Search results for: queue size distribution at a random epoch
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11835

Search results for: queue size distribution at a random epoch

10365 Comparison of the Toxicity of Silver and Gold Nanoparticles in Murine Fibroblasts

Authors: Šárka Hradilová, Aleš Panáček, Radek Zbořil

Abstract:

Nanotechnologies are considered the most promising fields with high added value, brings new possibilities in various sectors from industry to medicine. With the growing of interest in nanomaterials and their applications, increasing nanoparticle production leads to increased exposure of people and environment with ‘human made’ nanoparticles. Nanoparticles (NPs) are clusters of atoms in the size range of 1–100 nm. Metal nanoparticles represent one of the most important and frequently used types of NPs due to their unique physical, chemical and biological properties, which significantly differ from those of bulk material. Biological properties including toxicity of metal nanoparticles are generally determined by their size, size distribution, shape, surface area, surface charge, surface chemistry, stability in the environment and ability to release metal ions. Therefore, the biological behavior of NPs and their possible adverse effect cannot be derived from the bulk form of material because nanoparticles show unique properties and interactions with biological systems just due to their nanodimensions. Silver and gold NPs are intensively studied and used. Both can be used for instance in surface enhanced Raman spectroscopy, a considerable number of applications of silver NPs is associated with antibacterial effects, while gold NPs are associated with cancer treatment and bio imaging. Antibacterial effects of silver ions are known for centuries. Silver ions and silver-based compounds are highly toxic to microorganisms. Toxic properties of silver NPs are intensively studied, but the mechanism of cytoxicity is not fully understood. While silver NPs are considered toxic, gold NPs are referred to as toxic but also innocuous for eukaryotic cells. Therefore, gold NPs are used in various biological applications without a risk of cell damaging, even when we want to suppress the growth of cancer cells. Thus, gold NPs are toxic or harmless. Because most studies comparing particles of various sizes prepared in various ways, and testing is performed on different cell lines, it is very difficult to generalize. The novelty and significance of our research is focused to the complex biological effects of silver and gold NPs prepared by the same method, have the same parameters and the same stabilizer. That is why we can compare the biological effects of pure nanometals themselves based on their chemical nature without the influence of other variable. Aim of our study therefore is to compare the cytotoxic effect of two types of noble metal NPs focusing on the mechanisms that contribute to cytotoxicity. The study was conducted on murine fibroblasts by selected common used tests. Each of these tests monitors the selected area related to toxicity and together provides a comprehensive view on the issue of interactions of nanoparticles and living cells.

Keywords: cytotoxicity, gold nanoparticles, mechanism of cytotoxicity, silver nanoparticles

Procedia PDF Downloads 254
10364 A Brief Study about Nonparametric Adherence Tests

Authors: Vinicius R. Domingues, Luan C. S. M. Ozelim

Abstract:

The statistical study has become indispensable for various fields of knowledge. Not any different, in Geotechnics the study of probabilistic and statistical methods has gained power considering its use in characterizing the uncertainties inherent in soil properties. One of the situations where engineers are constantly faced is the definition of a probability distribution that represents significantly the sampled data. To be able to discard bad distributions, goodness-of-fit tests are necessary. In this paper, three non-parametric goodness-of-fit tests are applied to a data set computationally generated to test the goodness-of-fit of them to a series of known distributions. It is shown that the use of normal distribution does not always provide satisfactory results regarding physical and behavioral representation of the modeled parameters.

Keywords: Kolmogorov-Smirnov test, Anderson-Darling test, Cramer-Von-Mises test, nonparametric adherence tests

Procedia PDF Downloads 446
10363 Planing the Participation of Units Bound to Demand Response Programs with Regard to Ancillary Services in the PQ Power Market

Authors: Farnoosh Davarian

Abstract:

The present research focuses on organizing the cooperation of units constrained by demand response (DR) programs, considering ancillary services in the P-Q power market. Moreover, it provides a comprehensive exploration of the effects of demand reduction and redistribution across several predefined scenarios (in three pre-designed demand response programs, for example, ranging from 5% to 20%) on system voltage and losses in a smart distribution system (in the studied network, distributed energy resources (DERs) such as synchronous distributed generators and wind turbines offer their active and reactive power for the proposed market).GAMS, a specialized software for high-powered modeling, is used for optimizing linear, nonlinear, and integer programming challenges. GAMS modeling is separate from its solution method, which is a notable feature. Thus, by providing changes in the solver, it is possible to solve the model using various methods (linear, nonlinear, integer, etc.). Finally, the combined active and reactive market challenge in smart distribution systems, considering renewable distributed sources and demand response programs in GAMS, will be evaluated. The active and reactive power trading by the distribution company is carried out in the wholesale market. What is demanded is active power. By using the buy-back/payment program, it is possible for responsive loads or aggregators to participate in the market. The objective function of the proposed market is to minimize the price of active and reactive power for DERs and distribution companies and the penalty cost for CO2 emissions and the cost of the buy-back/payment program. In this research, the objective function is to minimize the cost of active and reactive power from distributed generation sources and distribution companies, the cost of carbon dioxide emissions, and the cost of the buy-back/payment program. The effectiveness of the proposed method has been evaluated in a case study.

Keywords: consumer behavior, demand response, pollution cost, combined active and reactive market

Procedia PDF Downloads 9
10362 Spatial Distribution of Local Sheep Breeds in Antalya Province

Authors: Serife Gulden Yilmaz, Suleyman Karaman

Abstract:

Sheep breeding is important in terms of meeting both the demand of red meat consumption and the availability of industrial raw materials and the employment of the rural sector in Turkey. It is also very important to ensure the selection and continuity of the breeds that are raised in order to increase quality and productive products related to sheep breeding. The protection of local breeds and crossbreds also enables the development of the sector in the region and the reduction of imports. In this study, the data were obtained from the records of the Turkish Statistical Institute and Antalya Sheep & Goat Breeders' Association. Spatial distribution of sheep breeds in Antalya is reviewed statistically in terms of concentration at the local level for 2015 period spatially. For this reason; mapping, box plot, linear regression are used in this study. Concentration is introduced by means of studbook data on sheep breeding as locals and total sheep farm by mapping. It is observed that Pırlak breed (17.5%) and Merinos crossbreed (16.3%) have the highest concentration in the region. These breeds are respectively followed by Akkaraman breed (11%), Pirlak crossbreed (8%), Merinos breed (7.9%) Akkaraman crossbreed (7.9%) and Ivesi breed (7.2%).

Keywords: sheep breeds, local, spatial distribution, agglomeration, Antalya

Procedia PDF Downloads 286
10361 Electricity Services and COVID-19: Understanding the Role of Infrastructure Improvements and Institutional Innovations

Authors: Javed Younas

Abstract:

Fiscal challenges pervade the electricity sector in many developing countries. Low bill payment and high theft mean utility customers have little incentive to conserve. It also means electricity distribution companies have less to invest in infrastructure maintenance, modernization, and technical upgrades. The low-quality electricity services can result impair the economic benefits from connections to the electrical grid. We study the impacts of two interventions implemented in Karachi, Pakistan, with the goal of reducing distribution losses and increasing revenue recovery: infrastructure improvements that made illegal connections physically more difficult and institutional innovations designed to increase communities’ trust in and cooperation with the utility. Using differences in implementation timing across space, we estimate the interventions’ impacts before the COVID-19 pandemic and their role in mitigating the pandemic’s effects on electricity services. Results indicate that the infrastructure improvements reduced losses, as well as the electricity delivered to the distribution system, a proxy for a generation. The institutional innovations significantly impacted revenue recovery, but not losses in their initial months; however, the efforts mitigated the pandemic’s negative effect on the utility finances.

Keywords: electricity, infrastructure, losses, revenue recovery

Procedia PDF Downloads 197
10360 Understanding the Thermal Transformation of Random Access Memory Cards: A Pathway to Their Efficient Recycling

Authors: Khushalini N. Ulman, Samane Maroufi, Veena H. Sahajwalla

Abstract:

Globally, electronic waste (e-waste) continues to grow at an alarming rate. Several technologies have been developed to recover valuable materials from e-waste, however, their efficiency can be increased with a better knowledge of the e-waste components. Random access memory cards (RAMs) are considered as high value scrap for the e-waste recyclers. Despite their high precious metal content, RAMs are still recycled in a conventional manner resulting in huge loss of resources. Our research work highlights the precious metal rich components of a RAM. Inductively coupled plasma (ICP) analysis of RAMs of six different generations have been carried out and the trends in their metal content have been investigated. Over the past decade, the copper content of RAMs has halved and their tin content has increased by 70 %. The stricter environmental laws have facilitated ~96 % drop in the lead content of RAMs. To comprehend the fundamentals of thermal transformation of RAMs, our research provides their detailed kinetic study. This can assist the e-waste recyclers in optimising their metal recovery processes. Thus, understanding the chemical and thermal behaviour of RAMs can open new avenues for efficient e-waste recycling.

Keywords: electronic waste, kinetic study, recycling, thermal transformation

Procedia PDF Downloads 146
10359 Forecasting Market Share of Electric Vehicles in Taiwan Using Conjoint Models and Monte Carlo Simulation

Authors: Li-hsing Shih, Wei-Jen Hsu

Abstract:

Recently, the sale of electrical vehicles (EVs) has increased dramatically due to maturing technology development and decreasing cost. Governments of many countries have made regulations and policies in favor of EVs due to their long-term commitment to net zero carbon emissions. However, due to uncertain factors such as the future price of EVs, forecasting the future market share of EVs is a challenging subject for both the auto industry and local government. This study tries to forecast the market share of EVs using conjoint models and Monte Carlo simulation. The research is conducted in three phases. (1) A conjoint model is established to represent the customer preference structure on purchasing vehicles while five product attributes of both EV and internal combustion engine vehicles (ICEV) are selected. A questionnaire survey is conducted to collect responses from Taiwanese consumers and estimate the part-worth utility functions of all respondents. The resulting part-worth utility functions can be used to estimate the market share, assuming each respondent will purchase the product with the highest total utility. For example, attribute values of an ICEV and a competing EV are given respectively, two total utilities of the two vehicles of a respondent are calculated and then knowing his/her choice. Once the choices of all respondents are known, an estimate of market share can be obtained. (2) Among the attributes, future price is the key attribute that dominates consumers’ choice. This study adopts the assumption of a learning curve to predict the future price of EVs. Based on the learning curve method and past price data of EVs, a regression model is established and the probability distribution function of the price of EVs in 2030 is obtained. (3) Since the future price is a random variable from the results of phase 2, a Monte Carlo simulation is then conducted to simulate the choices of all respondents by using their part-worth utility functions. For instance, using one thousand generated future prices of an EV together with other forecasted attribute values of the EV and an ICEV, one thousand market shares can be obtained with a Monte Carlo simulation. The resulting probability distribution of the market share of EVs provides more information than a fixed number forecast, reflecting the uncertain nature of the future development of EVs. The research results can help the auto industry and local government make more appropriate decisions and future action plans.

Keywords: conjoint model, electrical vehicle, learning curve, Monte Carlo simulation

Procedia PDF Downloads 70
10358 Species Distribution Model for Zanthoxylum Rhetsa Genus in Thailand

Authors: Yosiya Chanta, Jantrararuk Tovaranont

Abstract:

Species distribution model (SDMs) is one of the powerful tools used to create a suitability map used to predict and address ecology and conservation approaches. MaxEnt is a tool used among SDMs that is highly popular because it only uses presence data. Zanthoxylum rhetsa has more than 200 species distributed in the tropics. Most commonly found in cooler forest environments, there are 8-9 species found in Thailand. In northern Thailand, 3 varieties are commonly grown: Zanthoxylum myriacanthum, Zanthoxylum rhetsa and Zanthoxylum armatum. In the northern regions, these varieties are mainly used as a spice and as a cooking ingredient. MaxEnt has been used in this study to predict potential habitats for these Zanthoxylums in current and future times (2041and 2060). Suitable habitats are predicted using data from the EC-Earth3-Veg general circulation model with 19 climatic variables. The results indicate that the suitability of future habitats of Zanthoxylum rhetsa may expand into the lower northern part of Thailand. The habitat suitability map obtained from the MaxEnt tool shows that the Precipitation of Wettest Quarter (Bio16) is the most important climatic variable influencing the current and future spread of Zanthoxylum rhetsa.

Keywords: MaxEnt, Zanthoxylum rhets, species distribution modelling, climate change

Procedia PDF Downloads 98
10357 Mode Choice for School Trip of Children’s Independence Mobility: A Case Study of School Proximity to Mass Transit Stations in Bangkok, Thailand

Authors: Phannarithisen Ong

Abstract:

Children's independent mobility for school trips promotes physical and mental well-being, reduces parental chauffeuring and traffic congestion, and boosts children's public confidence. However, in Thailand, despite a decade of rail mass transit development in Bangkok City, cars still queue to drop students at schools near transit stations. This worsens congestion, urging better independent mobility among children in mass transit regions. The high reliance on the private vehicle will influence the private mode in the children's adulthood. This research emphasizes mass transit use among high school students near transit systems. Through a questionnaire survey, quantitative and qualitative methods reveal key factors impacting school trip mode choice. Preliminary findings highlight children's independence as crucial. The socioeconomic, demographic, trip, and transportation traits explain private car use, even schools near mass transit stations. The outcomes of this study will shed light on urban strategic policies for improvement, advocacy, and encouragement of students using mass transit for school trips, which will help normalize the use of mass transit for such trips.

Keywords: children's independence mobility, mode choice, school trips, TOD, extraneous variable, children's independency

Procedia PDF Downloads 143
10356 Physical Properties of Nano-Sized Poly-N-Isopropylacrylamide Hydrogels

Authors: Esra Alveroglu Durucu, Kenan Koc

Abstract:

In this study, we synthesized and characterized nano-sized Poly- N-isopropylacrylamide (PNIPAM) hydrogels. N-isopropylacrylamide (NIPAM) micro and macro gels are known as a thermosensitive colloidal structure, and they respond to changes in the environmental conditions such as temperature and pH. Here, nano-sized gels were synthesized via precipitation copolymerization method. N,N-methylenebisacrylamide (BIS) and ammonium persulfate APS were used as crosslinker and initiator, respectively. 8-Hydroxypyrene-1,3,6- trisulfonic Acid (Pyranine, Py) molecules were used for arranging the particle size and thus physical properties of the nano-sized hydrogels. Fluorescence spectroscopy, atomic force microscopy and light scattering methods were used for characterizing the synthesized hydrogels. The results show that the gel size was decreased with increasing amount of ionic molecule from 550 to 140 nm due to the electrostatic behavior of the ionic side groups of pyranine. Light scattering experiments demonstrate that lower critical solution temperature (LCST) of the gels shifts to the lower temperature with decreasing size of gel due to the hydrophobicity–hydrophilicity balance of the polymer chains.

Keywords: hydrogels, lower critical solution temperature, nanogels, poly(n-isopropylacrylamide)

Procedia PDF Downloads 247
10355 Development and In vitro Characterization of Diclofenac-Loaded Microparticles

Authors: Prakriti Diwan, S. Saraf

Abstract:

The present study involves preparation and evaluation of microparticles of diclofenac sodium. The microparticles were prepared by the emulsion solvent evaporation techniques using ethylcellulose polymer. Four different batches of microspheres were prepared by varying the concentration of polymer from 50% to 80% w/w. The microspheres were characterized for drug content, percentage yield and encapsulation efficiency, particle size analysis and surface morphology. Microsphere prepared with high drug content produces higher percentage yield and encapsulation efficiency values. It was observed the increase in concentration of the polymer, increases the mean particle size of the microspheres. The effect of polymer concentration on the in vitro release of diclofenac from the microspheres was also studied. The production microparticles yield showed 98.74%, mean particle size 956.32µm and loading efficiency 97.15%. The results were found that microparticles prepared had slower release than microparticles (p>0.05). Therefore, it may be concluded that drug loaded microparticles are suitable delivery systems for diclofenac sodium.

Keywords: diclofenac sodium, emulsion solvent evaporation, ethylcellulose, microparticles

Procedia PDF Downloads 287
10354 Designing Stochastic Non-Invasively Applied DC Pulses to Suppress Tremors in Multiple Sclerosis by Computational Modeling

Authors: Aamna Lawrence, Ashutosh Mishra

Abstract:

Tremors occur in 60% of the patients who have Multiple Sclerosis (MS), the most common demyelinating disease that affects the central and peripheral nervous system, and are the primary cause of disability in young adults. While pharmacological agents provide minimal benefits, surgical interventions like Deep Brain Stimulation and Thalamotomy are riddled with dangerous complications which make non-invasive electrical stimulation an appealing treatment of choice for dealing with tremors. Hence, we hypothesized that if the non-invasive electrical stimulation parameters (mainly frequency) can be computed by mathematically modeling the nerve fibre to take into consideration the minutest details of the axon morphologies, tremors due to demyelination can be optimally alleviated. In this computational study, we have modeled the random demyelination pattern in a nerve fibre that typically manifests in MS using the High-Density Hodgkin-Huxley model with suitable modifications to account for the myelin. The internode of the nerve fibre in our model could have up to ten demyelinated regions each having random length and myelin thickness. The arrival time of action potentials traveling the demyelinated and the normally myelinated nerve fibre between two fixed points in space was noted, and its relationship with the nerve fibre radius ranging from 5µm to 12µm was analyzed. It was interesting to note that there were no overlaps between the arrival time for action potentials traversing the demyelinated and normally myelinated nerve fibres even when a single internode of the nerve fibre was demyelinated. The study gave us an opportunity to design DC pulses whose frequency of application would be a function of the random demyelination pattern to block only the delayed tremor-causing action potentials. The DC pulses could be delivered to the peripheral nervous system non-invasively by an electrode bracelet that would suppress any shakiness beyond it thus paving the way for wearable neuro-rehabilitative technologies.

Keywords: demyelination, Hodgkin-Huxley model, non-invasive electrical stimulation, tremor

Procedia PDF Downloads 131
10353 Machine Learning for Disease Prediction Using Symptoms and X-Ray Images

Authors: Ravija Gunawardana, Banuka Athuraliya

Abstract:

Machine learning has emerged as a powerful tool for disease diagnosis and prediction. The use of machine learning algorithms has the potential to improve the accuracy of disease prediction, thereby enabling medical professionals to provide more effective and personalized treatments. This study focuses on developing a machine-learning model for disease prediction using symptoms and X-ray images. The importance of this study lies in its potential to assist medical professionals in accurately diagnosing diseases, thereby improving patient outcomes. Respiratory diseases are a significant cause of morbidity and mortality worldwide, and chest X-rays are commonly used in the diagnosis of these diseases. However, accurately interpreting X-ray images requires significant expertise and can be time-consuming, making it difficult to diagnose respiratory diseases in a timely manner. By incorporating machine learning algorithms, we can significantly enhance disease prediction accuracy, ultimately leading to better patient care. The study utilized the Mask R-CNN algorithm, which is a state-of-the-art method for object detection and segmentation in images, to process chest X-ray images. The model was trained and tested on a large dataset of patient information, which included both symptom data and X-ray images. The performance of the model was evaluated using a range of metrics, including accuracy, precision, recall, and F1-score. The results showed that the model achieved an accuracy rate of over 90%, indicating that it was able to accurately detect and segment regions of interest in the X-ray images. In addition to X-ray images, the study also incorporated symptoms as input data for disease prediction. The study used three different classifiers, namely Random Forest, K-Nearest Neighbor and Support Vector Machine, to predict diseases based on symptoms. These classifiers were trained and tested using the same dataset of patient information as the X-ray model. The results showed promising accuracy rates for predicting diseases using symptoms, with the ensemble learning techniques significantly improving the accuracy of disease prediction. The study's findings indicate that the use of machine learning algorithms can significantly enhance disease prediction accuracy, ultimately leading to better patient care. The model developed in this study has the potential to assist medical professionals in diagnosing respiratory diseases more accurately and efficiently. However, it is important to note that the accuracy of the model can be affected by several factors, including the quality of the X-ray images, the size of the dataset used for training, and the complexity of the disease being diagnosed. In conclusion, the study demonstrated the potential of machine learning algorithms for disease prediction using symptoms and X-ray images. The use of these algorithms can improve the accuracy of disease diagnosis, ultimately leading to better patient care. Further research is needed to validate the model's accuracy and effectiveness in a clinical setting and to expand its application to other diseases.

Keywords: K-nearest neighbor, mask R-CNN, random forest, support vector machine

Procedia PDF Downloads 157
10352 Phenotype Prediction of DNA Sequence Data: A Machine and Statistical Learning Approach

Authors: Mpho Mokoatle, Darlington Mapiye, James Mashiyane, Stephanie Muller, Gciniwe Dlamini

Abstract:

Great advances in high-throughput sequencing technologies have resulted in availability of huge amounts of sequencing data in public and private repositories, enabling a holistic understanding of complex biological phenomena. Sequence data are used for a wide range of applications such as gene annotations, expression studies, personalized treatment and precision medicine. However, this rapid growth in sequence data poses a great challenge which calls for novel data processing and analytic methods, as well as huge computing resources. In this work, a machine and statistical learning approach for DNA sequence classification based on $k$-mer representation of sequence data is proposed. The approach is tested using whole genome sequences of Mycobacterium tuberculosis (MTB) isolates to (i) reduce the size of genomic sequence data, (ii) identify an optimum size of k-mers and utilize it to build classification models, (iii) predict the phenotype from whole genome sequence data of a given bacterial isolate, and (iv) demonstrate computing challenges associated with the analysis of whole genome sequence data in producing interpretable and explainable insights. The classification models were trained on 104 whole genome sequences of MTB isoloates. Cluster analysis showed that k-mers maybe used to discriminate phenotypes and the discrimination becomes more concise as the size of k-mers increase. The best performing classification model had a k-mer size of 10 (longest k-mer) an accuracy, recall, precision, specificity, and Matthews Correlation coeffient of 72.0%, 80.5%, 80.5%, 63.6%, and 0.4 respectively. This study provides a comprehensive approach for resampling whole genome sequencing data, objectively selecting a k-mer size, and performing classification for phenotype prediction. The analysis also highlights the importance of increasing the k-mer size to produce more biological explainable results, which brings to the fore the interplay that exists amongst accuracy, computing resources and explainability of classification results. However, the analysis provides a new way to elucidate genetic information from genomic data, and identify phenotype relationships which are important especially in explaining complex biological mechanisms.

Keywords: AWD-LSTM, bootstrapping, k-mers, next generation sequencing

Procedia PDF Downloads 170
10351 Phenotype Prediction of DNA Sequence Data: A Machine and Statistical Learning Approach

Authors: Darlington Mapiye, Mpho Mokoatle, James Mashiyane, Stephanie Muller, Gciniwe Dlamini

Abstract:

Great advances in high-throughput sequencing technologies have resulted in availability of huge amounts of sequencing data in public and private repositories, enabling a holistic understanding of complex biological phenomena. Sequence data are used for a wide range of applications such as gene annotations, expression studies, personalized treatment and precision medicine. However, this rapid growth in sequence data poses a great challenge which calls for novel data processing and analytic methods, as well as huge computing resources. In this work, a machine and statistical learning approach for DNA sequence classification based on k-mer representation of sequence data is proposed. The approach is tested using whole genome sequences of Mycobacterium tuberculosis (MTB) isolates to (i) reduce the size of genomic sequence data, (ii) identify an optimum size of k-mers and utilize it to build classification models, (iii) predict the phenotype from whole genome sequence data of a given bacterial isolate, and (iv) demonstrate computing challenges associated with the analysis of whole genome sequence data in producing interpretable and explainable insights. The classification models were trained on 104 whole genome sequences of MTB isoloates. Cluster analysis showed that k-mers maybe used to discriminate phenotypes and the discrimination becomes more concise as the size of k-mers increase. The best performing classification model had a k-mer size of 10 (longest k-mer) an accuracy, recall, precision, specificity, and Matthews Correlation coeffient of 72.0 %, 80.5 %, 80.5 %, 63.6 %, and 0.4 respectively. This study provides a comprehensive approach for resampling whole genome sequencing data, objectively selecting a k-mer size, and performing classification for phenotype prediction. The analysis also highlights the importance of increasing the k-mer size to produce more biological explainable results, which brings to the fore the interplay that exists amongst accuracy, computing resources and explainability of classification results. However, the analysis provides a new way to elucidate genetic information from genomic data, and identify phenotype relationships which are important especially in explaining complex biological mechanisms

Keywords: AWD-LSTM, bootstrapping, k-mers, next generation sequencing

Procedia PDF Downloads 160
10350 Effects of Spray Dryer Atomizer Speed on Casein Micelle Size in Whole Fat Milk Powder and Physicochemical Properties of White Cheese

Authors: Mohammad Goli, Akram Sharifi, Mohammad Yousefi Jozdani, Seyed Ali Mortazavi

Abstract:

An industrial spray dryer was used, and the effects of atomizer speed on the physicochemical properties of milk powder, the textural and sensory characteristics of white cheese made from this milk powder, were evaluated. For this purpose, whole milk was converted into powder by using three different speeds (10,000, 11,000, and 12,000 rpm). Results showed that with increasing atomizer speed in the spray dryer, the average size of casein micelle is significantly decreased (p < 0.05), whereas no significant effect is observed on the chemical properties of milk powder. White cheese characteristics indicated that with increasing atomizer speed, texture parameters, such as hardness, mastication, and gumminess, were significantly reduced (p < 0.05). Sensory evaluation also revealed that cheese samples prepared with dried milk produced at 12,000 rpm were highly accepted by panelists. Overall, the findings suggested that 12,000 rpm is the optimal atomizer speed for milk powder production.

Keywords: spray drying, powder technology, atomizer speed, particle size, white cheese physical properties

Procedia PDF Downloads 469
10349 Kebbi State University of Science and Technology, Aliero, Kebbi State

Authors: Ugbajah Maryjane

Abstract:

The study examined the production of grass cutter and the constraints in Anambra state, Nigeria. Specifically, it described socio-economic characteristics of the respondents, determinants of net farm income and constraints to grass cutter production. Multistage and random sampling methods were used to select 50 respondents for this study. Primary data were collected by means of structured questionnaire. Non-parametric and parametric statistical tools including frequency percentage mean ranking counts, cost and returns and returns and multiple regression were deployed for data analysis. Majority 84% produce on small scale, 64 % had formal education 68% had 3-4 years of farming experience hence small scaled production were common. The income (returns) on investment was used as index of profitability, gross margin (#5,972,280), net farm income (#5,327,055.2) net return on investment (2.5) and return on investment 3.1. Net farm income was significantly influence by stock size and years of farming experience. Grass cutter farmers production problem would be ameliorated by the expression of extension education awareness campaigns to discourage unhealthy practices such as indiscriminant bush burning, use of toxic chemicals as baits, and provision of credits to the farmers.

Keywords: socio-economic factors, profitability, awareness, toxic chemicals, credits

Procedia PDF Downloads 415
10348 A Review on Application of Waste Tire in Concrete

Authors: M. A. Yazdi, J. Yang, L. Yihui, H. Su

Abstract:

The application of recycle waste tires into civil engineering practices, namely asphalt paving mixtures and cementbased materials has been gaining ground across the world. This review summarizes and compares the recent achievements in the area of plain rubberized concrete (PRC), in details. Different treatment methods have been discussed to improve the performance of rubberized Portland cement concrete. The review also includes the effects of size and amount of tire rubbers on mechanical and durability properties of PRC. The microstructure behaviour of the rubberized concrete was detailed.

Keywords: waste rubber aggregates, microstructure, treatment methods, size and content effects

Procedia PDF Downloads 335
10347 Update Mosquito Species Composition and Distribution in Qatar

Authors: Fatima Alkhayat, Abu Hassan Ahmed

Abstract:

Qatar as the one of Middle East and Gulf country is growing rapidly due to urbanization. Urbanization, population’s movement and goods transportation in addition to climatic change all together create suitable environments for remerging and/or introduction of new disease vectors species. Unfortunately, knowledge on mosquito species composition and their geographical distribution in Qatar is extremely limited. The objective of present study is to provide update information on species composition and distribution. Mosquito larval survey carried out in six sentinel sites in Qatar. The collection was made on monthly basis in period from October 2013 to May 2015 using dipping techniques and identified to species level using appropriate pictorial keys. In total about 3,085 mosquito larvae were collected and identified to species compromising three mosquito genera, Culex 87.4% (n=2697), Ochlerotatus 9.9% (n= 305) and Anopheles 2.6% (n= 81). Among Culex genera; Culex quinquefasciatus represent 87.8% (n= 2369), Cx. pipiens 8.7% (n=237), and Cx. mattinglyi 3.4% (n=91). Culex quinquefasciatus was the most commonly collected species, representing 93.5% in Alwakra (n= 2216) which was observed in November, December, March, April and May when reached the peak. 6.4% in Nuaija (n= 151) was found in February and March and reached the peak in March. 0.1% in Alkaraana (n=2) only observed in April. Cx. pipiens was observed 50.2% in Rwdat Alfaras (n=120) and 48.9% in Hazm Almurkhiya (n=117). While in Rowdat Alfaras it was observed in Oct-May and in Hazm Almurkhiya from Oct-April. Cx. mattinglyi (n= 91) was only found in Nuaija from October to December. Ochlerotatus genera account 1 species Oc. dorsalis (n=305). The majority of Oc. dorsalis were observed in March and May, 98% in Nuaija (n= 299), followed by 2% in Alkhor (n=6) which was observed in January and February. Anopheles was only represented by An. stephensi which was found 69% in Alwakra (n= 56) in November, December, April and May, while 25.9% in Hazm Almurkhiya (n=21) and found in May and November. 6.2% in Rwadat Alfaras and was observed only in November and 1.2% in Nuaija (n=1) and observed in October. Further investigation is required on the composition and distribution of mosquito for implementing a surveillance program and control of mosquito-borne diseases in Qatar.

Keywords: composition, distribution, mosquito, Qatar

Procedia PDF Downloads 285
10346 Spatial Assessment of Soil Contamination from Informal E-Waste Recycling Site in Agbogbloshie, Ghana

Authors: Kyere Vincent Nartey, Klaus Greve, Atiemo Sampson

Abstract:

E-waste is discarded electrical electronic equipment inclusive of all components, sub-assemblies and consumables which are part of the product at the time of discarding and known to contain both hazardous and valuable fractions. E-waste is recycled within the proposed ecological restoration of the Agbogbloshie enclave using crude and rudimental recycling procedures such as open burning and manual dismantling which result in pollution and contamination of soil, water and air. Using GIS, this study was conducted to examine the spatial distribution and extent of soil contamination by heavy metals from the e-waste recycling site in Agbogbloshie. From the month of August to November 2013, 146 soil samples were collected in addition to their coordinates using GPS. Elemental analysis performed on the collected soil samples using X-Ray fluorescence revealed over 30 elements including, Ni, Cr, Zn, Cu, Pb and Mn. Using geostatistical techniques in ArcGIS 10.1 spatial assessment and distribution maps were generated. Mathematical models or equations were used to estimate the degree of contamination and pollution index. Results from soil analysis from the Agbogbloshie enclave showed that levels of measured or observed elements were significantly higher than the Canadian EPA and Dutch environmental standards.

Keywords: e-waste, geostatistics, soil contamination, spatial distribution

Procedia PDF Downloads 515
10345 Measurement of Solids Concentration in Hydrocyclone Using ERT: Validation Against CFD

Authors: Vakamalla Teja Reddy, Narasimha Mangadoddy

Abstract:

Hydrocyclones are used to separate particles into different size fractions in the mineral processing, chemical and metallurgical industries. High speed video imaging, Laser Doppler Anemometry (LDA), X-ray and Gamma ray tomography are previously used to measure the two-phase flow characteristics in the cyclone. However, investigation of solids flow characteristics inside the cyclone is often impeded by the nature of the process due to slurry opaqueness and solid metal wall vessels. In this work, a dual-plane high speed Electrical resistance tomography (ERT) is used to measure hydrocyclone internal flow dynamics in situ. Experiments are carried out in 3 inch hydrocyclone for feed solid concentrations varying in the range of 0-50%. ERT data analysis through the optimized FEM mesh size and reconstruction algorithms on air-core and solid concentration tomograms is assessed. Results are presented in terms of the air-core diameter and solids volume fraction contours using Maxwell’s equation for various hydrocyclone operational parameters. It is confirmed by ERT that the air core occupied area and wall solids conductivity levels decreases with increasing the feed solids concentration. Algebraic slip mixture based multi-phase computational fluid dynamics (CFD) model is used to predict the air-core size and the solid concentrations in the hydrocyclone. Validation of air-core size and mean solid volume fractions by ERT measurements with the CFD simulations is attempted.

Keywords: air-core, electrical resistance tomography, hydrocyclone, multi-phase CFD

Procedia PDF Downloads 379
10344 A Stochastic Diffusion Process Based on the Two-Parameters Weibull Density Function

Authors: Meriem Bahij, Ahmed Nafidi, Boujemâa Achchab, Sílvio M. A. Gama, José A. O. Matos

Abstract:

Stochastic modeling concerns the use of probability to model real-world situations in which uncertainty is present. Therefore, the purpose of stochastic modeling is to estimate the probability of outcomes within a forecast, i.e. to be able to predict what conditions or decisions might happen under different situations. In the present study, we present a model of a stochastic diffusion process based on the bi-Weibull distribution function (its trend is proportional to the bi-Weibull probability density function). In general, the Weibull distribution has the ability to assume the characteristics of many different types of distributions. This has made it very popular among engineers and quality practitioners, who have considered it the most commonly used distribution for studying problems such as modeling reliability data, accelerated life testing, and maintainability modeling and analysis. In this work, we start by obtaining the probabilistic characteristics of this model, as the explicit expression of the process, its trends, and its distribution by transforming the diffusion process in a Wiener process as shown in the Ricciaardi theorem. Then, we develop the statistical inference of this model using the maximum likelihood methodology. Finally, we analyse with simulated data the computational problems associated with the parameters, an issue of great importance in its application to real data with the use of the convergence analysis methods. Overall, the use of a stochastic model reflects only a pragmatic decision on the part of the modeler. According to the data that is available and the universe of models known to the modeler, this model represents the best currently available description of the phenomenon under consideration.

Keywords: diffusion process, discrete sampling, likelihood estimation method, simulation, stochastic diffusion process, trends functions, bi-parameters weibull density function

Procedia PDF Downloads 309
10343 Evaluating Performance of Value at Risk Models for the MENA Islamic Stock Market Portfolios

Authors: Abderrazek Ben Maatoug, Ibrahim Fatnassi, Wassim Ben Ayed

Abstract:

In this paper we investigate the issue of market risk quantification for Middle East and North Africa (MENA) Islamic market equity. We use Value-at-Risk (VaR) as a measure of potential risk in Islamic stock market, for long and short position, based on Riskmetrics model and the conditional parametric ARCH class model volatility with normal, student and skewed student distribution. The sample consist of daily data for the 2006-2014 of 11 Islamic stock markets indices. We conduct Kupiec and Engle and Manganelli tests to evaluate the performance for each model. The main finding of our empirical results show that (i) the superior performance of VaR models based on the Student and skewed Student distribution, for the significance level of α=1% , for all Islamic stock market indices, and for both long and short trading positions (ii) Risk Metrics model, and VaR model based on conditional volatility with normal distribution provides the best accurate VaR estimations for both long and short trading positions for a significance level of α=5%.

Keywords: value-at-risk, risk management, islamic finance, GARCH models

Procedia PDF Downloads 592
10342 Harmonic Data Preparation for Clustering and Classification

Authors: Ali Asheibi

Abstract:

The rapid increase in the size of databases required to store power quality monitoring data has demanded new techniques for analysing and understanding the data. One suggested technique to assist in analysis is data mining. Preparing raw data to be ready for data mining exploration take up most of the effort and time spent in the whole data mining process. Clustering is an important technique in data mining and machine learning in which underlying and meaningful groups of data are discovered. Large amounts of harmonic data have been collected from an actual harmonic monitoring system in a distribution system in Australia for three years. This amount of acquired data makes it difficult to identify operational events that significantly impact the harmonics generated on the system. In this paper, harmonic data preparation processes to better understanding of the data have been presented. Underlying classes in this data has then been identified using clustering technique based on the Minimum Message Length (MML) method. The underlying operational information contained within the clusters can be rapidly visualised by the engineers. The C5.0 algorithm was used for classification and interpretation of the generated clusters.

Keywords: data mining, harmonic data, clustering, classification

Procedia PDF Downloads 250
10341 A Comparative Study to Evaluate Chronological Age and Dental Age in the North Indian Population Using Cameriere's Method

Authors: Ranjitkumar Patil

Abstract:

Age estimation has importance in forensic dentistry. Dental age estimation has emerged as an alternative to skeletal age determination. The methods based on stages of tooth formation, as appreciated on radiographs, seem to be more appropriate in the assessment of age than those based on skeletal development. The study was done to evaluate dental age in the north Indian population using Cameriere’s method. Aims/Objectives: The study was conducted to assess the dental age of North Indian children using Cameriere’s method and to compare the chronological age and dental age for validation of the Cameriere’s method in the north Indian population. A comparative study of 02-year duration on the OPG (using PLANMECA Promax 3D) data of 497 individuals with ages ranging from 5 to 15 years was done based on simple random technique ethical approval obtained from institutional ethical committee. The data was obtained based on inclusion and exclusion criteria and was analyzed by software for dental age estimation. Statistical analysis: The student’s t-test was used to compare the morphological variables of males with those of females and to compare observed age with estimated age. The regression formula was also calculated. Results: Present study was a comparative study of 497 subjects with a distribution between males and females, with their dental age assessed by using a Panoramic radiograph, following the method described by Cameriere, which is widely accepted. Statistical analysis in our study indicated that gender does not have a significant influence on age estimation. (R2= 0.787). Conclusion: This infers that Cameriere’s method can be effectively applied to the north Indian population.

Keywords: forensic, dental age, skeletal age, chronological age, Cameriere’s method

Procedia PDF Downloads 116
10340 Tabu Search Algorithm for Ship Routing and Scheduling Problem with Time Window

Authors: Khaled Moh. Alhamad

Abstract:

This paper describes a tabu search heuristic for a ship routing and scheduling problem (SRSP). The method was developed to address the problem of loading cargos for many customers using heterogeneous vessels. Constraints relate to delivery time windows imposed by customers, the time horizon by which all deliveries must be made and vessel capacities. The results of a computational investigation are presented. Solution quality and execution time are explored with respect to problem size and parameters controlling the tabu search such as tenure and neighbourhood size.

Keywords: heuristic, scheduling, tabu search, transportation

Procedia PDF Downloads 507
10339 An Experimental Investigation on the Droplet Behavior Impacting a Hot Surface above the Leidenfrost Temperature

Authors: Khaleel Sami Hamdan, Dong-Eok Kim, Sang-Ki Moon

Abstract:

An appropriate model to predict the size of the droplets resulting from the break-up with the structures will help in a better understanding and modeling of the two-phase flow calculations in the simulation of a reactor core loss-of-coolant accident (LOCA). A droplet behavior impacting on a hot surface above the Leidenfrost temperature was investigated. Droplets of known size and velocity were impacted to an inclined plate of hot temperature, and the behavior of the droplets was observed by a high-speed camera. It was found that for droplets of Weber number higher than a certain value, the higher the Weber number of the droplet the smaller the secondary droplets. The COBRA-TF model over-predicted the measured secondary droplet sizes obtained by the present experiment. A simple model for the secondary droplet size was proposed using the mass conservation equation. The maximum spreading diameter of the droplets was also compared to previous correlations and a fairly good agreement was found. A better prediction of the heat transfer in the case of LOCA can be obtained with the presented model.

Keywords: break-up, droplet, impact, inclined hot plate, Leidenfrost temperature, LOCA

Procedia PDF Downloads 399
10338 Comparing the Efficacy of Quantitative Electroencephalogram-Based Neurofeedback Therapy Program versus Organizational Skills Training Program to Reduce the Core Symptoms among Children Group of ADHD

Authors: Radwa R. El-Saadany , Medhat Abu Zeid, Tarek Omar, Marwa S. Maqsoud

Abstract:

Attention deficit/hyperactivity disorder (ADHD) is one of the most common neurodevelopmental disorders characterized by attention deficit, hyperactivity, and impulsivity. Neurofeedback (NF) is one of the neurotherapy treatments that cause brain wave changes. Method: The current pseudo-experimental study with a pre–post-test design was conducted on a population of children with attention deficit hyperactivity disorder (ADHD).The sample size comprised of (30) children selected by random sampling method and assigned to two therapeutic groups: First therapeutic group received a neurofeedback program. Based on QEEG, it reached (10) children. The second therapeutic group received an organization skills training program, it reached (10) and the control group that did not receive programs, it reached (10) children. Results: There are significant differences between pre- and post-assessments among therapeutic groups in reducing the three core symptoms of ADHD in favor of post measurement. There are no significant differences between post-assessment and follow up measurement of the therapeutic groups.

Keywords: QEEG-based neurofeedback therapy program, organizational skills training program, attention deficit hyperactivity disorder

Procedia PDF Downloads 77
10337 Classification of EEG Signals Based on Dynamic Connectivity Analysis

Authors: Zoran Šverko, Saša Vlahinić, Nino Stojković, Ivan Markovinović

Abstract:

In this article, the classification of target letters is performed using data from the EEG P300 Speller paradigm. Neural networks trained with the results of dynamic connectivity analysis between different brain regions are used for classification. Dynamic connectivity analysis is based on the adaptive window size and the imaginary part of the complex Pearson correlation coefficient. Brain dynamics are analysed using the relative intersection of confidence intervals for the imaginary component of the complex Pearson correlation coefficient method (RICI-imCPCC). The RICI-imCPCC method overcomes the shortcomings of currently used dynamical connectivity analysis methods, such as the low reliability and low temporal precision for short connectivity intervals encountered in constant sliding window analysis with wide window size and the high susceptibility to noise encountered in constant sliding window analysis with narrow window size. This method overcomes these shortcomings by dynamically adjusting the window size using the RICI rule. This method extracts information about brain connections for each time sample. Seventy percent of the extracted brain connectivity information is used for training and thirty percent for validation. Classification of the target word is also done and based on the same analysis method. As far as we know, through this research, we have shown for the first time that dynamic connectivity can be used as a parameter for classifying EEG signals.

Keywords: dynamic connectivity analysis, EEG, neural networks, Pearson correlation coefficients

Procedia PDF Downloads 217
10336 Micro/Nano-Sized Emulsions Exhibit Antifungal Activity against Cucumber Downy Mildew

Authors: Kai-Fen Tu, Jenn-Wen Huang, Yao-Tung Lin

Abstract:

Cucumber is a major economic crop in the world. The global production of cucumber in 2017 was more than 71 million tonnes. Nonetheless, downy mildew, caused by Pseudoperonospora cubensis, is a devastating and common disease on cucumber in around 80 countries and causes severe economic losses. The long-term usage of fungicide also leads to the occurrence of fungicide resistance and decreases host resistance. In this study, six types of oil (neem oil, moringa oil, soybean oil, cinnamon oil, clove oil, and camellia oil) were selected to synthesize micro/nano-sized emulsions, and the disease control efficacy of micro/nano-sized emulsions were evaluated. Moreover, oil concentrations (0.125% - 1%) and droplet size of emulsion were studied. Results showed cinnamon-type emulsion had the best efficacy among these oils. The disease control efficacy of these emulsions increased as the oil concentration increased. Both disease incidence and disease severity were measured by detached leaf and pot experiment, respectively. For the droplet size effect, results showed that the 114 nm of droplet size synthesized by 0.25% cinnamon oil emulsion had the lowest disease incidence (6.67%) and lowest disease severity (33.33%). The release of zoospore was inhibited (5.33%), and the sporangia germination was damaged. These results suggest that cinnamon oil emulsion will be a valuable and environmentally friendly alternative to control cucumber downy mildew. The economic loss caused by plant disease could also be reduced.

Keywords: downy mildew, emulsion, oil droplet size, plant protectant

Procedia PDF Downloads 128