on the Internet of Things (IoT) based Forensic Investigation into Process Management is the latest revolution to save time and quick solution for investigators. The forensic investigation process has been developed over many years from time to time it has been given the required information with no policies in investigation processes. This research reveals that the current IoT based forensic investigation into Process Management based is more connected to devices which is the latest revolution and policies. All future development in real-time information on gathering monitoring is evolved with smart sensor-based technologies connected directly to IoT. This paper present conceptual framework on process management. The smart devices are leading the way in terms of automated forensic models and frameworks established by different scholars. These models and frameworks were mostly focused on offering a roadmap for performing forensic operations with no policies in place. These initiatives would bring a tremendous benefit to process management and IoT forensic investigators proposing policies. The forensic investigation process may enhance more security and reduced data losses and vulnerabilities.Keywords: Internet of Things, Process Management, Forensic Investigation, M2M Framework
Procedia PDF Downloads 1062736 Conceptual Design of Low Energy Consumption House in Khartoum, Sudan
Authors: Sawsan M. H. Domi
Abstract:
Approximately 50% of the energy used in buildings, including houses, provide environmental comfortable levels of thermal living. In Khartoum - the city under study- cooling uses the largest portion of energy and the basic idea of Low energy houses is to minimize energy consumption. Therefore, houses are designed to use natural climate strategies to provide thermal comfort. Strategies such as semi-open spaces, shading devices, small high windows and thick walls. The study aims to review these strategies and then, apply them. It aims to change house microclimate by using vegetation, green areas, and other components. A low energy house is being designed s. It will be the first low energy house in Khartoum designed to create a low-cost energy efficient building without any mechanical systems. Three different types of houses in Khartoum are examined and evaluated according to their energy loads which provides the basis for the designed house. The designed house uses passive design strategies to reduce the need for cooling. These results show that the house reduced energy cooling loads by more than 60% compared to the average of the three given types. The design house is economically viable when taking into consideration the energy prices in Sudan.Keywords: building envelope, climate, energy loads, ventilation
Procedia PDF Downloads 2512735 Effects of Allium Sativum Essential Oil on MIC, MBC and Growth Curve of Vibrio Parahaemolyticus ATCC 43996 and Its Thermostable Direct Hemolysin Production
Authors: Afshin Akhondzadeh Basti, Zohreh Mashak, Ali Khanjari, Mohammad Adel Rezaei, Fatemeh Mohammadkhan
Abstract:
Vibrio parahaemolyticus is a halophilic bacterium and often causes gastroenteritis because of consumption of raw or inadequately cooked seafood. Studies showed a strong association of thermostable direct hemolysin (TDH) produced by members of this species with its pathogenicity. The effects of garlic (Allium sativum) essential oil at concentrations of 0, 0.005, 0.015, 0.03 and 0.045% on the minimum inhibitiotory concentration (MIC), minimum bactericidal concentration (MBC), growth curve and production of TDH toxin of vibrio parahaemolyticus were studied in BHI model. MIC and MBC of Allium sativum essential oil was estimated 0.03%. The results of this study revealed that the TDH production was significantly affected by Allium sativum EO and titers of TDH production in 0 and 0.005 % were 1/256 whereas this titer in 0.015 % concentration of EO. Concentrations of 0.005 and 0/015 % of garlic essential oil reduced the bacterial growth rate significantly (P < 0.05) compared to the control group. According to the results Allium sativum essential oil showed to be effective against bacterial growth and production of TDH toxin. Its potential application in food systems may be suggested.Keywords: allium sativum essential oil, vibrio parahaemolyticus, TDH, consumption
Procedia PDF Downloads 4302734 The Reducing Agent of Glycerol for the Reduction of Metal Oxides under Microwave Heating
Authors: Kianoosh Shojae
Abstract:
In recent years, the environmental challenges due to the excessive use of fossil fuels have led to heightened greenhouse gas production. In response, biodiesel has emerged as a cleaner alternative, offering reduced pollutant emissions compared to traditional fuels. The large-scale production of biodiesel, involving ester exchange of animal fats or vegetable oils, results in a surplus of crude glycerin. With environmental regulations on the rise and an increasing demand for biodiesel, glycerin production has seen a significant upswing. This paper focuses on the economic significance of glycerin through its pyrolysis as a raw material, particularly in the synthesis of metals. As industries pivoted towards cleaner fuels, glycerin, as a byproduct of biodiesel production, is poised to remain a cost-effective and surplus product. In this work, for evaluating the possible performance of using the gaseous products from the pyrolysis reaction of glycerol, we concerned the glycerin pyrolysis reactions, emphasizing the catalytic role of activated carbon, various reaction pathways and the impact of carrier gas flow rate on hydrogen production, providing valuable insights into the evolving landscape of sustainable fuel alternatives.Keywords: biodiesel, glycerin pyrolysis, activated carbon catalysis, syngas
Procedia PDF Downloads 572733 SLAMF5 Regulates Myeloid Cells Activation in the Eae Model
Authors: Laura Bellassen, Idit Shachar
Abstract:
Multiple sclerosis (MS) is a chronic neurological disorder characterized by demyelination of the central nervous system (CNS), leading to a wide range of physical and cognitive impairments. Myeloid cells in the CNS, such microglia and border associated macrophage cells, participate in the neuroinflammation in MS. Activation of those cells in MS contributes to the inflammatory response in the CNS and recruitment of immune cells in the this compartment. SLAMF5 is a cell surface receptor that functions as a homophilic adhesion molecule, whose signaling can activate or inhibit leukocyte function. In the current study we followed the expression and function of SLAMF5 in myeloid cells in the CNS and in the periphery in the murine model for MS, the experimental autoimmune encephalomyelitis model (EAE). Our results show that SLAMF5 deficiency or blocking decreases the expression of activation molecules and costimulatory molecules such as MHCII and CD80, resulting in delayed onset and reduced progression of the disease. Moreover, blocking SLAMF5 in peripheral monocytes derived from MS patients and iPSC-derived microglia cells, controls the expression of HLA-DR and CD80. Thus, SLAMF5 is a regulator of myeloid cells function and can serve as a therapeutic target in autoimmune disorders as Multiple Sclerosis.Keywords: multiple sclerosis, EAE model, myeloid cells, new antibody, neuroimmunology
Procedia PDF Downloads 60