Search results for: reading task
1443 Assessing Firm Readiness to Implement Cloud Computing: Toward a Comprehensive Model
Authors: Seyed Mohammadbagher Jafari, Elahe Mahdizadeh, Masomeh Ghahremani
Abstract:
Nowadays almost all organizations depend on information systems to run their businesses. Investment on information systems and their maintenance to keep them always in best situation to support firm business is one of the main issues for every organization. The new concept of cloud computing was developed as a technical and economic model to address this issue. In cloud computing the computing resources, including networks, applications, hardwares and services are configured as needed and are available at the moment of request. However, migration to cloud is not an easy task and there are many issues that should be taken into account. This study tries to provide a comprehensive model to assess a firm readiness to implement cloud computing. By conducting a systematic literature review, four dimensions of readiness were extracted which include technological, human, organizational and environmental dimensions. Every dimension has various criteria that have been discussed in details. This model provides a framework for cloud computing readiness assessment. Organizations that intend to migrate to cloud can use this model as a tool to assess their firm readiness before making any decision on cloud implementation.Keywords: cloud computing, human readiness, organizational readiness, readiness assessment model
Procedia PDF Downloads 3941442 A Study of Numerical Reaction-Diffusion Systems on Closed Surfaces
Authors: Mei-Hsiu Chi, Jyh-Yang Wu, Sheng-Gwo Chen
Abstract:
The diffusion-reaction equations are important Partial Differential Equations in mathematical biology, material science, physics, and so on. However, finding efficient numerical methods for diffusion-reaction systems on curved surfaces is still an important and difficult problem. The purpose of this paper is to present a convergent geometric method for solving the reaction-diffusion equations on closed surfaces by an O(r)-LTL configuration method. The O(r)-LTL configuration method combining the local tangential lifting technique and configuration equations is an effective method to estimate differential quantities on curved surfaces. Since estimating the Laplace-Beltrami operator is an important task for solving the reaction-diffusion equations on surfaces, we use the local tangential lifting method and a generalized finite difference method to approximate the Laplace-Beltrami operators and we solve this reaction-diffusion system on closed surfaces. Our method is not only conceptually simple, but also easy to implement.Keywords: closed surfaces, high-order approachs, numerical solutions, reaction-diffusion systems
Procedia PDF Downloads 3741441 Navigating the Assessment Landscape in English Language Teaching: Strategies, Challengies and Best Practices
Authors: Saman Khairani
Abstract:
Assessment is a pivotal component of the teaching and learning process, serving as a critical tool for evaluating student progress, diagnosing learning needs, and informing instructional decisions. In the context of English Language Teaching (ELT), effective assessment practices are essential to promote meaningful learning experiences and foster continuous improvement in language proficiency. This paper delves into various assessment strategies, explores associated challenges, and highlights best practices for assessing student learning in ELT. The paper begins by examining the diverse forms of assessment, including formative assessments that provide timely feedback during the learning process and summative assessments that evaluate overall achievement. Additionally, alternative methods such as portfolios, self-assessment, and peer assessment play a significant role in capturing various aspects of language learning. Aligning assessments with learning objectives is crucial. Educators must ensure that assessment tasks reflect the desired language skills, communicative competence, and cultural awareness. Validity, reliability, and fairness are essential considerations in assessment design. Challenges in assessing language skills—such as speaking, listening, reading, and writing—are discussed, along with practical solutions. Constructive feedback, tailored to individual learners, guides their language development. In conclusion, this paper synthesizes research findings and practical insights, equipping ELT practitioners with the knowledge and tools necessary to design, implement, and evaluate effective assessment practices. By fostering meaningful learning experiences, educators contribute significantly to learners’ language proficiency and overall success.Keywords: ELT, formative, summative, fairness, validity, reliability
Procedia PDF Downloads 541440 Improved Throttled Load Balancing Approach for Cloud Environment
Authors: Sushant Singh, Anurag Jain, Seema Sabharwal
Abstract:
Cloud computing is advancing with a rapid speed. Already, it has been adopted by a huge set of users. Easy to use and anywhere access like potential of cloud computing has made it more attractive relative to other technologies. This has resulted in reduction of deployment cost on user side. It has also allowed the big companies to sell their infrastructure to recover the installation cost for the organization. Roots of cloud computing have extended from Grid computing. Along with the inherited characteristics of its predecessor technologies it has also adopted the loopholes present in those technologies. Some of the loopholes are identified and corrected recently, but still some are yet to be rectified. Two major areas where still scope of improvement exists are security and performance. The proposed work is devoted to performance enhancement for the user of the existing cloud system by improving the basic throttled mapping approach between task and resources. The improved procedure has been tested using the cloud analyst simulator. The results are compared with the original and it has been found that proposed work is one step ahead of existing techniques.Keywords: cloud analyst, cloud computing, load balancing, throttled
Procedia PDF Downloads 2481439 Neural Network based Risk Detection for Dyslexia and Dysgraphia in Sinhala Language Speaking Children
Authors: Budhvin T. Withana, Sulochana Rupasinghe
Abstract:
The educational system faces a significant concern with regards to Dyslexia and Dysgraphia, which are learning disabilities impacting reading and writing abilities. This is particularly challenging for children who speak the Sinhala language due to its complexity and uniqueness. Commonly used methods to detect the risk of Dyslexia and Dysgraphia rely on subjective assessments, leading to limited coverage and time-consuming processes. Consequently, delays in diagnoses and missed opportunities for early intervention can occur. To address this issue, the project developed a hybrid model that incorporates various deep learning techniques to detect the risk of Dyslexia and Dysgraphia. Specifically, Resnet50, VGG16, and YOLOv8 models were integrated to identify handwriting issues. The outputs of these models were then combined with other input data and fed into an MLP model. Hyperparameters of the MLP model were fine-tuned using Grid Search CV, enabling the identification of optimal values for the model. This approach proved to be highly effective in accurately predicting the risk of Dyslexia and Dysgraphia, providing a valuable tool for early detection and intervention. The Resnet50 model exhibited a training accuracy of 0.9804 and a validation accuracy of 0.9653. The VGG16 model achieved a training accuracy of 0.9991 and a validation accuracy of 0.9891. The MLP model demonstrated impressive results with a training accuracy of 0.99918, a testing accuracy of 0.99223, and a loss of 0.01371. These outcomes showcase the high accuracy achieved by the proposed hybrid model in predicting the risk of Dyslexia and Dysgraphia.Keywords: neural networks, risk detection system, dyslexia, dysgraphia, deep learning, learning disabilities, data science
Procedia PDF Downloads 631438 Homogeneity and Trend Analyses of Temperature Indices: The Case Study of Umbria Region (Italy) in the Mediterranean Area
Authors: R. Morbidelli, C. Saltalippi, A. Flammini, A. Garcia-Marin, J. L. Ayuso-Munoz
Abstract:
The climate change, mainly due to greenhouse gas emissions associated to human activities, has been modifying hydrologic processes with a direct effect on air surface temperature that has significantly increased in the last century at global scale. In this context the Mediterranean area is considered to be particularly sensitive to the climate change impacts on temperature indices. An analysis finalized to study the evolution of temperature indices and to check the existence of significant trends in the Umbria Region (Italy) is presented. Temperature data were obtained by seven meteorological stations uniformly distributed in the study area and characterized by very long series of temperature observations (at least 60 years) spanning the 1924-2015 period. A set of 39 temperature indices represented by monthly and annual mean, average maximum and average minimum temperatures, has been derived. The trend analysis was realized by applying the non-parametric Mann-Kendall test, while the non-parametric Pettit test and the parametric Standard Normal Homogeneity test (SNHT) were used to check the presence of breakpoints or in-homogeneities due to environmental changes/anthropic activity or climate change effects. The Umbria region, in agreement with other recent studies exploring the temperature behavior in Italy, shows a general increase in all temperature indices, with the only exception of Gubbio site that exhibits very light negative trends or absence of trend. The presence of break points and in-homogeneity was widely explored through the selected tests and the results were checked on the basis of the well-known metadata of the meteorological stations.Keywords: reception theory, reading, literary translation, horizons of expectation, reader
Procedia PDF Downloads 1601437 Thinking Lean in ICU: A Time Motion Study Quantifying ICU Nurses’ Multitasking Time Allocation
Authors: Fatma Refaat Ahmed, PhD, RN. Assistant Professor, Department of Nursing, College of Health Sciences, University of Sharjah, UAE. ([email protected]). Sally Mohamed Farghaly, Nursing Administration Department, Faculty of Nursing, Alexandria University, Alexandria, Egypt. ([email protected])
Abstract:
Context: Intensive care unit (ICU) nurses often face pressure and constraints in their work, leading to the rationing of care when demands exceed available time and resources. Observations suggest that ICU nurses are frequently distracted from their core nursing roles by non-core tasks. This study aims to provide evidence on ICU nurses' multitasking activities and explore the association between nurses' personal and clinical characteristics and their time allocation. Research Aim: The aim of this study is to quantify the time spent by ICU nurses on multitasking activities and investigate the relationship between their personal and clinical characteristics and time allocation. Methodology: A self-observation form utilizing the "Diary" recording method was used to record the number of tasks performed by ICU nurses and the time allocated to each task category. Nurses also reported on the distractions encountered during their nursing activities. A convenience sample of 60 ICU nurses participated in the study, with each nurse observed for one nursing shift (6 hours), amounting to a total of 360 hours. The study was conducted in two ICUs within a university teaching hospital in Alexandria, Egypt. Findings: The results showed that ICU nurses completed 2,730 direct patient-related tasks and 1,037 indirect tasks during the 360-hour observation period. Nurses spent an average of 33.65 minutes on ventilator care-related tasks, 14.88 minutes on tube care-related tasks, and 10.77 minutes on inpatient care-related tasks. Additionally, nurses spent an average of 17.70 minutes on indirect care tasks per hour. The study identified correlations between nursing time and nurses' personal and clinical characteristics. Theoretical Importance: This study contributes to the existing research on ICU nurses' multitasking activities and their relationship with personal and clinical characteristics. The findings shed light on the significant time spent by ICU nurses on direct care for mechanically ventilated patients and the distractions that require attention from ICU managers. Data Collection: Data were collected using self-observation forms completed by participating ICU nurses. The forms recorded the number of tasks performed, the time allocated to each task category, and any distractions encountered during nursing activities. Analysis Procedures: The collected data were analyzed to quantify the time spent on different tasks by ICU nurses. Correlations were also examined between nursing time and nurses' personal and clinical characteristics. Question Addressed: This study addressed the question of how ICU nurses allocate their time across multitasking activities and whether there is an association between nurses' personal and clinical characteristics and time allocation. Conclusion: The findings of this study emphasize the need for a lean evaluation of ICU nurses' activities to identify and address potential gaps in patient care and distractions. Implementing lean techniques can improve efficiency, safety, clinical outcomes, and satisfaction for both patients and nurses, ultimately enhancing the quality of care and organizational performance in the ICU setting.Keywords: motion study, ICU nurse, lean, nursing time, multitasking activities
Procedia PDF Downloads 671436 Mutual Information Based Image Registration of Satellite Images Using PSO-GA Hybrid Algorithm
Authors: Dipti Patra, Guguloth Uma, Smita Pradhan
Abstract:
Registration is a fundamental task in image processing. It is used to transform different sets of data into one coordinate system, where data are acquired from different times, different viewing angles, and/or different sensors. The registration geometrically aligns two images (the reference and target images). Registration techniques are used in satellite images and it is important in order to be able to compare or integrate the data obtained from these different measurements. In this work, mutual information is considered as a similarity metric for registration of satellite images. The transformation is assumed to be a rigid transformation. An attempt has been made here to optimize the transformation function. The proposed image registration technique hybrid PSO-GA incorporates the notion of Particle Swarm Optimization and Genetic Algorithm and is used for finding the best optimum values of transformation parameters. The performance comparision obtained with the experiments on satellite images found that the proposed hybrid PSO-GA algorithm outperforms the other algorithms in terms of mutual information and registration accuracy.Keywords: image registration, genetic algorithm, particle swarm optimization, hybrid PSO-GA algorithm and mutual information
Procedia PDF Downloads 4061435 Developing an Edutainment Game for Children with ADHD Based on SAwD and VCIA Model
Authors: Bruno Gontijo Batista
Abstract:
This paper analyzes how the Socially Aware Design (SAwD) and the Value-oriented and Culturally Informed Approach (VCIA) design model can be used to develop an edutainment game for children with Attention Deficit Hyperactivity Disorder (ADHD). The SAwD approach seeks a design that considers new dimensions in human-computer interaction, such as culture, aesthetics, emotional and social aspects of the user's everyday experience. From this perspective, the game development was VCIA model-based, including the users in the design process through participatory methodologies, considering their behavioral patterns, culture, and values. This is because values, beliefs, and behavioral patterns influence how technology is understood and used and the way it impacts people's lives. This model can be applied at different stages of design, which goes from explaining the problem and organizing the requirements to the evaluation of the prototype and the final solution. Thus, this paper aims to understand how this model can be used in the development of an edutainment game for children with ADHD. In the area of education and learning, children with ADHD have difficulties both in behavior and in school performance, as they are easily distracted, which is reflected both in classes and on tests. Therefore, they must perform tasks that are exciting or interesting for them, once the pleasure center in the brain is activated, it reinforces the center of attention, leaving the child more relaxed and focused. In this context, serious games have been used as part of the treatment of ADHD in children aiming to improve focus and attention, stimulate concentration, as well as be a tool for improving learning in areas such as math and reading, combining education and entertainment (edutainment). Thereby, as a result of the research, it was developed, in a participatory way, applying the VCIA model, an edutainment game prototype, for a mobile platform, for children between 8 and 12 years old.Keywords: ADHD, edutainment, SAwD, VCIA
Procedia PDF Downloads 1881434 Dynamic Ad-hoc Topologies for Mobile Robot Navigation Based on Non-Uniform Grid Maps
Authors: Peter Sauer, Thomas Hinze, Petra Hofstedt
Abstract:
To avoid obstacles in the surrounding environment and to navigate to a given target belong to the most important tasks for mobile robots. According to these tasks different data structures are suitable. To avoid near obstacles, occupancy grid maps are an ideal representation of the surroundings. For less fine grained tasks, such as navigating from one room to another in an apartment, pure grid maps are inappropriate. Grid maps are very detailed, calculating paths to navigate between rooms based on grid maps would take too long. Instead, graph-based data structures, so-called topologies, turn out to be a proper choice for such tasks. In this paper we present two methods to dynamically create topologies from grid maps. Both methods are based on non-uniform grid maps. The topologies are generated on-the-fly and can easily be modified to represent changes in the environment. This allows a hybrid approach to control mobile robots, where, depending on the situation and the current task, either the grid map or the generated topology may be used.Keywords: robot navigation, occupancy grids, topological maps, dynamic map creation
Procedia PDF Downloads 5621433 Data Analysis to Uncover Terrorist Attacks Using Data Mining Techniques
Authors: Saima Nazir, Mustansar Ali Ghazanfar, Sanay Muhammad Umar Saeed, Muhammad Awais Azam, Saad Ali Alahmari
Abstract:
Terrorism is an important and challenging concern. The entire world is threatened by only few sophisticated terrorist groups and especially in Gulf Region and Pakistan, it has become extremely destructive phenomena in recent years. Predicting the pattern of attack type, attack group and target type is an intricate task. This study offers new insight on terrorist group’s attack type and its chosen target. This research paper proposes a framework for prediction of terrorist attacks using the historical data and making an association between terrorist group, their attack type and target. Analysis shows that the number of attacks per year will keep on increasing, and Al-Harmayan in Saudi Arabia, Al-Qai’da in Gulf Region and Tehreek-e-Taliban in Pakistan will remain responsible for many future terrorist attacks. Top main targets of each group will be private citizen & property, police, government and military sector under constant circumstances.Keywords: data mining, counter terrorism, machine learning, SVM
Procedia PDF Downloads 4051432 Indigenous Patch Clamp Technique: Design of Highly Sensitive Amplifier Circuit for Measuring and Monitoring of Real Time Ultra Low Ionic Current through Cellular Gates
Authors: Moez ul Hassan, Bushra Noman, Sarmad Hameed, Shahab Mehmood, Asma Bashir
Abstract:
The importance of Noble prize winning “Patch Clamp Technique” is well documented. However, Patch Clamp Technique is very expensive and hence hinders research in developing countries. In this paper, detection, processing and recording of ultra low current from induced cells by using transimpedence amplifier is described. The sensitivity of the proposed amplifier is in the range of femto amperes (fA). Capacitive-feedback is used with active load to obtain a 20MΩ transimpedance gain. The challenging task in designing includes achieving adequate performance in gain, noise immunity and stability. The circuit designed by the authors was able to measure current in the rangeof 300fA to 100pA. Adequate performance shown by the amplifier with different input current and outcome result was found to be within the acceptable error range. Results were recorded using LabVIEW 8.5®for further research.Keywords: drug discovery, ionic current, operational amplifier, patch clamp
Procedia PDF Downloads 5171431 Seismic Performance of RC Frames Equipped with Friction Panels Under Different Slip Load Distributions
Authors: Neda Nabid, Iman Hajirasouliha, Sanaz Shirinbar
Abstract:
One of the most challenging issues in earthquake engineering is to find effective ways to reduce earthquake forces and damage to structural and non-structural elements under strong earthquakes. While friction dampers are the most efficient systems to improve the seismic performance of substandard structures, their optimum design is a challenging task. This research aims to find more appropriate slip load distribution pattern for efficient design of friction panels. Non-linear dynamic analyses are performed on 3, 5, 10, 15, and 20-story RC frame using Drain-2dx software to find the appropriate range of slip loads and investigate the effects of different distribution patterns (cantilever, uniform, triangle, and reverse triangle) under six different earthquake records. The results indicate that using triangle load distribution can significantly increase the energy dissipation capacity of the frame and reduce the maximum inter-storey drift, and roof displacement.Keywords: friction panels, slip load, distribution patterns, RC frames, energy dissipation
Procedia PDF Downloads 4321430 Suitable Tuning Method Selection for PID Controller Used in Digital Excitation System of Brushless Synchronous Generator
Authors: Deepak M. Sajnekar, S. B. Deshpande, R. M. Mohril
Abstract:
At present many rotary excitation control system are using analog type of Automatic Voltage Regulator which now started to replace with the digital automatic voltage regulator which is provided with PID controller and tuning of PID controller is a challenging task. The cases where digital excitation control system is used tuning of PID controller are still carried out by pole placement method. Tuning of PID controller used for static excitation control system is not challenging because it does not involve exciter time constant. This paper discusses two methods of tuning PID controller i.e. Pole placement method and pole zero cancellation method. GUI prepared for both the methods on the platform of MATLAB. Using this GUI, performance results and time required for tuning for both the methods are compared. Sensitivity of the methods is also presented with parameter variation like loop gain ‘K’ and exciter time constant ‘te’.Keywords: digital excitation system, automatic voltage regulator, pole placement method, pole zero cancellation method
Procedia PDF Downloads 6761429 SA-SPKC: Secure and Efficient Aggregation Scheme for Wireless Sensor Networks Using Stateful Public Key Cryptography
Authors: Merad Boudia Omar Rafik, Feham Mohammed
Abstract:
Data aggregation in wireless sensor networks (WSNs) provides a great reduction of energy consumption. The limited resources of sensor nodes make the choice of an encryption algorithm very important for providing security for data aggregation. Asymmetric cryptography involves large ciphertexts and heavy computations but solves, on the other hand, the problem of key distribution of symmetric one. The latter provides smaller ciphertexts and speed computations. Also, the recent researches have shown that achieving the end-to-end confidentiality and the end-to-end integrity at the same is a challenging task. In this paper, we propose (SA-SPKC), a novel security protocol which addresses both security services for WSNs, and where only the base station can verify the individual data and identify the malicious node. Our scheme is based on stateful public key encryption (StPKE). The latter combines the best features of both kinds of encryption along with state in order to reduce the computation overhead. Our analysisKeywords: secure data aggregation, wireless sensor networks, elliptic curve cryptography, homomorphic encryption
Procedia PDF Downloads 2961428 Microarray Gene Expression Data Dimensionality Reduction Using PCA
Authors: Fuad M. Alkoot
Abstract:
Different experimental technologies such as microarray sequencing have been proposed to generate high-resolution genetic data, in order to understand the complex dynamic interactions between complex diseases and the biological system components of genes and gene products. However, the generated samples have a very large dimension reaching thousands. Therefore, hindering all attempts to design a classifier system that can identify diseases based on such data. Additionally, the high overlap in the class distributions makes the task more difficult. The data we experiment with is generated for the identification of autism. It includes 142 samples, which is small compared to the large dimension of the data. The classifier systems trained on this data yield very low classification rates that are almost equivalent to a guess. We aim at reducing the data dimension and improve it for classification. Here, we experiment with applying a multistage PCA on the genetic data to reduce its dimensionality. Results show a significant improvement in the classification rates which increases the possibility of building an automated system for autism detection.Keywords: PCA, gene expression, dimensionality reduction, classification, autism
Procedia PDF Downloads 5591427 Characterizing Nanoparticles Generated from the Different Working Type and the Stack Flue during 3D Printing Process
Authors: Kai-Jui Kou, Tzu-Ling Shen, Ying-Fang Wang
Abstract:
The objectives of the present study are to characterize nanoparticles generated from the different working type in 3D printing room and the stack flue during 3D printing process. The studied laboratory (10.5 m× 7.2 m × 3.2 m) with a ventilation rate of 500 m³/H is installed a 3D metal printing machine. Direct-reading instrument of a scanning mobility particle sizer (SMPS, Model 3082, TSI Inc., St. Paul, MN, USA) was used to conduct static sampling for nanoparticle number concentration and particle size distribution measurements. The SMPS obtained particle number concentration at every 3 minutes, the diameter of the SMPS ranged from 11~372 nm when the aerosol and sheath flow rates were set at 0.6 and 6 L/min, respectively. The concentrations of background, printing process, clearing operation, and screening operation were performed in the laboratory. On the other hand, we also conducted nanoparticle measurement on the 3D printing machine's stack flue to understand its emission characteristics. Results show that the nanoparticles emitted from the different operation process were the same distribution in the form of the uni-modal with number median diameter (NMD) as approximately 28.3 nm to 29.6 nm. The number concentrations of nanoparticles were 2.55×10³ count/cm³ in laboratory background, 2.19×10³ count/cm³ during printing process, 2.29×10³ count/cm³ during clearing process, 3.05×10³ count/cm³ during screening process, 2.69×10³ count/cm³ in laboratory background after printing process, and 6.75×10³ outside laboratory, respectively. We found that there are no emission nanoparticles during the printing process. However, the number concentration of stack flue nanoparticles in the ongoing print is 1.13×10⁶ count/cm³, and that of the non-printing is 1.63×10⁴ count/cm³, with a NMD of 458 nm and 29.4 nm, respectively. It can be confirmed that the measured particle size belongs to easily penetrate the filter in theory during the printing process, even though the 3D printer has a high-efficiency filtration device. Therefore, it is recommended that the stack flue of the 3D printer would be equipped with an appropriate dust collection device to prevent the operators from exposing these hazardous particles.Keywords: nanoparticle, particle emission, 3D printing, number concentration
Procedia PDF Downloads 1811426 Virtue, Truth, Freedom, And The History Of Philosophy
Authors: Ashley DelCorno
Abstract:
GEM Anscombe’s 1958 essay Modern Moral Philosophy and the tradition of virtue ethics that followed has given rise to the restoration (or, more plainly, the resurrection) of Aristotle as something of an authority figure. Alisdair MacIntyre and Martha Nussbaum are proponents, for example, not just of Aristotle’s relevancy but also of his apparent implicit authority. That said, it’s not clear that the schema imagined by virtue ethicists accurately describes moral life or that it does not inadvertently work to impoverish genuine decision-making. If the label ‘virtue’ is categorically denied to some groups (while arbitrarily afforded to others), it can only turn on itself, thus rendering ridiculous its own premise. Likewise, as an inescapable feature of virtue ethics, Aristotelean binaries like ‘virtue/vice’ and ‘voluntary/involuntary’ offer up false dichotomies that may seriously compromise an agent’s ability to conceptualize choices that are truly free and rooted in meaningful criteria. Here, this topic is analyzed through a feminist lens predicated on the known paradoxes of patriarchy. The work of feminist theorists Jacqui Alexander, Katharine Angel, Simone de Beauvoir, bell hooks, Audre Lorde, Imani Perry, and Amia Srinivasan serves as important guideposts, and the argument here is built from a key tenet of black feminist thought regarding scarcity and possibility. Above all, it’s clear that though the philosophical tradition of virtue ethics presents itself as recovering the place of agency in ethics, its premises possess crippling limitations toward the achievement of this goal. These include, most notably, virtue ethics’ binding analysis of history, as well as its axiomatic attachment to obligatory clauses, problematic reading-in of Aristotle and arbitrary commitment to predetermined and competitively patriarchal ideas of what counts as a virtue.Keywords: feminist history, the limits of utopic imagination, curatorial creation, truth, virtue, freedom
Procedia PDF Downloads 801425 Neural Network-based Risk Detection for Dyslexia and Dysgraphia in Sinhala Language Speaking Children
Authors: Budhvin T. Withana, Sulochana Rupasinghe
Abstract:
The problem of Dyslexia and Dysgraphia, two learning disabilities that affect reading and writing abilities, respectively, is a major concern for the educational system. Due to the complexity and uniqueness of the Sinhala language, these conditions are especially difficult for children who speak it. The traditional risk detection methods for Dyslexia and Dysgraphia frequently rely on subjective assessments, making it difficult to cover a wide range of risk detection and time-consuming. As a result, diagnoses may be delayed and opportunities for early intervention may be lost. The project was approached by developing a hybrid model that utilized various deep learning techniques for detecting risk of Dyslexia and Dysgraphia. Specifically, Resnet50, VGG16 and YOLOv8 were integrated to detect the handwriting issues, and their outputs were fed into an MLP model along with several other input data. The hyperparameters of the MLP model were fine-tuned using Grid Search CV, which allowed for the optimal values to be identified for the model. This approach proved to be effective in accurately predicting the risk of Dyslexia and Dysgraphia, providing a valuable tool for early detection and intervention of these conditions. The Resnet50 model achieved an accuracy of 0.9804 on the training data and 0.9653 on the validation data. The VGG16 model achieved an accuracy of 0.9991 on the training data and 0.9891 on the validation data. The MLP model achieved an impressive training accuracy of 0.99918 and a testing accuracy of 0.99223, with a loss of 0.01371. These results demonstrate that the proposed hybrid model achieved a high level of accuracy in predicting the risk of Dyslexia and Dysgraphia.Keywords: neural networks, risk detection system, Dyslexia, Dysgraphia, deep learning, learning disabilities, data science
Procedia PDF Downloads 1121424 A Less Complexity Deep Learning Method for Drones Detection
Authors: Mohamad Kassab, Amal El Fallah Seghrouchni, Frederic Barbaresco, Raed Abu Zitar
Abstract:
Detecting objects such as drones is a challenging task as their relative size and maneuvering capabilities deceive machine learning models and cause them to misclassify drones as birds or other objects. In this work, we investigate applying several deep learning techniques to benchmark real data sets of flying drones. A deep learning paradigm is proposed for the purpose of mitigating the complexity of those systems. The proposed paradigm consists of a hybrid between the AdderNet deep learning paradigm and the Single Shot Detector (SSD) paradigm. The goal was to minimize multiplication operations numbers in the filtering layers within the proposed system and, hence, reduce complexity. Some standard machine learning technique, such as SVM, is also tested and compared to other deep learning systems. The data sets used for training and testing were either complete or filtered in order to remove the images with mall objects. The types of data were RGB or IR data. Comparisons were made between all these types, and conclusions were presented.Keywords: drones detection, deep learning, birds versus drones, precision of detection, AdderNet
Procedia PDF Downloads 1781423 Hotel Guests’ Service Fulfillment: Bangkok, Thailand
Authors: Numtana Ladplee, Cherif Haberih
Abstract:
The value of service evaluation depends critically on guests’ understanding of the evaluation objectives and their roles. The present research presents a three-phase investigation of the impact of evaluating participants’ theories about their roles: (a) identifying the theories, (b) testing the process consequences of participants’ role theories, and (c) gaining insights into the impact of participants’ role theories by testing key moderator/s. The findings of this study will hopefully indicate that (a) when forewarned of an upcoming evaluation task, consumers tend to believe that the evaluation objective is to identify aspects that need improvement, (b) this expectation produces a conscious attempt to identify negative aspects, although the encoding of attribute information is not affected, and (c) cognitive load during the evaluation experience greatly decreases the negativity of expected evaluations. The present study can be applied to other market research techniques and thereby improve our understanding of consumer inputs derived from market research. Such insights can help diminish biases produced by participants’ correct or incorrect theories regarding their roles.Keywords: fulfillment, hotel guests, service, Thailand
Procedia PDF Downloads 2751422 Sparsity-Based Unsupervised Unmixing of Hyperspectral Imaging Data Using Basis Pursuit
Authors: Ahmed Elrewainy
Abstract:
Mixing in the hyperspectral imaging occurs due to the low spatial resolutions of the used cameras. The existing pure materials “endmembers” in the scene share the spectra pixels with different amounts called “abundances”. Unmixing of the data cube is an important task to know the present endmembers in the cube for the analysis of these images. Unsupervised unmixing is done with no information about the given data cube. Sparsity is one of the recent approaches used in the source recovery or unmixing techniques. The l1-norm optimization problem “basis pursuit” could be used as a sparsity-based approach to solve this unmixing problem where the endmembers is assumed to be sparse in an appropriate domain known as dictionary. This optimization problem is solved using proximal method “iterative thresholding”. The l1-norm basis pursuit optimization problem as a sparsity-based unmixing technique was used to unmix real and synthetic hyperspectral data cubes.Keywords: basis pursuit, blind source separation, hyperspectral imaging, spectral unmixing, wavelets
Procedia PDF Downloads 1941421 Reading High Rise Residential Development in Istanbul on the Theory of Globalization
Authors: Tuba Sari
Abstract:
One of the major transformations caused by the industrial revolution, technological developments and globalization is undoubtedly acceleration of urbanization process. Globalization, in particular, is one of the major factors that trigger this transformation. In this context, as a result of the global metropolitan city system, multifunctional rising structure forms are becoming undeniable fact of the world’s leading metropolises as the manifestation of prestige and power with different life choices, easy accessibility to services related to the era of technology. The scope of research deals with five different urban centers in İstanbul where high-rise housing is increasing dramatically after 2000’s. Therefore, the research regards multi-centered urban residential pattern being created by high-rise housing structures in the city. The methodology of the research is based on two main issue, one of them is related to sampling method of high-rise housing projects in İstanbul, while the other method of the research is based on the model of Semantics. In the framework of research hypothesis, it is aimed to prove that the character of vertical intensive structuring in Istanbul is based on seeking of different forms and images in the expressive quality, considering the production of existing high-rise buildings in residential areas in recent years. In respect to rising discourse of 'World City' in the globalizing world, it is very important to state the place of Istanbul in other developing world metropolises. In the perspective of 'World City' discourse, Istanbul has different projects concerning with globalization, international finance companies, cultural activities, mega projects, etc. In brief, the aim of this research is examining transformation forms of high-rise housing development in Istanbul within the frame of developing world cities, searching and analyzing discourse and image related to these projects.Keywords: globalization, high-rise, housing, image
Procedia PDF Downloads 2841420 Innovation Strategies and Challenges in Emerging Economies: The Case of Research and Technology Organizations in Turkey
Authors: F. Demir
Abstract:
Innovation is highly critical for every company, especially for technology-based organizations looking to sustain their competitive advantage. However, this is not an easy task. Regardless of the size of the enterprise, market and location, all organizations face numerous challenges. Even though huge barriers to innovation exist in different countries, firm- and industry-specific challenges can be distinguished. This paper examines innovation strategies and obstacles to innovation in research and technology organizations (RTO) of Turkey. From the most important to the least, nine different challenges are ranked according the results of this survey. The findings reveal that to take the lead in innovation, financial constraint is the biggest challenge, which is consistent with the related literature. It ranked number one in this study. Beyond that, based on a sample of 40 RTOs, regional challenges such as underdeveloped regional innovation ecosystem plays a significant role in hampering innovation. Most of the organizations (55%) embrace an incremental approach to innovation, while only few pursue radical shifts. About 40% of the RTOs focus on product innovation, and 27.5% of them concentrate on technological innovation, while a very limited number aim for operational excellence and customer engagement as the focus of their strategic innovation efforts.Keywords: innovation strategies, innovation challenges, emerging economies, research and technology organizations
Procedia PDF Downloads 4141419 Analytics Capabilities and Employee Role Stressors: Implications for Organizational Performance
Authors: Divine Agozie, Muesser Nat, Eric Afful-Dadzie
Abstract:
This examination attempts an analysis of the effect of business intelligence and analytics (BI&A) capabilities on organizational role stressors and the implications of such an effect on performance. Two hundred twenty-eight responses gathered from seventy-six firms across Ghana were analyzed using the Partial Least Squares Structural Equation Modelling (PLS-SEM) approach to validate the hypothesized relationships identified in the research model. Findings suggest both endogenous and exogenous dependencies of the sensing capability on the multiple role requirements of personnel. Further, transforming capability increases role conflict, whereas driving capability of BI&A systems impacts role conflict and role ambiguity. This study poses many practical insights to firms seeking to acquire analytics capabilities to drive performance and data-driven decision-making. It is important for firms to consider balancing role changes and task requirements before implementing and post-implementation stages of BI&A innovations.Keywords: business intelligence and analytics, dynamic capabilities view, organizational stressors, structural equation modelling
Procedia PDF Downloads 1081418 Design Modification in CNC Milling Machine to Reduce the Weight of Structure
Authors: Harshkumar K. Desai, Anuj K. Desai, Jay P. Patel, Snehal V. Trivedi, Yogendrasinh Parmar
Abstract:
The need of continuous improvement in a product or process in this era of global competition leads to apply value engineering for functional and aesthetic improvement in consideration with economic aspect too. Solar industries located at G.I.D.C., Makarpura, Vadodara, Gujarat, India; a manufacturer of variety of CNC Machines had a challenge to analyze the structural design of column, base, carriage and table of CNC Milling Machine in the account of reduction of overall weight of a machine without affecting the rigidity and accuracy at the time of operation. The identified task is the first attempt to validate and optimize the proposed design of ribbed structure statically using advanced modeling and analysis tools in a systematic way. Results of stress and deformation obtained using analysis software are validated with theoretical analysis and found quite satisfactory. Such optimized results offer a weight reduction of the final assembly which is desired by manufacturers in favor of reduction of material cost, processing cost and handling cost finally.Keywords: CNC milling machine, optimization, finite element analysis (FEA), weight reduction
Procedia PDF Downloads 2741417 Perspective Shifting in the Elicited Language Production Can Defy with Aging
Authors: Tuyuan Cheng
Abstract:
As we age, many things become more difficult. Among the abilities are the linguistic and cognitive ones. Competing theories have shown that these two functions could diminish together or that one is selectively affected by the other. In other words, some proposes aging affects sentence production in the same way it affects sentence comprehension and other cognitive functions, while some argues it does not.To address this question, the current investigation is conducted into the critical aspect of sentences as well as cognitive abilities – the syntactic complexity and the number of perspective shifts being contained in the elicited production. Healthy non-pathological aging is often characterized by a cognitive and neural decline in a number of cognitive abilities. Although the language is assumed to be of the more stable domain, a variety of findings in the cognitive aging literature would suggest otherwise. Older adults often show deficits in language production and multiple aspects of comprehension. Nevertheless, while some age differences likely reflect cognitive decline, others might reflect changes in communicative goals, and some even display cognitive advantages. In the domain of language processing, research efforts have been made in tests that probed a variety of communicative abilities. In general, there exists a distinction: Comprehension seems to be selectively unaffected, while production does not. The current study raises a novel question and investigates whether aging affects the production of relative clauses (RCs) under the cognitive factor of perspective shifts. Based on Perspective Hypothesis (MacWhinney, 2000, 2005), our cognitive processes build upon a fundamental system of perspective-taking, and language provides a series of cues to facilitate the construction and shifting of perspectives. These cues include a wide variety of constructions, including RCs structures. In this regard, linguistic complexity can be determined by the number of perspective shifts, and the processing difficulties of RCs can be interpreted within the theory of perspective shifting. Two experiments were conducted to study language production under controlled conditions. In Experiment 1, older healthy participants were tested on standard measures of cognitive aging, including MMSE (Mini-Mental State Examination), ToMI-2 (a simplified Theory of Mind Inventory-2), and a perspective-shifting comprehension task programmed with E-Prime. The results were analyzed to examine if/how they are correlated with aging people’s subsequent production data. In Experiment 2, the production profile of differing RCs, SRC vs. ORC, were collected with healthy aging participants who perform a picture elicitation task. Variable containing 0, 1, or 2 perspective shifts were juxtaposed respectively to the pictures and counterbalanced presented for elicitation. In parallel, a controlled group of young adults were recruited to examine the linguistic and cognitive abilities in question. The results lead us to the discussion whetheraging affects RCs production in a manner determined by its semantic structure or the number of perspective shifts it contains or the status of participants’ mental understanding. The major findingsare: (1) Elders’ production on Chinese RCtypes did not display intrinsic difficulty asymmetry. (2) RC types (the linguistic structural features) and the cognitiveperspective shifts jointly play important roles in the elders’ RCproduction. (3) The production of RC may defy the aging in the case offlexibly preserved cognitive ability.Keywords: cognition aging, perspective hypothesis, perspective shift, relative clauses, sentence complexity
Procedia PDF Downloads 1181416 Images Selection and Best Descriptor Combination for Multi-Shot Person Re-Identification
Authors: Yousra Hadj Hassen, Walid Ayedi, Tarek Ouni, Mohamed Jallouli
Abstract:
To re-identify a person is to check if he/she has been already seen over a cameras network. Recently, re-identifying people over large public cameras networks has become a crucial task of great importance to ensure public security. The vision community has deeply investigated this area of research. Most existing researches rely only on the spatial appearance information from either one or multiple person images. Actually, the real person re-id framework is a multi-shot scenario. However, to efficiently model a person’s appearance and to choose the best samples to remain a challenging problem. In this work, an extensive comparison of descriptors of state of the art associated with the proposed frame selection method is studied. Specifically, we evaluate the samples selection approach using multiple proposed descriptors. We show the effectiveness and advantages of the proposed method by extensive comparisons with related state-of-the-art approaches using two standard datasets PRID2011 and iLIDS-VID.Keywords: camera network, descriptor, model, multi-shot, person re-identification, selection
Procedia PDF Downloads 2771415 Continuous Functions Modeling with Artificial Neural Network: An Improvement Technique to Feed the Input-Output Mapping
Authors: A. Belayadi, A. Mougari, L. Ait-Gougam, F. Mekideche-Chafa
Abstract:
The artificial neural network is one of the interesting techniques that have been advantageously used to deal with modeling problems. In this study, the computing with artificial neural network (CANN) is proposed. The model is applied to modulate the information processing of one-dimensional task. We aim to integrate a new method which is based on a new coding approach of generating the input-output mapping. The latter is based on increasing the neuron unit in the last layer. Accordingly, to show the efficiency of the approach under study, a comparison is made between the proposed method of generating the input-output set and the conventional method. The results illustrated that the increasing of the neuron units, in the last layer, allows to find the optimal network’s parameters that fit with the mapping data. Moreover, it permits to decrease the training time, during the computation process, which avoids the use of computers with high memory usage.Keywords: neural network computing, continuous functions generating the input-output mapping, decreasing the training time, machines with big memories
Procedia PDF Downloads 2821414 Algorithm Research on Traffic Sign Detection Based on Improved EfficientDet
Authors: Ma Lei-Lei, Zhou You
Abstract:
Aiming at the problems of low detection accuracy of deep learning algorithm in traffic sign detection, this paper proposes improved EfficientDet based traffic sign detection algorithm. Multi-head self-attention is introduced in the minimum resolution layer of the backbone of EfficientDet to achieve effective aggregation of local and global depth information, and this study proposes an improved feature fusion pyramid with increased vertical cross-layer connections, which improves the performance of the model while introducing a small amount of complexity, the Balanced L1 Loss is introduced to replace the original regression loss function Smooth L1 Loss, which solves the problem of balance in the loss function. Experimental results show, the algorithm proposed in this study is suitable for the task of traffic sign detection. Compared with other models, the improved EfficientDet has the best detection accuracy. Although the test speed is not completely dominant, it still meets the real-time requirement.Keywords: convolutional neural network, transformer, feature pyramid networks, loss function
Procedia PDF Downloads 96