Search results for: models synthesis
7365 The Impact of Model Specification Decisions on the Teacher ValuE-added Effectiveness: Choosing the Correct Predictors
Authors: Ismail Aslantas
Abstract:
Value-Added Models (VAMs), the statistical methods for evaluating the effectiveness of teachers and schools based on student achievement growth, has attracted decision-makers’ and researchers’ attention over the last decades. As a result of this attention, many studies have conducted in recent years to discuss these statistical models from different aspects. This research focused on the importance of conceptual variables in VAM estimations; therefor, this research was undertaken to examine the extent to which value-added effectiveness estimates for teachers can be affected by using context predictions. Using longitudinal data over three years from the international school context, value-added teacher effectiveness was estimated by ordinary least-square value-added models, and the effectiveness of the teachers was examined. The longitudinal dataset in this study consisted of three major sources: students’ attainment scores up to three years and their characteristics, teacher background information, and school characteristics. A total of 1,027 teachers and their 35,355 students who were in eighth grade were examined for understanding the impact of model specifications on the value-added teacher effectiveness evaluation. Models were created using selection methods that adding a predictor on each step, then removing it and adding another one on a subsequent step and evaluating changes in model fit was checked by reviewing changes in R² values. Cohen’s effect size statistics were also employed in order to find out the degree of the relationship between teacher characteristics and their effectiveness. Overall, the results indicated that prior attainment score is the most powerful predictor of the current attainment score. 47.1 percent of the variation in grade 8 math score can be explained by the prior attainment score in grade 7. The research findings raise issues to be considered in VAM implementations for teacher evaluations and make suggestions to researchers and practitioners.Keywords: model specification, teacher effectiveness, teacher performance evaluation, value-added model
Procedia PDF Downloads 1337364 Modeling Binomial Dependent Distribution of the Values: Synthesis Tables of Probabilities of Errors of the First and Second Kind of Biometrics-Neural Network Authentication System
Authors: B. S.Akhmetov, S. T. Akhmetova, D. N. Nadeyev, V. Yu. Yegorov, V. V. Smogoonov
Abstract:
Estimated probabilities of errors of the first and second kind for nonideal biometrics-neural transducers 256 outputs, the construction of nomograms based error probability of 'own' and 'alien' from the mathematical expectation and standard deviation of the normalized measures Hamming.Keywords: modeling, errors, probability, biometrics, neural network, authentication
Procedia PDF Downloads 4827363 Seismic Performance of Slopes Subjected to Earthquake Mainshock Aftershock Sequences
Authors: Alisha Khanal, Gokhan Saygili
Abstract:
It is commonly observed that aftershocks follow the mainshock. Aftershocks continue over a period of time with a decreasing frequency and typically there is not sufficient time for repair and retrofit between a mainshock–aftershock sequence. Usually, aftershocks are smaller in magnitude; however, aftershock ground motion characteristics such as the intensity and duration can be greater than the mainshock due to the changes in the earthquake mechanism and location with respect to the site. The seismic performance of slopes is typically evaluated based on the sliding displacement predicted to occur along a critical sliding surface. Various empirical models are available that predict sliding displacement as a function of seismic loading parameters, ground motion parameters, and site parameters but these models do not include the aftershocks. The seismic risks associated with the post-mainshock slopes ('damaged slopes') subjected to aftershocks is significant. This paper extends the empirical sliding displacement models for flexible slopes subjected to earthquake mainshock-aftershock sequences (a multi hazard approach). A dataset was developed using 144 pairs of as-recorded mainshock-aftershock sequences using the Pacific Earthquake Engineering Research Center (PEER) database. The results reveal that the combination of mainshock and aftershock increases the seismic demand on slopes relative to the mainshock alone; thus, seismic risks are underestimated if aftershocks are neglected.Keywords: seismic slope stability, mainshock, aftershock, landslide, earthquake, flexible slopes
Procedia PDF Downloads 1467362 Diminishing Voices of Children in Mandatory Mediation Schemes
Authors: Yuliya Radanova, Agnė Tvaronavičienė
Abstract:
With the growing trend for mandating parties of family conflicts to out-of-court processes, the adopted statutory regulations often remain silent on the way the voice of the child is integrated into the procedure. Convention on the Rights of the Child (Art. 12) clearly states the obligation to assure to the child who can form his or her own views the right to express those views freely in all matters affecting him. This article seeks to explore the way children participate in the mandatory mediation schemes applicable to family disputes in the European Union. A review of scientific literature and empirical data has been conducted on those EU Member States that coerce parties to family mediation to establish that different models of practice are deployed, and there is a lack of synchronicity on how children’s role in mediation is viewed. Child-inclusive mediation processes are deemed to produce sustainable results over time but necessitate professional qualifications and skills for the purpose of mediators to accommodate that such discussions are aligned with the best interest of the child. However, there is no unanimous guidance, standards or protocols on the peculiar characteristics and manner through which children are involved in mediation. Herewith, it is suggested that the lack of such rigorous approaches and coherence in an ever-changing mediation setting transitioning towards mandatory mediation models jeopardizes the importance of children’s voices in the process. Thus, it is suggested that there is a need to consider the adoption of uniform guidelines on the specific role children have in mediation, particularly in its mandatory models.Keywords: family mediation, child involvement, mandatory mediation, child-inclusive, child-focused
Procedia PDF Downloads 747361 Short Text Classification Using Part of Speech Feature to Analyze Students' Feedback of Assessment Components
Authors: Zainab Mutlaq Ibrahim, Mohamed Bader-El-Den, Mihaela Cocea
Abstract:
Students' textual feedback can hold unique patterns and useful information about learning process, it can hold information about advantages and disadvantages of teaching methods, assessment components, facilities, and other aspects of teaching. The results of analysing such a feedback can form a key point for institutions’ decision makers to advance and update their systems accordingly. This paper proposes a data mining framework for analysing end of unit general textual feedback using part of speech feature (PoS) with four machine learning algorithms: support vector machines, decision tree, random forest, and naive bays. The proposed framework has two tasks: first, to use the above algorithms to build an optimal model that automatically classifies the whole data set into two subsets, one subset is tailored to assessment practices (assessment related), and the other one is the non-assessment related data. Second task to use the same algorithms to build an optimal model for whole data set, and the new data subsets to automatically detect their sentiment. The significance of this paper is to compare the performance of the above four algorithms using part of speech feature to the performance of the same algorithms using n-grams feature. The paper follows Knowledge Discovery and Data Mining (KDDM) framework to construct the classification and sentiment analysis models, which is understanding the assessment domain, cleaning and pre-processing the data set, selecting and running the data mining algorithm, interpreting mined patterns, and consolidating the discovered knowledge. The results of this paper experiments show that both models which used both features performed very well regarding first task. But regarding the second task, models that used part of speech feature has underperformed in comparison with models that used unigrams and bigrams.Keywords: assessment, part of speech, sentiment analysis, student feedback
Procedia PDF Downloads 1427360 An Object-Oriented Modelica Model of the Water Level Swell during Depressurization of the Reactor Pressure Vessel of the Boiling Water Reactor
Authors: Rafal Bryk, Holger Schmidt, Thomas Mull, Ingo Ganzmann, Oliver Herbst
Abstract:
Prediction of the two-phase water mixture level during fast depressurization of the Reactor Pressure Vessel (RPV) resulting from an accident scenario is an important issue from the view point of the reactor safety. Since the level swell may influence the behavior of some passive safety systems, it has been recognized that an assumption which at the beginning may be considered as a conservative one, not necessary leads to a conservative result. This paper discusses outcomes obtained during simulations of the water dynamics and heat transfer during sudden depressurization of a vessel filled up to a certain level with liquid water under saturation conditions and with the rest of the vessel occupied by saturated steam. In case of the pressure decrease e.g. due to the main steam line break, the liquid water evaporates abruptly, being a reason thereby, of strong transients in the vessel. These transients and the sudden emergence of void in the region occupied at the beginning by liquid, cause elevation of the two-phase mixture. In this work, several models calculating the water collapse and swell levels are presented and validated against experimental data. Each of the models uses different approach to calculate void fraction. The object-oriented models were developed with the Modelica modelling language and the OpenModelica environment. The models represent the RPV of the Integral Test Facility Karlstein (INKA) – a dedicated test rig for simulation of KERENA – a new Boiling Water Reactor design of Framatome. The models are based on dynamic mass and energy equations. They are divided into several dynamic volumes in each of which, the fluid may be single-phase liquid, steam or a two-phase mixture. The heat transfer between the wall of the vessel and the fluid is taken into account. Additional heat flow rate may be applied to the first volume of the vessel in order to simulate the decay heat of the reactor core in a similar manner as it is simulated at INKA. The comparison of the simulations results against the reference data shows a good agreement.Keywords: boiling water reactor, level swell, Modelica, RPV depressurization, thermal-hydraulics
Procedia PDF Downloads 2107359 Synthesis of a Hybrid of PEG-b-PCL and G1-PEA Dendrimer Based Six-Armed Star Polymer for Nano Delivery of Vancomycin
Authors: Calvin A. Omolo, Rahul S. Kalhapure, Mahantesh Jadhav, Sanjeev Rambharose, Chunderika Mocktar, Thirumala Govender
Abstract:
Treatment of infections is compromised by limitations of conventional dosage forms and drug resistance. Nanocarrier system is a strategy to overcome these challenges and improve therapy. Thus, the development of novel materials for drug delivery via nanocarriers is essential. The aim of the study was to synthesize a multi-arm polymer (6-mPEPEA) for enhanced activity of vancomycin (VM) against susceptible and resistant Staphylococcus aureus (MRSA). The synthesis steps of the star polymer followed reported procedures. The synthesized 6-mPEPEA was characterized by FTIR, ¹H and ¹³CNMR and MTT assays. VM loaded micelles were prepared from 6-mPEPEA and characterized for size, polydispersity index (PI) and surface charge (ZP) (Dynamic Light Scattering), morphology by TEM, drug loading (UV Spectrophotometry), drug release (dialysis bag), in vitro and in vivo efficacy against sensitive and resistant S. aureus. 6-mPEPEA was synthesized, and its structure was confirmed. MTT assays confirmed its nontoxic nature with a high cell viability (77%-85%). Unimolecular spherical micelles were prepared. Size, PI, and ZP was 52.48 ± 2.6 nm, 0.103 ± 0.047, -7.3 ± 1.3 mV, respectively and drug loading was 62.24 ± 3.8%. There was a 91% drug release from VCM-6-mPEPEA after 72 hours. In vitro antibacterial test revealed that VM-6-mPEPEA had 8 and 16-fold greater activity against S. aureus and MRSA when compared to bare VM. Further investigations using flow cytometry showed that VM-6-mPEPEA had 99.5% killing rate of MRSA at the MIC concentration. In vivo antibacterial activity revealed that treatment with VM-6-mPEPEA had a 190 and a 15-fold reduction in the MRSA load in untreated and VM treated respectively. These findings confirmed the potential of 6-mPEPEA as a promising bio-degradable nanocarrier for antibiotic delivery to improve treatment of bacterial infections.Keywords: biosafe, MRSA, nanocarrier, resistance, unimolecular-micelles
Procedia PDF Downloads 1887358 Comparison Study of Machine Learning Classifiers for Speech Emotion Recognition
Authors: Aishwarya Ravindra Fursule, Shruti Kshirsagar
Abstract:
In the intersection of artificial intelligence and human-centered computing, this paper delves into speech emotion recognition (SER). It presents a comparative analysis of machine learning models such as K-Nearest Neighbors (KNN),logistic regression, support vector machines (SVM), decision trees, ensemble classifiers, and random forests, applied to SER. The research employs four datasets: Crema D, SAVEE, TESS, and RAVDESS. It focuses on extracting salient audio signal features like Zero Crossing Rate (ZCR), Chroma_stft, Mel Frequency Cepstral Coefficients (MFCC), root mean square (RMS) value, and MelSpectogram. These features are used to train and evaluate the models’ ability to recognize eight types of emotions from speech: happy, sad, neutral, angry, calm, disgust, fear, and surprise. Among the models, the Random Forest algorithm demonstrated superior performance, achieving approximately 79% accuracy. This suggests its suitability for SER within the parameters of this study. The research contributes to SER by showcasing the effectiveness of various machine learning algorithms and feature extraction techniques. The findings hold promise for the development of more precise emotion recognition systems in the future. This abstract provides a succinct overview of the paper’s content, methods, and results.Keywords: comparison, ML classifiers, KNN, decision tree, SVM, random forest, logistic regression, ensemble classifiers
Procedia PDF Downloads 457357 Using Machine Learning as an Alternative for Predicting Exchange Rates
Authors: Pedro Paulo Galindo Francisco, Eli Dhadad Junior
Abstract:
This study addresses the Meese-Rogoff Puzzle by introducing the latest machine learning techniques as alternatives for predicting the exchange rates. Using RMSE as a comparison metric, Meese and Rogoff discovered that economic models are unable to outperform the random walk model as short-term exchange rate predictors. Decades after this study, no statistical prediction technique has proven effective in overcoming this obstacle; although there were positive results, they did not apply to all currencies and defined periods. Recent advancements in artificial intelligence technologies have paved the way for a new approach to exchange rate prediction. Leveraging this technology, we applied five machine learning techniques to attempt to overcome the Meese-Rogoff puzzle. We considered daily data for the real, yen, British pound, euro, and Chinese yuan against the US dollar over a time horizon from 2010 to 2023. Our results showed that none of the presented techniques were able to produce an RMSE lower than the Random Walk model. However, the performance of some models, particularly LSTM and N-BEATS were able to outperform the ARIMA model. The results also suggest that machine learning models have untapped potential and could represent an effective long-term possibility for overcoming the Meese-Rogoff puzzle.Keywords: exchage rate, prediction, machine learning, deep learning
Procedia PDF Downloads 317356 Statistical Data Analysis of Migration Impact on the Spread of HIV Epidemic Model Using Markov Monte Carlo Method
Authors: Ofosuhene O. Apenteng, Noor Azina Ismail
Abstract:
Over the last several years, concern has developed over how to minimize the spread of HIV/AIDS epidemic in many countries. AIDS epidemic has tremendously stimulated the development of mathematical models of infectious diseases. The transmission dynamics of HIV infection that eventually developed AIDS has taken a pivotal role of much on building mathematical models. From the initial HIV and AIDS models introduced in the 80s, various improvements have been taken into account as how to model HIV/AIDS frameworks. In this paper, we present the impact of migration on the spread of HIV/AIDS. Epidemic model is considered by a system of nonlinear differential equations to supplement the statistical method approach. The model is calibrated using HIV incidence data from Malaysia between 1986 and 2011. Bayesian inference based on Markov Chain Monte Carlo is used to validate the model by fitting it to the data and to estimate the unknown parameters for the model. The results suggest that the migrants stay for a long time contributes to the spread of HIV. The model also indicates that susceptible individual becomes infected and moved to HIV compartment at a rate that is more significant than the removal rate from HIV compartment to AIDS compartment. The disease-free steady state is unstable since the basic reproduction number is 1.627309. This is a big concern and not a good indicator from the public heath point of view since the aim is to stabilize the epidemic at the disease equilibrium.Keywords: epidemic model, HIV, MCMC, parameter estimation
Procedia PDF Downloads 6007355 A Comparative Study of the Alternatives to Land Acquisition: India
Authors: Aparna Soni
Abstract:
The much-celebrated foretold story of Indian city engines driving the growth of India has been scrutinized to have serious consequences. A wide spectrum of scholarship has brought to light the un-equalizing effects and the need to adopt a rights-based approach to development planning in India. Notably, these concepts and discourses ubiquitously entail the study of land struggles in the making of Urban. In fact, the very progression of the primitive accumulation theory to accumulation by dispossession, followed by ‘dispossession without development,’ thereafter Development without dispossession and now as Dispossession by financialization noticeably the last three developing in a span of mere three decades, is evidence enough to trace the centrality and evolving role of land in the making of urban India. India, in the last decade, has seen its regional governments actively experimenting with alternative models of land assembly (Amaravati and Delhi land pooling models, the loudly advertised ones). These are publicized as a replacement to the presumably cost and time antagonistic, prone to litigation land acquisition act of 2013. It has been observed that most of the literature treats these models as a generic large bracket of land expropriation and do not, in particular, try to differentially analyse to granularly find a pattern in these alternatives. To cater to this gap, this research comparatively studies these alternative land, assembly models. It categorises them based on their basic architecture, spatial and sectoral application, and governance frameworks. It is found that these alternatives are ad-hoc and fragmented pieces of legislation. These are fit for profit models commodifying land to ease its access by the private sector for real estate led growth. The research augments the literature on the privatization of land use planning in India. Further, it attempts to discuss the increasing role a landowner is expected to play in the future and suggests a way forward to safeguard them from market risks. The study involves a thematic analysis of the policy elements contained in legislative/policy documents, notifications, office orders. The study also derives from the various widely circulated print media information. With the present field-visit limitations, the study relies on documents accessed open-source in the public domain.Keywords: commodification, dispossession, land acquisition, landowner
Procedia PDF Downloads 1667354 Characterising the Dynamic Friction in the Staking of Plain Spherical Bearings
Authors: Jacob Hatherell, Jason Matthews, Arnaud Marmier
Abstract:
Anvil Staking is a cold-forming process that is used in the assembly of plain spherical bearings into a rod-end housing. This process ensures that the bearing outer lip conforms to the chamfer in the matching rod end to produce a lightweight mechanical joint with sufficient strength to meet the pushout load requirement of the assembly. Finite Element (FE) analysis is being used extensively to predict the behaviour of metal flow in cold forming processes to support industrial manufacturing and product development. On-going research aims to validate FE models across a wide range of bearing and rod-end geometries by systematically isolating and understanding the uncertainties caused by variations in, material properties, load-dependent friction coefficients and strain rate sensitivity. The improved confidence in these models aims to eliminate the costly and time-consuming process of experimental trials in the introduction of new bearing designs. Previous literature has shown that friction coefficients do not remain constant during cold forming operations, however, the understanding of this phenomenon varies significantly and is rarely implemented in FE models. In this paper, a new approach to evaluate the normal contact pressure versus friction coefficient relationship is outlined using friction calibration charts generated via iterative FE models and ring compression tests. When compared to previous research, this new approach greatly improves the prediction of forming geometry and the forming load during the staking operation. This paper also aims to standardise the FE approach to modelling ring compression test and determining the friction calibration charts.Keywords: anvil staking, finite element analysis, friction coefficient, spherical plain bearing, ring compression tests
Procedia PDF Downloads 2057353 Static and Dynamic Hand Gesture Recognition Using Convolutional Neural Network Models
Authors: Keyi Wang
Abstract:
Similar to the touchscreen, hand gesture based human-computer interaction (HCI) is a technology that could allow people to perform a variety of tasks faster and more conveniently. This paper proposes a training method of an image-based hand gesture image and video clip recognition system using a CNN (Convolutional Neural Network) with a dataset. A dataset containing 6 hand gesture images is used to train a 2D CNN model. ~98% accuracy is achieved. Furthermore, a 3D CNN model is trained on a dataset containing 4 hand gesture video clips resulting in ~83% accuracy. It is demonstrated that a Cozmo robot loaded with pre-trained models is able to recognize static and dynamic hand gestures.Keywords: deep learning, hand gesture recognition, computer vision, image processing
Procedia PDF Downloads 1397352 Definition of a Computing Independent Model and Rules for Transformation Focused on the Model-View-Controller Architecture
Authors: Vanessa Matias Leite, Jandira Guenka Palma, Flávio Henrique de Oliveira
Abstract:
This paper presents a model-oriented development approach to software development in the Model-View-Controller (MVC) architectural standard. This approach aims to expose a process of extractions of information from the models, in which through rules and syntax defined in this work, assists in the design of the initial model and its future conversions. The proposed paper presents a syntax based on the natural language, according to the rules agreed in the classic grammar of the Portuguese language, added to the rules of conversions generating models that follow the norms of the Object Management Group (OMG) and the Meta-Object Facility MOF.Keywords: BNF Syntax, model driven architecture, model-view-controller, transformation, UML
Procedia PDF Downloads 3957351 Productivity and Structural Design of Manufacturing Systems
Authors: Ryspek Usubamatov, Tan San Chin, Sarken Kapaeva
Abstract:
Productivity of the manufacturing systems depends on technological processes, a technical data of machines and a structure of systems. Technology is presented by the machining mode and data, a technical data presents reliability parameters and auxiliary time for discrete production processes. The term structure of manufacturing systems includes the number of serial and parallel production machines and links between them. Structures of manufacturing systems depend on the complexity of technological processes. Mathematical models of productivity rate for manufacturing systems are important attributes that enable to define best structure by criterion of a productivity rate. These models are important tool in evaluation of the economical efficiency for production systems.Keywords: productivity, structure, manufacturing systems, structural design
Procedia PDF Downloads 5847350 Highly-Efficient Photoreaction Using Microfluidic Device
Authors: Shigenori Togashi, Yukako Asano
Abstract:
We developed an effective microfluidic device for photoreactions with low reflectance and good heat conductance. The performance of this microfluidic device was tested by carrying out a photoreactive synthesis of benzopinacol and acetone from benzophenone and 2-propanol. The yield reached 36% with an irradiation time of 469.2 s and was improved by more than 30% when compared to the values obtained by the batch method. Therefore, the microfluidic device was found to be effective for improving the yields of photoreactions.Keywords: microfluidic device, photoreaction, black aluminum oxide, benzophenone, yield improvement
Procedia PDF Downloads 2427349 Synthesis and Gas Transport Properties of Polynorbornene Dicarboximides Bearing Trifluoromethyl Isomer Moieties
Authors: Jorge A. Cruz-Morales, Joel Vargas, Arlette A. Santiago, Mikhail A. Tlenkopatchev
Abstract:
In industrial processes such as oil extraction and refining, products are handled or generated in the gas phase, which represents a challenge in terms of treatment and purification. During the past three decades, new scientific findings and technological advances in separation based on the use of membranes have led to simpler and more efficient gas separation processes, optimizing the use of energy and generating less pollution. This work reports the synthesis and ring-opening metathesis polymerization (ROMP) of new structural isomers based on norbornene dicarboximides bearing trifluoromethyl moieties, specifically N-2-trifluoromethylphenyl-exo,endo-norbornene-5,6-dicarboximide (2a) and N-3-trifluoromethylphenyl-exo,endo-norbornene-5,6-dicarboximide (2b), using tricyclohexylphosphine [1,3-bis(2,4,6-trimethylphenyl)-4,5-dihydroimidazol-2-ylidene][benzylidene] ruthenium dichloride (I), bis(tricyclohexylphosphine) benzylidene ruthenium (IV) dichloride (II), and bis(tricyclohexylphosphine) p-fluorophenylvinylidene ruthenium (II) dichloride (III). It was observed that the -CF3 moiety attached at the ortho position of the aromatic ring increases thermal and mechanical properties of the polymer, whereas meta substitution has the opposite effect. A comparative study of gas transportation in membranes, based on these fluorinated polynorbornenes, showed that -CF3 ortho substitution increases permeability of the polymer membrane as a consequence of the increase in both gas solubility and gas diffusion. In contrast, gas permeability coefficients of the meta-substituted polymer membrane are rather similar to those of that which is non-fluorinated; this can be attributed to a lower fractional free volume. The meta-substituted polymer membrane, besides showing the largest permselectivity coefficients of all the isomers studied here, was also found to have one of the largest permselectivity coefficients for separating H2/C3H6 into glassy polynorbornene dicarboximides.Keywords: gas transport membranes, polynorbornene dicarboximide, ROMP, structural isomers
Procedia PDF Downloads 2557348 Antibiofilm Activities of Biogenic Silver Nanoparticles against Human Pathogenic Bacteria
Authors: Muhammad Shahzad Tufail, Iram Liaqat, Umer Sohail Meer, Muhammad Ishtaiq, Muhammad Sattar
Abstract:
Nanotechnology is a vibrant field with numerous applications in many different branches of science and technology. Several methods are used to synthesize nanoparticles (NPs), which have multiple range of applications. Comparatively, the biogenic synthesis of NPs is a more economical and environmentally favourable method than the traditional chemical method. The current study aims to synthesize biogenically silver nanoparticles (AgNPs) using bacterial isolates. Four bacterial strains Escherichia coli (MT448673), Pseudomonas aeruginosa (MN900691), Bacillus subtilis (MN900684) and Bacillus licheniformis (MN900686) were used for the synthesis of AgNPs from silver nitrate (AgNO3) solution. The biofilm time kinetics of four bacterial isolates (P. aeruginosa, E. coli, B. licheniformis and B. subtilis) was analysed by incubating bacterial cultures at 37◦C in test tubes over a period of different time intervals i.e., 2, 3, 5 and 7 days following crystal violet staining method. All the four strains had ability to form strong biofilms between 48 to 72 hours of incubation. Two strains (B. subtilis and B. licheniformis) formed significant (p < 0.05) biofilm after 3 days of incubation period. The other two strains (E. coli and P. aeruginosa) showed strong biofilm formation after 2 days of incubation. Next, the antibiofilm activity of biogenically synthesized AgNPs (10 - 100 µgmL-1) was analysed against biofilm forming human pathogenic bacteria. Findings of the work revealed that 60-90% inhibition was observed at 60 µgmL-1 of AgNPs, while maximum inhibition (i.e.,100%) was found at highest concentration (90 µgmL-1). It was evident that highly significant (p < 0.05) decrease in biofilm formation was observed with increasing concentration of AgNPs.Keywords: antibiofilm, biofilm formation, nanotechnology, pathogenic bacteria, silver nanoparticles
Procedia PDF Downloads 1067347 Orange Peel Derived Activated Carbon /Chitosan Composite as Highly Effective and Low-Cost Adsorbent for Adsorption of Methylene Blue
Authors: Onur Karaman, Ceren Karaman
Abstract:
In this study, the adsorption of Methylene Blue (MB), a cationic dye, onto Orange Peel Derived Activated Carbon (OPAC) and chitosan(OPAC/Chitosan composite) composite (a low-cost absorbent) was carried out using a batch system. The composite was characterised using IR spectra, XRD, FESEM and Pore size studies. The effects of initial pH, adsorbent dose rate and initial dye concentration on the initial adsorption rate, capacity and dye removal efficiency were investigated. The Langmuir and Freundlich adsorption models were used to define the adsorption equilibrium of dye-adsorbent system mathematically and it was decided that the Langmuir model was more suitable to describe the adsorption equilibrium for the system. In addition, first order, second order and saturation type kinetic models were applied to kinetic data of adsorption and kinetic constants were calculated. It was concluded that the second order and the saturation type kinetic models defined the adsorption data more accurately. Finally, the evaluated thermodynamic parameters of adsorption show a spontaneous and exothermic behavior. Overall, this study indicates OPAC/Chitosan composite as an effective and low-cost adsorbent for the removal of MB dye from aqueous solutions.Keywords: activated carbon, adsorption, chitosan, methylene blue, orange peel
Procedia PDF Downloads 2977346 Development of Cobalt Doped Alumina Hybrids for Adsorption of Textile Effluents
Authors: Uzaira Rafique, Kousar Parveen
Abstract:
The discharge volume and composition of Textile effluents gains scientific concern due to its hazards and biotoxcity of azo dyes. Azo dyes are non-biodegradable due to its complex molecular structure and recalcitrant nature. Serious attempts have been made to synthesize and develop new materials to combat the environmental problems. The present study is designed for removal of a range of azo dyes (Methyl orange, Congo red and Basic fuchsine) from synthetic aqueous solutions and real textile effluents. For this purpose, Metal (cobalt) doped alumina hybrids are synthesized and applied as adsorbents in the batch experiment. Two different aluminium precursor (aluminium nitrate and spent aluminium foil) and glucose are mixed following sol gel method to get hybrids. The synthesized materials are characterized for surface and bulk properties using FTIR, SEM-EDX and XRD techniques. The characterization of materials under FTIR revealed that –OH (3487-3504 cm-1), C-H (2935-2985 cm-1), Al-O (~ 800 cm-1), Al-O-C (~1380 cm-1), Al-O-Al (659-669 cm-1) groups participates in the binding of dyes onto the surface of hybrids. Amorphous shaped particles and elemental composition of carbon (23%-44%), aluminium (29%-395%), and oxygen (11%-20%) is demonstrated in SEM-EDX micrograph. Time-dependent batch-experiments under identical experimental parameters showed 74% congo red, 68% methyl orange and 85% maximum removal of basic fuchsine onto the surface of cobalt doped alumina hybrids probably through the ion-exchange mechanism. The experimental data when treated with adsorption models is found to have good agreement with pseudo second order kinetic and freundlich isotherm for adsorption process. The present study concludes the successful synthesis of novel and efficient cobalt doped alumina hybrids providing environmental friendly and economical alternative to the commercial adsorbents for the treatment of industrial effluents.Keywords: alumina hybrid, adsorption, dopant, isotherm, kinetic
Procedia PDF Downloads 1937345 Synthesis, Characterization, and Catalytic Application of Modified Hierarchical Zeolites
Authors: A. Feliczak Guzik, I. Nowak
Abstract:
Zeolites, classified as microporous materials, are a large group of crystalline aluminosilicate materials commonly used in the chemical industry. These materials are characterized by large specific surface area, high adsorption capacity, hydrothermal and thermal stability. However, the micropores present in them impose strong mass transfer limitations, resulting in low catalytic performance. Consequently, mesoporous (hierarchical) zeolites have attracted considerable attention from researchers. These materials possess additional porosity in the mesopore size region (2-50 nm according to IUPAC). Mesoporous zeolites, based on commercial MFI-type zeolites modified with silver, were synthesized as follows: 0.5 g of zeolite was dispersed in a mixture containing CTABr (template), water, ethanol, and ammonia under ultrasound for 30 min at 65°C. The silicon source, which was tetraethyl orthosilicate, was then added and stirred for 4 h. After this time, silver(I) nitrate was added. In a further step, the whole mixture was filtered and washed with water: ethanol mixture. The template was removed by calcination at 550°C for 5h. All the materials obtained were characterized by the following techniques: X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), nitrogen adsorption/desorption isotherms, FTIR spectroscopy. X-ray diffraction and low-temperature nitrogen adsorption/desorption isotherms revealed additional secondary porosity. Moreover, the structure of the commercial zeolite was preserved during most of the material syntheses. The aforementioned materials were used in the epoxidation reaction of cyclohexene using conventional heating and microwave radiation heating. The composition of the reaction mixture was analyzed every 1 h by gas chromatography. As a result, about 60% conversion of cyclohexene and high selectivity to the desired reaction products i.e., 1,2-epoxy cyclohexane and 1,2-cyclohexane diol, were obtained.Keywords: catalytic application, characterization, epoxidation, hierarchical zeolites, synthesis
Procedia PDF Downloads 887344 Proactive Pure Handoff Model with SAW-TOPSIS Selection and Time Series Predict
Authors: Harold Vásquez, Cesar Hernández, Ingrid Páez
Abstract:
This paper approach cognitive radio technic and applied pure proactive handoff Model to decrease interference between PU and SU and comparing it with reactive handoff model. Through the study and analysis of multivariate models SAW and TOPSIS join to 3 dynamic prediction techniques AR, MA ,and ARMA. To evaluate the best model is taken four metrics: number failed handoff, number handoff, number predictions, and number interference. The result presented the advantages using this type of pure proactive models to predict changes in the PU according to the selected channel and reduce interference. The model showed better performance was TOPSIS-MA, although TOPSIS-AR had a higher predictive ability this was not reflected in the interference reduction.Keywords: cognitive radio, spectrum handoff, decision making, time series, wireless networks
Procedia PDF Downloads 4877343 Modelling of Hydric Behaviour of Textiles
Authors: A. Marolleau, F. Salaun, D. Dupont, H. Gidik, S. Ducept.
Abstract:
The goal of this study is to analyze the hydric behaviour of textiles which can impact significantly the comfort of the wearer. Indeed, fabrics can be adapted for different climate if hydric and thermal behaviors are known. In this study, fabrics are only submitted to hydric variations. Sorption and desorption isotherms obtained from the dynamic vapour sorption apparatus (DVS) are fitted with the parallel exponential kinetics (PEK), the Hailwood-Horrobin (HH) and the Brunauer-Emmett-Teller (BET) models. One of the major finding is the relationship existing between PEK and HH models. During slow and fast processes, the sorption of water molecules on the polymer can be in monolayer and multilayer form. According to the BET model, moisture regain, a physical property of textiles, show a linear correlation with the total amount of water taken in monolayer. This study provides potential information of the end uses of these fabrics according to the selected activity level.Keywords: comfort, hydric properties, modelling, underwears
Procedia PDF Downloads 1497342 Topology Optimization of Composite Structures with Material Nonlinearity
Authors: Mengxiao Li, Johnson Zhang
Abstract:
Currently, topology optimization technique is widely used to define the layout design of structures that are presented as truss-like topologies. However, due to the difficulty in combining optimization technique with more realistic material models where their nonlinear properties should be considered, the achieved optimized topologies are commonly unable to apply straight towards the practical design problems. This study presented an optimization procedure of composite structures where different elastic stiffness, yield criteria, and hardening models are assumed for the candidate materials. From the results, it can be concluded that a more explicit modeling has the significant influence on the resulting topologies. Also, the isotropic or kinematic hardening is important for elastoplastic structural optimization design. The capability of the proposed optimization procedure is shown through several cases.Keywords: topology optimization, material composition, nonlinear modeling, hardening rules
Procedia PDF Downloads 4827341 Early Age Behavior of Wind Turbine Gravity Foundations
Authors: Janet Modu, Jean-Francois Georgin, Laurent Briancon, Eric Antoinet
Abstract:
The current practice during the repowering phase of wind turbines is deconstruction of existing foundations and construction of new foundations to accept larger wind loads or once the foundations have reached the end of their service lives. The ongoing research project FUI25 FEDRE (Fondations d’Eoliennes Durables et REpowering) therefore serves to propose scalable wind turbine foundation designs to allow reuse of the existing foundations. To undertake this research, numerical models and laboratory-scale models are currently being utilized and implemented in the GEOMAS laboratory at INSA Lyon following instrumentation of a reference wind turbine situated in the Northern part of France. Sensors placed within both the foundation and the underlying soil monitor the evolution of stresses from the foundation’s early age to stresses during service. The results from the instrumentation form the basis of validation for both the laboratory and numerical works conducted throughout the project duration. The study currently focuses on the effect of coupled mechanisms (Thermal-Hydro-Mechanical-Chemical) that induce stress during the early age of the reinforced concrete foundation, and scale factor considerations in the replication of the reference wind turbine foundation at laboratory-scale. Using THMC 3D models on COMSOL Multi-physics software, the numerical analysis performed on both the laboratory-scale and the full-scale foundations simulate the thermal deformation, hydration, shrinkage (desiccation and autogenous) and creep so as to predict the initial damage caused by internal processes during concrete setting and hardening. Results show a prominent effect of early age properties on the damage potential in full-scale wind turbine foundations. However, a prediction of the damage potential at laboratory scale shows significant differences in early age stresses in comparison to the full-scale model depending on the spatial position in the foundation. In addition to the well-known size effect phenomenon, these differences may contribute to inaccuracies encountered when predicting ultimate deformations of the on-site foundation using laboratory scale models.Keywords: cement hydration, early age behavior, reinforced concrete, shrinkage, THMC 3D models, wind turbines
Procedia PDF Downloads 1757340 Simplified Analysis on Steel Frame Infill with FRP Composite Panel
Authors: HyunSu Seo, HoYoung Son, Sungjin Kim, WooYoung Jung
Abstract:
In order to understand the seismic behavior of steel frame structure with infill FRP composite panel, simple models for simulation on the steel frame with the panel systems were developed in this study. To achieve the simple design method of the steel framed structure with the damping panel system, 2-D finite element analysis with the springs and dashpots models was conducted in ABAQUS. Under various applied spring stiffness and dashpot coefficient, the expected hysteretic energy responses of the steel frame with damping panel systems we re investigated. Using the proposed simple design method which decides the stiffness and the damping, it is possible to decide the FRP and damping materials on a steel frame system.Keywords: numerical analysis, FEM, infill, GFRP, damping
Procedia PDF Downloads 4247339 The Relationship between Size of Normal and Cystic Bovine Ovarian Follicles with Follicular Fluid Levels of Nitric Oxide and Estradiol
Authors: Hamidreza Khodaei, Behnaz Mahdavi, Leila Karshenas
Abstract:
Nitric oxide (NO) is a small fast acting neurotransmitter, which is synthesized From L-arginine by nitric oxide synthase. Studies show that NO affects a wide range of reproductive functions. Steroidal hormones synthesis, LH surge during ovulation, follicular growth and ovulation are all affected by NO. Therefore, the objective of this study was to evaluate the relationship between NO and estradiol (E2) production in ovarian follicles and cysts in bovines. Two experiment groups were formed and serum and follicular fluid levels Of NO and estradiol (E2) was measured. In the first group, follicular fluids were obtained from 30 slaughtered cows. Follicles were divided into three groups according to follicular diameter: Small follicles, <5 mm, medium-sized follicles, 5 to 10 mm, and large follicles, >10 mm. 30 follicles were randomly selected within each group. Blood samples were obtained via jugular vein. NO concentrations in blood and ovarian follicular fluids were measured by Griess reaction method and radio-immunoassay respectively. In the second group: 12 cows in follicular phase and with cystic follicles were selected and a cystic follicle was obtained from each. NO and E2 levels were measured as done for the first experiment group. The data were analyzed by SAS software using ANOVA and Duncan’s test. NO concentrations of follicular fluids from large follicles were significantly higher than those of the medium and small-sized ones. There were significant differences in the concentrations of nitrite and nitrate (Stable metabolites of NO) between large and cystic follicles, with extremely low NO and high E2 levels in cystic follicles (p<0.01).The results suggest that paracrine effects of NO may play an important role in the control of ovarian follicle growth and development of cystic follicles in bovines. It seems that NO dictates its effects through inhibition of ovarian steroidal synthesis.Keywords: nitric oxide, estradiol, cystic follicle, cow, oogenesis, oocyte maturation, follicular fluid
Procedia PDF Downloads 2347338 Machine Learning Development Audit Framework: Assessment and Inspection of Risk and Quality of Data, Model and Development Process
Authors: Jan Stodt, Christoph Reich
Abstract:
The usage of machine learning models for prediction is growing rapidly and proof that the intended requirements are met is essential. Audits are a proven method to determine whether requirements or guidelines are met. However, machine learning models have intrinsic characteristics, such as the quality of training data, that make it difficult to demonstrate the required behavior and make audits more challenging. This paper describes an ML audit framework that evaluates and reviews the risks of machine learning applications, the quality of the training data, and the machine learning model. We evaluate and demonstrate the functionality of the proposed framework by auditing an steel plate fault prediction model.Keywords: audit, machine learning, assessment, metrics
Procedia PDF Downloads 2717337 Upsetting of Tri-Metallic St-Cu-Al and St-Cu60Zn-Al Cylindrical Billets
Authors: Isik Cetintav, Cenk Misirli, Yilmaz Can
Abstract:
This work investigates upsetting of the tri-metallic cylindrical billets both experimentally and analytically with a reduction ratio 30%. Steel, brass, and copper are used for the outer and outmost rings and aluminum for the inner core. Two different models have been designed to show material flow and the cavity took place over the two interfaces during forming after this reduction ratio. Each model has an outmost ring material as steel. Model 1 has an outer ring between the outmost ring and the solid core material as copper and Model 2 has a material as brass. Solid core is aluminum for each model. Billets were upset in press machine by using parallel flat dies. Upsetting load was recorded and compared for models and single billets. To extend the tests and compare with experimental procedure to a wider range of inner core and outer ring geometries, finite element model was performed. ABAQUS software was used for the simulations. The aim is to show how contact between outmost ring, outer ring and the inner core are carried on throughout the upsetting process. Results have shown that, with changing in height, between outmost ring, outer ring and inner core, the Model 1 and Model 2 had very good interaction, and the contact surfaces of models had various interface behaviour. It is also observed that tri-metallic materials have lower weight but better mechanical properties than single materials. This can give an idea for using and producing these new materials for different purposes.Keywords: tri-metallic, upsetting, copper, brass, steel, aluminum
Procedia PDF Downloads 3427336 Optimization of Slider Crank Mechanism Using Design of Experiments and Multi-Linear Regression
Authors: Galal Elkobrosy, Amr M. Abdelrazek, Bassuny M. Elsouhily, Mohamed E. Khidr
Abstract:
Crank shaft length, connecting rod length, crank angle, engine rpm, cylinder bore, mass of piston and compression ratio are the inputs that can control the performance of the slider crank mechanism and then its efficiency. Several combinations of these seven inputs are used and compared. The throughput engine torque predicted by the simulation is analyzed through two different regression models, with and without interaction terms, developed according to multi-linear regression using LU decomposition to solve system of algebraic equations. These models are validated. A regression model in seven inputs including their interaction terms lowered the polynomial degree from 3rd degree to 1st degree and suggested valid predictions and stable explanations.Keywords: design of experiments, regression analysis, SI engine, statistical modeling
Procedia PDF Downloads 186