Search results for: open source energy modeling system (OSeMOSYS)
28989 The Impact of Open Defecation on Fecal-Oral Infections: A Case Study in Burat and Ngaremara Wards of Isiolo County, Kenya
Authors: Kimutai Joan Jepkorir, Moturi Wilkister Nyaora
Abstract:
The practice of open defecation can be devastating for human health as well as the environment, and this practice persistence could be due to ingrained habits that individuals continue to engage in despite having a better alternative. Safe disposal of human excreta is essential for public health protection. This study sought to find if open defecation relates to fecal-oral infections in Burat and Ngaremara Wards in Isiolo County. This was achieved through conducting a cross-sectional study. Simple random sampling technique was used to select 385 households that were used in the study. Data collection was done by use of questionnaires and observation checklists. The result show that 66% of the respondents disposed-off fecal matter in a safe manner, whereas 34% disposed-off fecal matter in unsafe manner through open defecation. The prevalence proportions per 1000 of diarrhea and intestinal worms among children under-5 years of age were 142 and 21, respectively. The prevalence proportions per 1000 of diarrhea and typhoid among children over-5 years of age were 20 and 20, respectively.Keywords: faecal-oral infections, open defecation, prevalence proportion, sanitation
Procedia PDF Downloads 30528988 Investigating Best Practice Energy Efficiency Policies and Programs, and Their Replication Potential for Residential Sector of Saudi Arabia
Authors: Habib Alshuwaikhat, Nahid Hossain
Abstract:
Residential sector consumes more than half of the produced electricity in Saudi Arabia, and fossil fuel is the main source of energy to meet growing household electricity demand in the Kingdom. Several studies forecasted and expressed concern that unless the domestic energy demand growth is controlled, it will reduce Saudi Arabia’s crude oil export capacity within a decade and the Kingdom is likely to be incapable of exporting crude oil within next three decades. Though the Saudi government has initiated to address the domestic energy demand growth issue, the demand side energy management policies and programs are focused on industrial and commercial sectors. It is apparent that there is an urgent need to develop a comprehensive energy efficiency strategy for addressing efficient energy use in residential sector in the Kingdom. Then again as Saudi Arabia is at its primary stage in addressing energy efficiency issues in its residential sector, there is a scope for the Kingdom to learn from global energy efficiency practices and design its own energy efficiency policies and programs. However, in order to do that sustainable, it is essential to address local contexts of energy efficiency. It is also necessary to find out the policies and programs that will fit to the local contexts. Thus the objective of this study was set to identify globally best practice energy efficiency policies and programs in residential sector that have replication potential in Saudi Arabia. In this regard two sets of multi-criteria decision analysis matrices were developed to evaluate the energy efficiency policies and programs. The first matrix was used to evaluate the global energy efficiency policies and programs, and the second matrix was used to evaluate the replication potential of global best practice energy efficiency policies and programs for Saudi Arabia. Wuppertal Institute’s guidelines for energy efficiency policy evaluation were used to develop the matrices, and the different attributes of the matrices were set through available literature review. The study reveals that the best practice energy efficiency policies and programs with good replication potential for Saudi Arabia are those which have multiple components to address energy efficiency and are diversified in their characteristics. The study also indicates the more diversified components are included in a policy and program, the more replication potential it has for the Kingdom. This finding is consistent with other studies, where it is observed that in order to be successful in energy efficiency practices, it is required to introduce multiple policy components in a cluster rather than concentrate on a single policy measure. The developed multi-criteria decision analysis matrices for energy efficiency policy and program evaluation could be utilized to assess the replication potential of other globally best practice energy efficiency policies and programs for the residential sector of the Kingdom. In addition it has potential to guide Saudi policy makers to adopt and formulate its own energy efficiency policies and programs for Saudi Arabia.Keywords: Saudi Arabia, residential sector, energy efficiency, policy evaluation
Procedia PDF Downloads 49628987 Design and Manufacture of a Hybrid Gearbox Reducer System
Authors: Ahmed Mozamel, Kemal Yildizli
Abstract:
Due to mechanical energy losses and a competitive of minimizing these losses and increases the machine efficiency, the need for contactless gearing system has raised. In this work, one stage of mechanical planetary gear transmission system integrated with one stage of magnetic planetary gear system is designed as a two-stage hybrid gearbox system. The permanent magnets internal energy in the form of the magnetic field is used to create meshing between contactless magnetic rotors in order to provide self-system protection against overloading and decrease the mechanical loss of the transmission system by eliminating the friction losses. Classical methods, such as analytical, tabular method and the theory of elasticity are used to calculate the planetary gear design parameters. The finite element method (ANSYS Maxwell) is used to predict the behaviors of a magnetic gearing system. The concentric magnetic gearing system has been modeled and analyzed by using 2D finite element method (ANSYS Maxwell). In addition to that, design and manufacturing processes of prototype components (a planetary gear, concentric magnetic gear, shafts and the bearings selection) of a gearbox system are investigated. The output force, the output moment, the output power and efficiency of the hybrid gearbox system are experimentally evaluated. The viability of applying a magnetic force to transmit mechanical power through a non-contact gearing system is presented. The experimental test results show that the system is capable to operate continuously within the range of speed from 400 rpm to 3000 rpm with the reduction ratio of 2:1 and maximum efficiency of 91%.Keywords: hybrid gearbox, mechanical gearboxes, magnetic gears, magnetic torque
Procedia PDF Downloads 15228986 Merit Order of Indonesian Coal Mining Sources to Meet the Domestic Power Plants Demand
Authors: Victor Siahaan
Abstract:
Coal still become the most important energy source for electricity generation known for its contribution which take the biggest portion of energy mix that a country has, for example Indonesia. The low cost of electricity generation and quite a lot of resources make this energy still be the first choice to fill the portion of base load power. To realize its significance to produce electricity, it is necessary to know the amount of coal (volume) needed to ensure that all coal power plants (CPP) in a country can operate properly. To secure the volume of coal, in this study, discussion was carried out regarding the identification of coal mining sources in Indonesia, classification of coal typical from each coal mining sources, and determination of the port of loading. By using data above, the sources of coal mining are then selected to feed certain CPP based on the compatibility of the coal typical and the lowest transport cost.Keywords: merit order, Indonesian coal mine, electricity, power plant
Procedia PDF Downloads 15328985 Sustainable Cities: Harnessing the Power of Urban Renewable Energy
Authors: Mehrzad Soltani, Pegah Rezaei
Abstract:
In the endeavor to construct cities that are not only thriving but also environmentally responsible, effective urban planning and architectural design assume paramount significance. The focal point of this pursuit is the harnessing of urban renewable energy. By embracing sustainable practices such as the integration of solar panels into the urban landscape and the establishment of smart grids, cities are poised to confront head-on the dual challenge of surging energy demands and pressing environmental concerns. Urban renewable energy solutions offer a multifaceted approach to these issues. Firstly, they usher in a clean and sustainable source of energy, reducing the cities' ecological footprint while ensuring a continuous power supply. This transition to eco-friendly energy is also intrinsically linked to enhanced spatial utilization, thereby streamlining the efficiency of urban areas. Moreover, it spurs the adoption of sustainable transportation alternatives, diminishing the reliance on fossil fuels and mitigating air pollution. However, the significance of integrating renewable energy solutions transcends the realm of urban sustainability. It embodies a holistic approach towards creating cities that harmoniously coexist with the natural environment while catering to the needs and aspirations of their inhabitants. In essence, prioritizing sustainability in urban planning and architectural design has evolved from a choice to a necessity, one that not only safeguards the cities' well-being but also fosters a better quality of life for their residents. Thus, it is imperative that we acknowledge the transformative potential of these innovations as we pave the way towards the cities of the future.Keywords: sustainability, smart grids, solar panel, urban planning, environmental concerns
Procedia PDF Downloads 9528984 Fault Detection and Isolation in Sensors and Actuators of Wind Turbines
Authors: Shahrokh Barati, Reza Ramezani
Abstract:
Due to the countries growing attention to the renewable energy producing, the demand for energy from renewable energy has gone up among the renewable energy sources; wind energy is the fastest growth in recent years. In this regard, in order to increase the availability of wind turbines, using of Fault Detection and Isolation (FDI) system is necessary. Wind turbines include of various faults such as sensors fault, actuator faults, network connection fault, mechanical faults and faults in the generator subsystem. Although, sensors and actuators have a large number of faults in wind turbine but have discussed fewer in the literature. Therefore, in this work, we focus our attention to design a sensor and actuator fault detection and isolation algorithm and Fault-tolerant control systems (FTCS) for Wind Turbine. The aim of this research is to propose a comprehensive fault detection and isolation system for sensors and actuators of wind turbine based on data-driven approaches. To achieve this goal, the features of measurable signals in real wind turbine extract in any condition. The next step is the feature selection among the extract in any condition. The next step is the feature selection among the extracted features. Features are selected that led to maximum separation networks that implemented in parallel and results of classifiers fused together. In order to maximize the reliability of decision on fault, the property of fault repeatability is used.Keywords: FDI, wind turbines, sensors and actuators faults, renewable energy
Procedia PDF Downloads 40028983 Biomass Energy in Improving Sustainable Economic Development
Authors: Dahiru Muhammad, Muhammad Danladi, Adamu Garba, Muhammad Yahaya
Abstract:
This paper put forward the potentialities of biomass for energy as divers means of sustainable economic development. The paper explains in brief the ways or methods that are used to generate energy from biomass, such as combustion, pyrolysis, anaerobic, and gasification, and also how biomass for energy can enhance the sustainable economic development of a Nation. Currently, the nation depends on fossil fuels as a sources of generating its energy which is finite and deflectable with time, while on the other hand, biomass is an alternative and endless product which consists of a forest biomass, agricultural residues, and energy crops. Finally, recommendations and conclusion were made on the role of biomass for energy in improving sustainable economic development.Keywords: biomass, energy, sustainable, economic, development
Procedia PDF Downloads 12828982 Modeling and Simulation of Practical Metamaterial Structures
Authors: Ridha Salhi, Mondher Labidi, Fethi Choubani
Abstract:
Metamaterials have attracted much attention in recent years because of their electromagnetic exquisite proprieties. We will present, in this paper, the modeling of three metamaterial structures by equivalent circuit model. We begin by modeling the SRR (Split Ring Resonator), then we model the HIS (High Impedance Surfaces), and finally, we present the model of the CPW (Coplanar Wave Guide). In order to validate models, we compare the results obtained by an equivalent circuit models with numerical simulation.Keywords: metamaterials, SRR, HIS, CPW, IDC
Procedia PDF Downloads 42928981 Biomass Carbon Credit Estimation for Sustainable Urban Planning and Micro-climate Assessment
Authors: R. Niranchana, K. Meena Alias Jeyanthi
Abstract:
As a result of the present climate change dilemma, the energy balancing strategy is to construct a sustainable environment has become a top concern for researchers worldwide. The environment itself has always been a solution from the earliest days of human evolution. Carbon capture begins with its accurate estimation and monitoring credit inventories, and its efficient use. Sustainable urban planning with deliverables of re-use energy models might benefit from assessment methods like biomass carbon credit ranking. The term "biomass energy" refers to the various ways in which living organisms can potentially be converted into a source of energy. The approaches that can be applied to biomass and an algorithm for evaluating carbon credits are presented in this paper. The micro-climate evaluation using Computational Fluid dynamics was carried out across the location (1 km x1 km) at Dindigul, India (10°24'58.68" North, 77°54.1.80 East). Sustainable Urban design must be carried out considering environmental and physiological convection, conduction, radiation and evaporative heat exchange due to proceeding solar access and wind intensities.Keywords: biomass, climate assessment, urban planning, multi-regression, carbon estimation algorithm
Procedia PDF Downloads 9428980 Open Innovation Laboratory for Rapid Realization of Sensing, Smart and Sustainable Products (S3 Products) for Higher Education
Authors: J. Miranda, D. Chavarría-Barrientos, M. Ramírez-Cadena, M. E. Macías, P. Ponce, J. Noguez, R. Pérez-Rodríguez, P. K. Wright, A. Molina
Abstract:
Higher education methods need to evolve because the new generations of students are learning in different ways. One way is by adopting emergent technologies, new learning methods and promoting the maker movement. As a result, Tecnologico de Monterrey is developing Open Innovation Laboratories as an immediate response to educational challenges of the world. This paper presents an Open Innovation Laboratory for Rapid Realization of Sensing, Smart and Sustainable Products (S3 Products). The Open Innovation Laboratory is composed of a set of specific resources where students and teachers use them to provide solutions to current problems of priority sectors through the development of a new generation of products. This new generation of products considers the concepts Sensing, Smart, and Sustainable. The Open Innovation Laboratory has been implemented in different courses in the context of New Product Development (NPD) and Integrated Manufacturing Systems (IMS) at Tecnologico de Monterrey. The implementation consists of adapting this Open Innovation Laboratory within the course’s syllabus in combination with the implementation of specific methodologies for product development, learning methods (Active Learning and Blended Learning using Massive Open Online Courses MOOCs) and rapid product realization platforms. Using the concepts proposed it is possible to demonstrate that students can propose innovative and sustainable products, and demonstrate how the learning process could be improved using technological resources applied in the higher educational sector. Finally, examples of innovative S3 products developed at Tecnologico de Monterrey are presented.Keywords: active learning, blended learning, maker movement, new product development, open innovation laboratory
Procedia PDF Downloads 39528979 Environment Problems of Energy Exploitation and Utilization in Nigeria
Authors: Aliyu Mohammed Lawal
Abstract:
The problems placed on the environment as a result of energy generation and usage in Nigeria is: potential damage to the environment health by CO, CO2, SOx, and NOx, effluent gas emissions and global warming. For instance in the year 2004 in Nigeria energy consumption was 58% oil and 34% natural gas but about 94 million metric tons of CO2 was emitted out of which 64% came from fossil fuels while about 35% came from fuel wood. The findings from this research on how to alleviate these problems are that long term sustainable development solutions should be enhanced globally; energy should be used more rationally renewable energy resources should be exploited and the existing emissions should be controlled to tolerate limits because the increase in energy demand in Nigeria places enormous strain on current energy facilities.Keywords: effluent gas, emissions, NOx, SOx
Procedia PDF Downloads 38128978 Influence of Internal Heat Source on Thermal Instability in a Horizontal Porous Layer with Mass Flow and Inclined Temperature Gradient
Authors: Anjanna Matta, P. A. L. Narayana
Abstract:
An investigation has been presented to analyze the effect of internal heat source on the onset of Hadley-Prats flow in a horizontal fluid saturated porous medium. We examine a better understanding of the combined influence of the heat source and mass flow effect by using linear stability analysis. The resultant eigenvalue problem is solved by using shooting and Runga-Kutta methods for evaluate critical thermal Rayleight number with respect to various flow governing parameters. It is identified that the flow is switch from stabilizing to destabilizing as the horizontal thermal Rayleigh number is enhanced. The heat source and mass flow increases resulting a stronger destabilizing effect.Keywords: linear stability analysis, heat source, porous medium, mass flow
Procedia PDF Downloads 72128977 DC/DC Boost Converter Applied to Photovoltaic Pumping System Application
Authors: S. Abdourraziq, M. A. Abdourraziq
Abstract:
One of the most famous and important applications of solar energy systems is water pumping. It is often used for irrigation or to supply water in countryside or private firm. However, the cost and the efficiency are still a concern, especially with a continued variation of solar radiation and temperature throughout the day. Then, the improvement of the efficiency of the system components is one of the different solutions to reducing the cost. In this paper, we will present a detailed definition of each element of a PV pumping system, and we will present the different MPPT algorithm used in the literature. Our system consists of a PV panel, a boost converter, a motor-pump set, and a storage tank.Keywords: PV cell, converter, MPPT, MPP, PV pumping system
Procedia PDF Downloads 15828976 Potentiality of Litchi-Fodder Based Agroforestry System in Bangladesh
Authors: M. R. Zaman, M. S. Bari, M. Kajal
Abstract:
A field experiment was conducted at the Agroforestry and Environment Research Field, Hajee Mohammad Danesh Science and Technology University, Dinajpur during 2013 to investigate the potentiality of three napier fodder varieties under Litchi orchard. The experiment was consisted of 2 factors RCBD with 3 replications. Among the two factors, factor A was two production systems; S1= Litchi + fodder and S2 = Fodder (sole crop); another factor B was three napier varieties: V1= BARI Napier -1 (Bazra), V2= BARI Napier - 2 (Arusha) and V3= BARI Napier -3 (Hybrid). The experimental results revealed that there were significant variation among the varieties in terms of leaf growth and yield. The maximum number of leaf plant -1 was recorded in variety Bazra (V1) whereas the minimum number was recorded in hybrid variety (V3).Significantly the highest (13.75, 14.53 and14.84 tha-1 at 1st, 2nd and 3rd harvest respectively) yield was also recorded in variety Bazra whereas the lowest (5.89, 6.36 and 9.11 tha-1 at 1st, 2nd v and 3rd harvest respectively) yield was in hybrid variety. Again, in case of production systems, there were also significant differences between the two production systems were founded. The maximum number of leaf plant -1 was recorded under Litchi based AGF system (T1) whereas the minimum was recorded in open condition (T2). Similarly, significantly the highest (12.00, 12.35 and 13.31 tha-1 at 1st, 2nd and 3rd harvest respectively) yield of napier was recorded under Litchi based AGF system where as the lowest (9.73, 10.47 and 11.66 tha-1 at 1st, 2nd and 3rd harvest respectively) yield was recorded in open condition i.e. napier in sole cropping. Furthermore, the interaction effect of napier variety and production systems were also gave significant deviation result in terms of growth and yield. The maximum number of leaf plant -1 was recorded under Litchi based AGF systems with Bazra variety whereas the minimum was recorded in open condition with hybrid variety. The highest yield (14.42, 16.14 and 16.15 tha-1 at 1st, 2nd and 3rd harvest respectively) of napier was found under Litchi based AGF systems with Bazra variety. Significantly the lowest (5.33, 5.79 and 8.48 tha-1 at 1st, 2nd and 3rd harvest respectively) yield was found in open condition i.e. sole cropping with hybrid variety. In case of the quality perspective, the highest nutritive value (DM, ASH, CP, CF, EE, and NFE) was found in Bazra (V1) and the lowest value was found in hybrid variety (V3). Therefore, the suitability of napier production under Litchi based AGF system may be ranked as Bazra > Arusha > Hybrid variety. Finally, the economic analysis showed that maximum BCR (5.20) was found in the Litchi based AGF systems over sole cropping (BCR=4.38). From the findings of the taken investigation, it may be concluded that the cultivation of Bazra napier varieties in the floor of Litchi orchard ensures higher revenue to the farmers compared to its sole cropping.Keywords: potentiality, Litchi, fodder, agroforestry
Procedia PDF Downloads 32328975 Open Education Resources a Gateway for Accessing Hospitality and Tourism Learning Materials
Authors: Isiya Shinkafi Salihu
Abstract:
Open education resources (OER) are open learning materials in different formats, course content and context to support learning globally. This study investigated the level of awareness of Hospitality and Tourism OER among students in the Department of Tourism and Hotel Management in a University. Specifically, it investigated students’ awareness, use and accessibility of OER in learning. The research design method used was the quantitative approach, using an online questionnaire. The thesis research shows that respondents frequently use OER but with little knowledge of the content and context of the material. Most of the respondents’ have little knowledge about the concept even though they use it. Information and communication technologies are tools for information gathering, social networking and knowledge sharing and transfer. OER are open education materials accessible online such as curriculum, maps, course materials, and videos that users create, adapt, reuse for learning and research. Few of the respondents that used OER in learning faced some challenges such as high cost of data, poor connectivity and lack of proper guidance. The results suggest a lack of awareness of OER among students in the faculty of tourism and the need for support from the teachers in the utilization of OER. The thesis also reveals that some of the international students are accessing the internet as beginners in their studies which require guidance. The research, however, recommends that further studies should be conducted to other faculties.Keywords: creative commons, open education resources, open licenses, information and communication technology
Procedia PDF Downloads 17728974 An Assessment of Wind Energy in Sanar Village in North of Iran Using Weibull Function
Authors: Ehsanolah Assareh, Mojtaba Biglari, Mojtaba Nedaei
Abstract:
Sanar village in north of Iran is a remote region with difficult access to electricity, grid and water supply. Thus the aim of this research is to evaluate the potential of wind as a power source either for electricity generation or for water pumping. In this study the statistical analysis has been performed by Weibull distribution function. The results show that the Weibull distribution has fitted the wind data very well. Also it has been demonstrated that wind speed at 40 m height is ranged from 1.75 m/s in Dec to 3.28 m/s in Aug with average value of 2.69 m/s. In this research, different wind speed characteristics such as turbulence intensity, wind direction, monthly air temperature, humidity wind power density and other related parameters have been investigated. Finally it was concluded that the wind energy in the Sanar village may be explored by employing modern wind turbines that require very lower start-up speeds.Keywords: wind energy, wind turbine, weibull, Sanar village, Iran
Procedia PDF Downloads 52428973 Use and Health Effects of Caffeinated Beverages in Omani Students
Authors: Nasiruddin Khan
Abstract:
The increased use of caffeinated beverages and energy drink is posing threat to all ages and gender especially, younger adults. There is a lack of scientific evidence in Oman regarding caffeine and energy drink consumption. Our study aims to demonstrate the prevalence, pattern, knowledge and awareness, and side effects of caffeine intake among university students. This cross-sectional study including (N=365) apparently healthy male and female Omani university students aged 18-30 years, was carried out from February 2018-June 2018. A self-administered questionnaire with various sections was used to obtain information. The prevalence of caffeinated beverage consumption was commonly high among participants (97%). The males preferred Nescafe, coffee (both p < 0.001), espresso (p < 0.022), and soda (p < 0.008) while females consumed more tea (p < 0.029). The awareness about negative health impact of caffeine intake was significantly higher in females rather than males (p < 0.002). The overall prevalence of energy drink consumption was 42.1% (n=149), and higher in males (75%, p < 0.001). More males consumed 3-5 and > 5 cans/day while females used 1-2 cans/day. The starting age of energy drink use was higher in females (16-20 years (51.1%)) as compared to males (11-15 years (33.3%)). Females were more aware of caffeine as energy drink ingredient (p < 0.036) than males. The major source of information about enery drink was family and friends (58.3%). Red Bull was the commonly used brand (55.5%) among participants. Common reasons for high energy drink consumption were energy boost (68.4 %), taste (62.9%), reduce fatigue (52.1%), and better performance (47.3%). Females reported breathing problem, and abnormal heart beat (p < 0.004, 0.054, respectively), while more males reported irritability than females (p < 0.052). The prevalence of caffeinated beverage and energy drink consumption is high among participants. The awareness, and knowledge among university student is not satisfactory and needs immediate action to avoid excess use of such consumption.Keywords: energy drink, caffeinated beverages, awareness, Oman
Procedia PDF Downloads 12928972 Model the Off-Shore Ocean-Sea Waves to Generate Electric Power by Design of a Converting Device
Authors: Muthana A. M. Jameel Al-Jaboori
Abstract:
In this paper, we will present a mathematical model to design a system able to generate electricity from ocean-sea waves. We will use the basic principles of the transfer of the energy potential of waves in a chamber to force the air inside a vertical or inclined cylindrical column, which is topped by a wind turbine to rotate the electric generator. The present mathematical model included a high number of variables such as the wave, height, width, length, velocity, and frequency, as well as others for the energy cylindrical column, like varying diameters and heights, and the wave chamber shape diameter and height. While for the wells wind turbine the variables included the number of blades, length, width, and clearance, as well as the rotor and tip radius. Additionally, the turbine rotor and blades must be made from the light and strong material for a smooth blade surface. The variables were too vast and high in number. Then the program was run successfully within the MATLAB and presented very good modeling results.Keywords: water wave, models, Wells turbine, MATLAB program
Procedia PDF Downloads 36328971 Fuel Cells and Offshore Wind Turbines Technology for Eco-Friendly Ports with a Case Study
Authors: Ibrahim Sadek Sedik Ibrahim, Mohamed M. Elgohary
Abstract:
Sea ports are considered one of the factors affecting the progress of economic globalization and the international trade; consequently, they are considered one of the sources involved in the deterioration of the maritime environment due to the excessive amount of exhaust gases emitted from their activities. The majority of sea ports depend on the national electric grid as a source of power for the domestic and ships’ electric demands. This paper discusses the possibility of shifting ports from relying on the national grid electricity to green power-based ports. Offshore wind turbines and hydrogenic PEM fuel cell units appear as two typical promising clean energy sources for ports. As a case study, the paper investigates the prospect of converting Alexandria Port in Egypt to be an eco-friendly port with the study of technical, logistic, and financial requirements. The results show that the fuel cell, followed by a combined system of wind turbines and fuel cells, is the best choice regarding electricity production unit cost by 0.101 and 0.107 $/kWh, respectively. Furthermore, using of fuel cells and offshore wind turbine as green power concept will achieving emissions reduction quantity of CO₂, NOx, and CO emissions by 80,441, 20.814, and 133.025 ton per year, respectively. Finally, the paper highlights the role that renewable energy can play when supplying Alexandria Port with green energy to lift the burden on the government in supporting the electricity, with a possibility of achieving a profit of 3.85% to 22.31% of the annual electricity cost compared with the international prices.Keywords: fuel cells, green ports, IMO, national electric grid, offshore wind turbines, port emissions, renewable energy
Procedia PDF Downloads 14128970 Seismic Performance of Highway Bridges with Partially Self-Centering Isolation Bearings against Near-Fault Ground Motions
Authors: Shengxin Yu
Abstract:
Earthquakes can cause varying degrees of damage to building and bridge structures. Traditional laminated natural rubber bearings (NRB) exhibit inadequate energy dissipation and restraint, particularly under near-fault ground motions, resulting in excessive displacements in the superstructure. This paper presents a composite natural rubber bearing (NFUD-NRB) incorporating two types of shape memory alloy (SMA) U-shaped dampers (UD). The bearing exhibits adjustable features, predominantly characterized by partial self-centering and multi-level energy dissipation, facilitated by nickel-titanium-based SMA (NiTi-SMA) and iron-based SMA (Fe-SMA) UDs. The hysteresis characteristics of NFUD-NRB can be tailored by manipulating the configuration of NiTi-SMA and Fe-SMA UDs. Firstly, the proposed bearing's geometric configuration and working principle are introduced. The rationality of the modeling strategy for the bearing is validated through existing experimental results. Parameterized numerical simulations are subsequently performed to investigate the partially self-centering behavior of NFUD-NRB. The findings indicate that NFUD-NRB can attain the anticipated nonlinear behavior and deliver adequate energy dissipation. Finally, the impact of NFUD-NRB on improving the seismic resilience of highway bridges is examined using the OpenSees software, with particular emphasis on the seismic performance of NFUD-NRB under near-fault ground motions. System-level analysis reveals that bridge systems equipped with NFUD-NRBs exhibit satisfactory residual deformations and higher energy dissipation than those equipped with traditional NRBs. Moreover, NFUD-NRB markedly mitigates the detrimental impacts of near-fault ground motions on the main structure of bridges.Keywords: partially self-centering behavior, energy dissipation, natural rubber bearing, shape memory alloy, U-shaped damper, numerical investigation, near-fault ground motion
Procedia PDF Downloads 5828969 A Key Parameter in Ocean Thermal Energy Conversion Plant Design and Operation
Authors: Yongjian Gu
Abstract:
Ocean thermal energy is one of the ocean energy sources. It is a renewable, sustainable, and green energy source. Ocean thermal energy conversion (OTEC) applies the ocean temperature gradient between the warmer surface seawater and the cooler deep seawater to run a heat engine and produce a useful power output. Unfortunately, the ocean temperature gradient is not big. Even in the tropical and equatorial regions, the surface water temperature can only reach up to 28oC and the deep water temperature can be as low as 4oC. The thermal efficiency of the OTEC plants, therefore, is low. In order to improve the plant thermal efficiency by using the limited ocean temperature gradient, some OTEC plants use the method of adding more equipment for better heat recovery, such as heat exchangers, pumps, etc. Obviously, the method will increase the plant's complexity and cost. The more important impact of the method is the additional equipment needs to consume power too, which may have an adverse effect on the plant net power output, in turn, the plant thermal efficiency. In the paper, the author first describes varied OTEC plants and the practice of using the method of adding more equipment for improving the plant's thermal efficiency. Then the author proposes a parameter, plant back works ratio ϕ, for measuring if the added equipment is appropriate for the plant thermal efficiency improvement. Finally, in the paper, the author presents examples to illustrate the application of the back work ratio ϕ as a key parameter in the OTEC plant design and operation.Keywords: ocean thermal energy, ocean thermal energy conversion (OTEC), OTEC plant, plant back work ratio ϕ
Procedia PDF Downloads 19628968 Wind Power Density and Energy Conversion in Al-Adwas Ras-Huwirah Area, Hadhramout, Yemen
Authors: Bawadi M. A., Abbad J. A., Baras E. A.
Abstract:
This study was conducted to assess wind energy resources in the area of Al-Adwas Ras-Huwirah Hadhramout Governorate, Yemen, through using statistical calculations, the Weibull model and SPSS program were used in the monthly and the annual to analyze the wind energy resource; the convergence of wind energy; turbine efficiency in the selected area. Wind speed data was obtained from NASA over a period of ten years (2010-2019) and at heights of 50 m above ground level. Probability distributions derived from wind data and their distribution parameters are determined. The density probability function is fitted to the measured probability distributions on an annual basis. This study also involves locating preliminary sites for wind farms using Geographic Information System (GIS) technology. This further leads to maximizing the output energy from the most suitable wind turbines in the proposed site.Keywords: wind speed analysis, Yemen wind energy, wind power density, Weibull distribution model
Procedia PDF Downloads 8328967 Adaptive Power Control of the City Bus Integrated Photovoltaic System
Authors: Piotr Kacejko, Mariusz Duk, Miroslaw Wendeker
Abstract:
This paper presents an adaptive controller to track the maximum power point of a photovoltaic modules (PV) under fast irradiation change on the city-bus roof. Photovoltaic systems have been a prominent option as an additional energy source for vehicles. The Municipal Transport Company (MPK) in Lublin has installed photovoltaic panels on its buses roofs. The solar panels turn solar energy into electric energy and are used to load the buses electric equipment. This decreases the buses alternators load, leading to lower fuel consumption and bringing both economic and ecological profits. A DC–DC boost converter is selected as the power conditioning unit to coordinate the operating point of the system. In addition to the conversion efficiency of a photovoltaic panel, the maximum power point tracking (MPPT) method also plays a main role to harvest most energy out of the sun. The MPPT unit on a moving vehicle must keep tracking accuracy high in order to compensate rapid change of irradiation change due to dynamic motion of the vehicle. Maximum power point track controllers should be used to increase efficiency and power output of solar panels under changing environmental factors. There are several different control algorithms in the literature developed for maximum power point tracking. However, energy performances of MPPT algorithms are not clarified for vehicle applications that cause rapid changes of environmental factors. In this study, an adaptive MPPT algorithm is examined at real ambient conditions. PV modules are mounted on a moving city bus designed to test the solar systems on a moving vehicle. Some problems of a PV system associated with a moving vehicle are addressed. The proposed algorithm uses a scanning technique to determine the maximum power delivering capacity of the panel at a given operating condition and controls the PV panel. The aim of control algorithm was matching the impedance of the PV modules by controlling the duty cycle of the internal switch, regardless of changes of the parameters of the object of control and its outer environment. Presented algorithm was capable of reaching the aim of control. The structure of an adaptive controller was simplified on purpose. Since such a simple controller, armed only with an ability to learn, a more complex structure of an algorithm can only improve the result. The presented adaptive control system of the PV system is a general solution and can be used for other types of PV systems of both high and low power. Experimental results obtained from comparison of algorithms by a motion loop are presented and discussed. Experimental results are presented for fast change in irradiation and partial shading conditions. The results obtained clearly show that the proposed method is simple to implement with minimum tracking time and high tracking efficiency proving superior to the proposed method. This work has been financed by the Polish National Centre for Research and Development, PBS, under Grant Agreement No. PBS 2/A6/16/2013.Keywords: adaptive control, photovoltaic energy, city bus electric load, DC-DC converter
Procedia PDF Downloads 21128966 Bioclimatic Design, Evaluation of Energy Behavior and Energy-Saving Interventions at the Theagenio Cancer Hospital
Authors: Emmanouel Koumoulas, Aikaterini Rokkou, Marios Moschakis
Abstract:
Theagenio" in Thessaloniki exists and works for three centuries now as a hospital. Since 1975, it has been operating as an Integrated Special Cancer Hospital and since 1985 it has been integrated into the National Health System. "Theagenio" Cancer Hospital is located at the central web of Thessaloniki residential complex and consists of two buildings, the "Symeonidio Research Center", which was completed in 1962 and the Nursing Ward, a project that was later completed in 1975. This paper examines the design of the Hospital Unit according to the requirements of the energy design of buildings. Initially, the energy characteristics of the Hospital are recorded, followed by a detailed presentation of the electromechanical installations. After the existing situation has been captured and with the help of the software TEE-KENAK, different scenarios for the energy upgrading of the buildings have been studied. Proposals for upgrading concern both the shell, e.g. installation of external thermal insulation, replacement of frames, addition of shading systems, etc. as well as electromechanical installations, e.g. use of ceiling fans, improvements in heating and cooling systems, interventions in lighting, etc. The simulation calculates the future energy status of the buildings and presents the economic benefits of the proposed interventions with reference to the environmental profits that arise.Keywords: energy consumption in hospitals, energy saving interventions, energy upgrading, hospital facilities
Procedia PDF Downloads 15228965 Towards Dynamic Estimation of Residential Building Energy Consumption in Germany: Leveraging Machine Learning and Public Data from England and Wales
Authors: Philipp Sommer, Amgad Agoub
Abstract:
The construction sector significantly impacts global CO₂ emissions, particularly through the energy usage of residential buildings. To address this, various governments, including Germany's, are focusing on reducing emissions via sustainable refurbishment initiatives. This study examines the application of machine learning (ML) to estimate energy demands dynamically in residential buildings and enhance the potential for large-scale sustainable refurbishment. A major challenge in Germany is the lack of extensive publicly labeled datasets for energy performance, as energy performance certificates, which provide critical data on building-specific energy requirements and consumption, are not available for all buildings or require on-site inspections. Conversely, England and other countries in the European Union (EU) have rich public datasets, providing a viable alternative for analysis. This research adapts insights from these English datasets to the German context by developing a comprehensive data schema and calibration dataset capable of predicting building energy demand effectively. The study proposes a minimal feature set, determined through feature importance analysis, to optimize the ML model. Findings indicate that ML significantly improves the scalability and accuracy of energy demand forecasts, supporting more effective emissions reduction strategies in the construction industry. Integrating energy performance certificates into municipal heat planning in Germany highlights the transformative impact of data-driven approaches on environmental sustainability. The goal is to identify and utilize key features from open data sources that significantly influence energy demand, creating an efficient forecasting model. Using Extreme Gradient Boosting (XGB) and data from energy performance certificates, effective features such as building type, year of construction, living space, insulation level, and building materials were incorporated. These were supplemented by data derived from descriptions of roofs, walls, windows, and floors, integrated into three datasets. The emphasis was on features accessible via remote sensing, which, along with other correlated characteristics, greatly improved the model's accuracy. The model was further validated using SHapley Additive exPlanations (SHAP) values and aggregated feature importance, which quantified the effects of individual features on the predictions. The refined model using remote sensing data showed a coefficient of determination (R²) of 0.64 and a mean absolute error (MAE) of 4.12, indicating predictions based on efficiency class 1-100 (G-A) may deviate by 4.12 points. This R² increased to 0.84 with the inclusion of more samples, with wall type emerging as the most predictive feature. After optimizing and incorporating related features like estimated primary energy consumption, the R² score for the training and test set reached 0.94, demonstrating good generalization. The study concludes that ML models significantly improve prediction accuracy over traditional methods, illustrating the potential of ML in enhancing energy efficiency analysis and planning. This supports better decision-making for energy optimization and highlights the benefits of developing and refining data schemas using open data to bolster sustainability in the building sector. The study underscores the importance of supporting open data initiatives to collect similar features and support the creation of comparable models in Germany, enhancing the outlook for environmental sustainability.Keywords: machine learning, remote sensing, residential building, energy performance certificates, data-driven, heat planning
Procedia PDF Downloads 5728964 Unsteady Heat and Mass Transfer in MHD Flow of Nanofluids over Stretching Sheet with a Non Uniform Heat Source/Sink
Authors: Bandari Shankar, Yohannes Yirga
Abstract:
In this paper, the problem of heat and mass transfer in unsteady MHD boundary-layer flow of nanofluids over stretching sheet with a non uniform heat source/sink is considered. The unsteadiness in the flow and temperature is caused by the time-dependent stretching velocity and surface temperature. The unsteady boundary layer equations are transformed to a system of non-linear ordinary differential equations and solved numerically using Keller box method. The velocity, temperature, and concentration profiles were obtained and utilized to compute the skin-friction coefficient, local Nusselt number, and local Sherwood number for different values of the governing parameters viz. solid volume fraction parameter, unsteadiness parameter, magnetic field parameter, Schmidt number, space-dependent and temperature-dependent parameters for heat source/sink. A comparison of the numerical results of the present study with previously published data revealed an excellent agreementKeywords: unsteady, heat and mass transfer, manetohydrodynamics, nanofluid, non-uniform heat source/sink, stretching sheet
Procedia PDF Downloads 27528963 Design Ultra Fast Gate Drive Board for Silicon Carbide MOSFET Applications
Authors: Syakirin O. Yong, Nasrudin A. Rahim, Bilal M. Eid, Buray Tankut
Abstract:
The aim of this paper is to develop an ultra-fast gate driver for Silicon Carbide (SiC) based switching device applications such as AC/DC DC/AC converters. Wide bandgap semiconductors such as SiC switches are growing rapidly nowadays due to their numerous capabilities such as faster switching, higher power density and higher voltage level. Wide band-gap switches can work properly on high frequencies such 50-250 kHz which is very useful for many power electronic applications such as solar inverters. Increasing the frequency minimizes the output filter size and system complexity however, this causes huge spike between MOSFET’s drain and source leg which leads to the failure of MOSFET if the voltage rating is exceeded. This paper investigates and concludes the optimum design for a gate drive board for SiC MOSFET switches without causing spikes and noises.Keywords: PV system, lithium-ion, charger, constant current, constant voltage, renewable energy
Procedia PDF Downloads 15628962 Influence of Coatings on Energy Conservation in Construction Industry
Authors: Nancy Sakr, Mohamed Abou-Zeid
Abstract:
World energy consumption has increased rapidly in the past few years. Due to population growth, total energy consumption is increasing; a large amount of energy is wasted on the cooling and heating processes in buildings. However, using thermal heating management can minimize costs, heat consumption and create a management system for the heat insulation for buildings. This concept is being implemented through different approaches. Based on analysis and research, there is evidence in the energy consumption before and after testing and applying construction approaches for thermal heating management in building units. This investigation addresses the evaluation of the influence of external coatings on energy consumption. Coatings are considered one of the smart effective available approaches for energy efficiency. Unfortunately, this approach is not widely applied in the construction industry. It needs more data to prove effectiveness and credibility between people to use it as a smart thermal insulation approach. Two precedents have been analyzed in order to monitor buildings’ heat exposure, and how the buildings will be affected by thermal insulation materials. Data sheets from chemical companies which produce similar coatings are compared with the usual products and the protective thermal products.Keywords: energy consumption, building envelope, thermal insulation, protective coatings
Procedia PDF Downloads 14428961 Locating Potential Site for Biomass Power Plant Development in Central Luzon Philippines Using GIS-Based Suitability Analysis
Authors: Bryan M. Baltazar, Marjorie V. Remolador, Klathea H. Sevilla, Imee Saladaga, Loureal Camille Inocencio, Ma. Rosario Concepcion O. Ang
Abstract:
Biomass energy is a traditional source of sustainable energy, which has been widely used in developing countries. The Philippines, specifically Central Luzon, has an abundant source of biomass. Hence, it could supply abundant agricultural residues (rice husks), as feedstock in a biomass power plant. However, locating a potential site for biomass development is a complex process which involves different factors, such as physical, environmental, socio-economic, and risks that are usually diverse and conflicting. Moreover, biomass distribution is highly dispersed geographically. Thus, this study develops an integrated method combining Geographical Information Systems (GIS) and methods for energy planning; Multi-Criteria Decision Analysis (MCDA) and Analytical Hierarchy Process (AHP), for locating suitable site for biomass power plant development in Central Luzon, Philippines by considering different constraints and factors. Using MCDA, a three level hierarchy of factors and constraints was produced, with corresponding weights determined by experts by using AHP. Applying the results, a suitability map for Biomass power plant development in Central Luzon was generated. It showed that the central part of the region has the highest potential for biomass power plant development. It is because of the characteristics of the area such as the abundance of rice fields, with generally flat land surfaces, accessible roads and grid networks, and low risks to flooding and landslide. This study recommends the use of higher accuracy resource maps, and further analysis in selecting the optimum site for biomass power plant development that would account for the cost and transportation of biomass residues.Keywords: analytic hierarchy process, biomass energy, GIS, multi-criteria decision analysis, site suitability analysis
Procedia PDF Downloads 42528960 Renewable Energy Storage Capacity Rating: A Forecast of Selected Load and Resource Scenario in Nigeria
Authors: Yakubu Adamu, Baba Alfa, Salahudeen Adamu Gene
Abstract:
As the drive towards clean, renewable and sustainable energy generation is gradually been reshaped by renewable penetration over time, energy storage has thus, become an optimal solution for utilities looking to reduce transmission and capacity cost, therefore the need for capacity resources to be adjusted accordingly such that renewable energy storage may have the opportunity to substitute for retiring conventional energy systems with higher capacity factors. Considering the Nigeria scenario, where Over 80% of the current Nigerian primary energy consumption is met by petroleum, electricity demand is set to more than double by mid-century, relative to 2025 levels. With renewable energy penetration rapidly increasing, in particular biomass, hydro power, solar and wind energy, it is expected to account for the largest share of power output in the coming decades. Despite this rapid growth, the imbalance between load and resources has created a hindrance to the development of energy storage capacity, load and resources, hence forecasting energy storage capacity will therefore play an important role in maintaining the balance between load and resources including supply and demand. Therefore, the degree to which this might occur, its timing and more importantly its sustainability, is the subject matter of the current research. Here, we forecast the future energy storage capacity rating and thus, evaluate the load and resource scenario in Nigeria. In doing so, We used the scenario-based International Energy Agency models, the projected energy demand and supply structure of the country through 2030 are presented and analysed. Overall, this shows that in high renewable (solar) penetration scenarios in Nigeria, energy storage with 4-6h duration can obtain over 86% capacity rating with storage comprising about 24% of peak load capacity. Therefore, the general takeaway from the current study is that most power systems currently used has the potential to support fairly large penetrations of 4-6 hour storage as capacity resources prior to a substantial reduction in capacity ratings. The data presented in this paper is a crucial eye-opener for relevant government agencies towards developing these energy resources in tackling the present energy crisis in Nigeria. However, if the transformation of the Nigeria. power system continues primarily through expansion of renewable generation, then longer duration energy storage will be needed to qualify as capacity resources. Hence, the analytical task from the current survey will help to determine whether and when long-duration storage becomes an integral component of the capacity mix that is expected in Nigeria by 2030.Keywords: capacity, energy, power system, storage
Procedia PDF Downloads 34