Search results for: Selective Harmonic Elimination Pulse Width Modulation (SHEPWM)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2951

Search results for: Selective Harmonic Elimination Pulse Width Modulation (SHEPWM)

1481 Estimations of Spectral Dependence of Tropospheric Aerosol Single Scattering Albedo in Sukhothai, Thailand

Authors: Siriluk Ruangrungrote

Abstract:

Analyses of available data from MFR-7 measurement were performed and discussed on the study of tropospheric aerosol and its consequence in Thailand. Since, ASSA (w) is one of the most important parameters for a determination of aerosol effect on radioactive forcing. Here the estimation of w was directly determined in terms of the ratio of aerosol scattering optical depth to aerosol extinction optical depth (ωscat/ωext) without any utilization of aerosol computer code models. This is of benefit for providing the elimination of uncertainty causing by the modeling assumptions and the estimation of actual aerosol input data. Diurnal w of 5 cloudless-days in winter and early summer at 5 distinct wavelengths of 415, 500, 615, 673 and 870 nm with the consideration of Rayleigh scattering and atmospheric column NO2 and Ozone contents were investigated, respectively. Besides, the tendency of spectral dependence of ω representing two seasons was observed. The characteristic of spectral results reveals that during wintertime the atmosphere of the inland rural vicinity for the period of measurement possibly dominated with a lesser amount of soil dust aerosols loading than one in early summer. Hence, the major aerosol loading particularly in summer was subject to a mixture of both soil dust and biomass burning aerosols.

Keywords: aerosol scattering optical depth, aerosol extinction optical depth, biomass burning aerosol, soil dust aerosol

Procedia PDF Downloads 376
1480 Analysis of a Self-Acting Air Journal Bearing: Effect of Dynamic Deformation of Bump Foil

Authors: H. Bensouilah, H. Boucherit, M. Lahmar

Abstract:

A theoretical investigation on the effects of both steady-state and dynamic deformations of the foils on the dynamic performance characteristics of a self-acting air foil journal bearing operating under small harmonic vibrations is proposed. To take into account the dynamic deformations of foils, the perturbation method is used for determining the gas-film stiffness and damping coefficients for given values of excitation frequency, compressibility number, and compliance factor of the bump foil. The nonlinear stationary Reynolds’ equation is solved by means of the Galerkins’ finite element formulation while the finite differences method are used to solve the first order complex dynamic equations resulting from the perturbation of the nonlinear transient compressible Reynolds’ equation. The stiffness of a bump is uniformly distributed throughout the bearing surface (generation I bearing). It was found that the dynamic properties of the compliant finite length journal bearing are significantly affected by the compliance of foils especially when the dynamic deformation of foils is considered in addition to the static one by applying the principle of superposition.

Keywords: elasto-aerodynamic lubrication, air foil bearing, steady-state deformation, dynamic deformation, stiffness and damping coefficients, perturbation method, fluid-structure interaction, Galerk infinite element method, finite difference method

Procedia PDF Downloads 373
1479 Impact of Insect-Feeding and Fire-Heating Wounding on Wood Properties of Lodgepole Pine

Authors: Estelle Arbellay, Lori D. Daniels, Shawn D. Mansfield, Alice S. Chang

Abstract:

Mountain pine beetle (MPB) outbreaks are currently devastating lodgepole pine forests in western North America, which are also widely disturbed by frequent wildfires. Both MPB and fire can leave scars on lodgepole pine trees, thereby diminishing their commercial value and possibly compromising their utilization in solid wood products. In order to fully exploit the affected resource, it is crucial to understand how wounding from these two disturbance agents impact wood properties. Moreover, previous research on lodgepole pine has focused solely on sound wood and stained wood resulting from the MPB-transmitted blue fungi. By means of a quantitative multi-proxy approach, we tested the hypotheses that (i) wounding (of either MPB or fire origin) caused significant changes in wood properties of lodgepole pine and that (ii) MPB-induced wound effects could differ from those induced by fire in type and magnitude. Pith-to-bark strips were extracted from 30 MPB scars and 30 fire scars. Strips were cut immediately adjacent to the wound margin and encompassed 12 rings from normal wood formed prior to wounding and 12 rings from wound wood formed after wounding. Wood properties evaluated within this 24-year window included ring width, relative wood density, cellulose crystallinity, fibre dimensions, and carbon and nitrogen concentrations. Methods used to measure these proxies at a (sub-)annual resolution included X-ray densitometry, X-ray diffraction, fibre quality analysis, and elemental analysis. Results showed a substantial growth release in wound wood compared to normal wood, as both earlywood and latewood width increased over a decade following wounding. Wound wood was also shown to have a significantly different latewood density than normal wood 4 years after wounding. Latewood density decreased in MPB scars while the opposite was true in fire scars. By contrast, earlywood density was presented only minor variations following wounding. Cellulose crystallinity decreased in wound wood compared to normal wood, being especially diminished in MPB scars the first year after wounding. Fibre dimensions also decreased following wounding. However, carbon and nitrogen concentrations did not substantially differ between wound wood and normal wood. Nevertheless, insect-feeding and fire-heating wounding were shown to significantly alter most wood properties of lodgepole pine, as demonstrated by the existence of several morphological anomalies in wound wood. MPB and fire generally elicited similar anomalies, with the major exception of latewood density. In addition to providing quantitative criteria for differentiating between biotic (MPB) and abiotic (fire) disturbances, this study provides the wood industry with fundamental information on the physiological response of lodgepole pine to wounding in order to evaluate the utilization of scarred trees in solid wood products.

Keywords: elemental analysis, fibre quality analysis, lodgepole pine, wood properties, wounding, X-ray densitometry, X-ray diffraction

Procedia PDF Downloads 297
1478 Inhibition of Pipelines Corrosion Using Natural Extracts

Authors: Eman Alzahrani, Hala M. Abo-Dief, Ashraf T. Mohamed

Abstract:

The present work is aimed at examining carbon steel oil pipelines corrosion using three natural extracts (Eruca Sativa, Rosell and Mango peels) that are used as inhibitors of different concentrations ranging from 0.05-0.1wt. %. Two sulphur compounds are used as corrosion mediums. Weight loss method was used for measuring the corrosion rate of the carbon steel specimens immersed in technical white oil at 100ºC at various time intervals in absence and presence of the two sulphur compounds. The corroded specimens are examined using the chemical wear test, scratch test and hardness test. The scratch test is carried out using scratch loads from 0.5 Kg to 2.0 Kg. The scratch width is obtained at various scratch load and test conditions. The Brinell hardness test is carried out and investigated for both corroded and inhibited specimens. The results showed that three natural extracts can be used as environmentally friendly corrosion inhibitors.

Keywords: inhibition, natural extract, oil pipelines corrosion, sulphur compounds

Procedia PDF Downloads 481
1477 A Process FMEA in Aero Fuel Pump Manufacturing and Conduct the Corrective Actions

Authors: Zohre Soleymani, Meisam Amirzadeh

Abstract:

Many products are safety critical, so proactive analysis techniques are vital for them because these techniques try to identify potential failures before the products are produced. Failure Mode and Effective Analysis (FMEA) is an effective tool in identifying probable problems of product or process and prioritizing them and planning for its elimination. The paper shows the implementation of FMEA process to identify and remove potential troubles of aero fuel pumps manufacturing process and improve the reliability of subsystems. So the different possible causes of failure and its effects along with the recommended actions are discussed. FMEA uses Risk Priority Number (RPN) to determine the risk level. RPN value is depending on Severity(S), Occurrence (O) and Detection (D) parameters, so these parameters need to be determined. After calculating the RPN for identified potential failure modes, the corrective actions are defined to reduce risk level according to assessment strategy and determined acceptable risk level. Then FMEA process is performed again and RPN revised is calculated. The represented results are applied in the format of a case study. These results show the improvement in manufacturing process and considerable reduction in aero fuel pump production risk level.

Keywords: FMEA, risk priority number, aero pump, corrective action

Procedia PDF Downloads 263
1476 Tool Wear Monitoring of High Speed Milling Based on Vibratory Signal Processing

Authors: Hadjadj Abdechafik, Kious Mecheri, Ameur Aissa

Abstract:

The objective of this study is to develop a process of treatment of the vibratory signals generated during a horizontal high speed milling process without applying any coolant in order to establish a monitoring system able to improve the machining performance. Thus, many tests were carried out on the horizontal high speed centre (PCI Météor 10), in given cutting conditions, by using a milling cutter with only one insert and measured its frontal wear from its new state that is considered as a reference state until a worn state that is considered as unsuitable for the tool to be used. The results obtained show that the first harmonic follow well the evolution of frontal wear, on another hand a wavelet transform is used for signal processing and is found to be useful for observing the evolution of the wavelet approximations through the cutting tool life. The power and the Root Mean Square (RMS) values of the wavelet transformed signal gave the best results and can be used for tool wear estimation. All this features can constitute the suitable indicators for an effective detection of tool wear and then used for the input parameters of an online monitoring system. Although we noted the remarkable influence of the machining cycle on the quality of measurements by the introduction of a bias on the signal, this phenomenon appears in particular in horizontal milling and in the majority of studies is ignored.

Keywords: flank wear, vibration, milling, signal processing, monitoring

Procedia PDF Downloads 576
1475 Extractive Desulfurization of Atmospheric Gasoil with N,N-Dimethylformamide

Authors: Kahina Bedda, Boudjema Hamada

Abstract:

Environmental regulations have been introduced in many countries around the world to reduce the sulfur content of diesel fuel to ultra low levels with the intention of lowering diesel engine’s harmful exhaust emissions and improving air quality. Removal of sulfur containing compounds from diesel feedstocks to produce ultra low sulfur diesel fuel by extraction with selective solvents has received increasing attention in recent years. This is because the sulfur extraction technologies compared to the hydrotreating processes could reduce the cost of desulfurization substantially since they do not demand hydrogen, and are carried out at atmospheric pressure. In this work, the desulfurization of distillate gasoil by liquid-liquid extraction with N, N-dimethylformamide was investigated. This fraction was recovered from a mixture of Hassi Messaoud crude oils and Hassi R'Mel gas-condensate in Algiers refinery. The sulfur content of this cut is 281 ppm. Experiments were performed in six-stage with a ratio of solvent:feed equal to 3:1. The effect of the extraction temperature was investigated in the interval 30 ÷ 110°C. At 110°C the yield of refined gas oil was 82% and its sulfur content was 69 ppm.

Keywords: desulfurization, gasoil, N, N-dimethylformamide, sulfur content

Procedia PDF Downloads 359
1474 Designing a Method to Control and Determine the Financial Performance of the Real Cost Sub-System in the Information Management System of Construction Projects

Authors: Alireza Ghaffari, Hassan Saghi

Abstract:

Project management is more complex than managing the day-to-day affairs of an organization. When the project dimensions are broad and multiple projects have to be monitored in different locations, the integrated management becomes even more complicated. One of the main concerns of project managers is the integrated project management, which is mainly rooted in the lack of accurate and accessible information from different projects in various locations. The collection of dispersed information from various parts of the network, their integration and finally the selective reporting of this information is among the goals of integrated information systems. It can help resolve the main problem, which is bridging the information gap between executives and senior managers in the organization. Therefore, the main objective of this study is to design and implement an important subset of a project management information system in order to successfully control the cost of construction projects so that its results can be used to design raw software forms and proposed relationships between different project units for the collection of necessary information.

Keywords: financial performance, cost subsystem, PMIS, project management

Procedia PDF Downloads 83
1473 Experimental Study on Floating Breakwater Anchored by Piles

Authors: Yessi Nirwana Kurniadi, Nira Yunita Permata

Abstract:

Coastline is vulnerable to coastal erosion which damage infrastructure and buildings. Floating breakwaters are applied in order to minimize material cost but still can reduce wave height. In this paper, we investigated floating breakwater anchored by piles based on experimental study in the laboratory with model scale 1:8. Two type of floating model were tested with several combination wave height, wave period and surface water elevation to determined transmission coefficient. This experimental study proved that floating breakwater with piles can prevent wave height up to 27 cm. The physical model shows that ratio of depth to wave length is less than 0.6 and ratio of model width to wave length is less than 0.3. It is confirmed that if those ratio are less than those value, the transmission coefficient is 0.5. The result also showed that the first type model of floating breakwater can reduce wave height by 60.4 % while the second one can reduce up to 55.56 %.

Keywords: floating breakwater, experimental study, pile, transimission coefficient

Procedia PDF Downloads 510
1472 Finite Element Analysis of High Performance Synchronous Reluctance Machines

Authors: T. Mohanarajah, J. Rizk, M. Nagrial, A. Hellany

Abstract:

This paper analyses numerous features of the synchronous Reluctance Motor (Syn-RM) and propose a rotor for high electrical torque, power factor & efficiency using Finite Element Method (FEM). A comprehensive analysis completed on solid rotor structure while the total thickness of the flux guide kept constant. A number of tests carried out for nine different studies to find out optimum location of the flux guide, the optimum location of multiple flux guides & optimum wall thickness between flux guides for high-performance reluctance machines. The results are concluded with the aid of FEM simulation results, the saliency ratio and machine characteristics (location, a number of barriers & wall width) analysed.

Keywords: electrical machines, finite element method, synchronous reluctance machines, variable reluctance machines

Procedia PDF Downloads 462
1471 Identification of Nonlinear Systems Using Radial Basis Function Neural Network

Authors: C. Pislaru, A. Shebani

Abstract:

This paper uses the radial basis function neural network (RBFNN) for system identification of nonlinear systems. Five nonlinear systems are used to examine the activity of RBFNN in system modeling of nonlinear systems; the five nonlinear systems are dual tank system, single tank system, DC motor system, and two academic models. The feed forward method is considered in this work for modelling the non-linear dynamic models, where the K-Means clustering algorithm used in this paper to select the centers of radial basis function network, because it is reliable, offers fast convergence and can handle large data sets. The least mean square method is used to adjust the weights to the output layer, and Euclidean distance method used to measure the width of the Gaussian function.

Keywords: system identification, nonlinear systems, neural networks, radial basis function, K-means clustering algorithm

Procedia PDF Downloads 447
1470 The Feasibility of Using Milled Glass Wastes in Concrete to Resist Freezing-Thawing Action

Authors: Raed Abendeh, Mousa Bani Baker, Zaydoun Abu Salem, Hesham Ahmad

Abstract:

The using of waste materials in the construction industry can reduce the dependence on the natural aggregates which are going at the end to deplete. The glass waste is generated in a huge amount which can make one of its disposal in concrete industry effective not only as a green solution but also as an advantage to enhance the performance of mechanical properties and durability of concrete. This article reports the performance of concrete specimens containing different percentages of milled glass waste as a partial replacement of cement (Powder), when they are subject to cycles of freezing and thawing. The tests were conducted on 75-mm cubes and 75 x 75 x 300-mm prisms. Compressive strength based on laboratory testing and non-destructive ultrasonic pulse velocity test were performed during the action of freezing-thawing cycles (F/T). The results revealed that the incorporation of glass waste in concrete mixtures is not only feasible but also showed generally better strength and durability performance than control concrete mixture. It may be said that the recycling of waste glass in concrete mixes is not only a disposal way, but also it can be an exploitation in concrete industry.

Keywords: durability, glass waste, freeze-thaw cycles, non-destructive test

Procedia PDF Downloads 349
1469 Studying the Effect of Froude Number and Densimetric Froude Number on Local Scours around Circular Bridge Piers

Authors: Md Abdullah Al Faruque

Abstract:

A very large percentage of bridge failures are attributed to scouring around bridge piers and this directly influences public safety. Experiments are carried out in a 12-m long rectangular open channel flume made of transparent tempered glass. A 300 mm thick bed made up of sand particles is leveled horizontally to create the test bed and a 50 mm hollow plastic cylinder is used as a model bridge pier. Tests are carried out with varying flow depths and velocities. Data points of various scour parameters such as scour depth, width, and length are collected based on different flow conditions and visual observations of changes in the stream bed downstream the bridge pier are also made as the scour progresses. Result shows that all three major flow characteristics (flow depth, Froude number and densimetric Froude number) have one way or other affect the scour profile.

Keywords: bridge pier scour, densimetric Froude number, flow depth, Froude number, sand

Procedia PDF Downloads 148
1468 Analytical Downlink Effective SINR Evaluation in LTE Networks

Authors: Marwane Ben Hcine, Ridha Bouallegue

Abstract:

The aim of this work is to provide an original analytical framework for downlink effective SINR evaluation in LTE networks. The classical single carrier SINR performance evaluation is extended to multi-carrier systems operating over frequency selective channels. Extension is achieved by expressing the link outage probability in terms of the statistics of the effective SINR. For effective SINR computation, the exponential effective SINR mapping (EESM) method is used on this work. Closed-form expression for the link outage probability is achieved assuming a log skew normal approximation for single carrier case. Then we rely on the lognormal approximation to express the exponential effective SINR distribution as a function of the mean and standard deviation of the SINR of a generic subcarrier. Achieved formulas is easily computable and can be obtained for a user equipment (UE) located at any distance from its serving eNodeB. Simulations show that the proposed framework provides results with accuracy within 0.5 dB.

Keywords: LTE, OFDMA, effective SINR, log skew normal approximation

Procedia PDF Downloads 338
1467 Effect of Stiffeners on the Behavior of Slender Built up Steel I-Beams

Authors: M. E. Abou-Hashem El Dib, M. K. Swailem, M. M. Metwally, A. I. El Awady

Abstract:

This paper presents the effect of stiffeners on the behavior of slender steel I-beams. Nonlinear three dimensional finite element models are developed to represent the stiffened steel I-beams. The well established finite element (ANSYS 13.0) program is used to simulate the geometric and material nonlinear nature of the problem. Verification is achieved by comparing the obtained numerical results with the results of previous published experimental work. The parameters considered in the analysis are the horizontal stiffener's position and the horizontal stiffener's dimensions as well as the number of vertical stiffeners. The studied dimensions of the horizontal stiffeners include the stiffener width, the stiffener thickness and the stiffener length. The results of the achieved numerical parametric study for slender steel I-beams show the significant effect of stiffeners on the beam behavior and its failure load.

Keywords: beams, local buckling, slender, stiffener, thin walled section

Procedia PDF Downloads 262
1466 Colorimetric Detection of Melamine in Milk Sample by Using In-Situ Formed Silver Nanoparticles by Tannic Acid

Authors: Md Fazle Alam, Amaj Ahmed Laskar, Hina Younus

Abstract:

Melamine toxicity which causes renal failure and death of humans and animals have recently attracted worldwide attention. Developing an easy, fast and sensitive method for the routine melamine detection is the need of the hour. Herein, we have developed a rapid, sensitive, one step and selective colorimetric method for the detection of melamine in milk samples based upon in-situ formation of silver nanoparticles (AgNPs) via tannic acid at room temperature. These AgNPs thus formed were characterized by UV-VIS spectrophotometer, transmission electron microscope (TEM), zetasizer and dynamic light scattering (DLS). Under optimal conditions, melamine could be selectively detected within the concentration range of 0.05-1.4 µM with a limit of detection (LOD) of 10.1 nM, which is lower than the strictest melamine safety requirement of 1 ppm. This assay does not utilize organic cosolvents, enzymatic reactions, light sensitive dye molecules and sophisticated instrumentation, thereby overcoming some of the limitations of conventional methods.

Keywords: milk adulteration, melamine, silver nanoparticles, tannic acid

Procedia PDF Downloads 231
1465 Spectroscopic Characterization Approach to Study Ablation Time on Zinc Oxide Nanoparticles Synthesis by Laser Ablation Technique

Authors: Suha I. Al-Nassar, K. M. Adel, F. Zainab

Abstract:

This work was devoted for producing ZnO nanoparticles by pulsed laser ablation (PLA) of Zn metal plate in the aqueous environment of cetyl trimethyl ammonium bromide (CTAB) using Q-Switched Nd:YAG pulsed laser with wavelength= 1064 nm, Rep. rate= 10 Hz, Pulse duration= 6 ns and laser energy 50 mJ. Solution of nanoparticles is found stable in the colloidal form for a long time. The effect of ablation time on the optical and structure of ZnO was studied is characterized by UV-visible absorption. UV-visible absorption spectrum has four peaks at 256, 259, 265, 322 nm for ablation time (5, 10, 15, and 20 sec) respectively, our results show that UV–vis spectra show a blue shift in the presence of CTAB with decrease the ablation time and blue shift indicated to get smaller size of nanoparticles. The blue shift in the absorption edge indicates the quantum confinement property of nanoparticles. Also, FTIR transmittance spectra of ZnO2 nanoparticles prepared in these states show a characteristic ZnO absorption at 435–445cm^−1.

Keywords: zinc oxide nanoparticles, CTAB solution, pulsed laser ablation technique, spectroscopic characterization

Procedia PDF Downloads 354
1464 Small Molecule Inhibitors of PD1-PDL1 Interaction

Authors: K. Żak, S. Przetocka, R. Kitel, K. Guzik, B. Musielak, S. Malicki, G. Dubin, T. A. Holak

Abstract:

Studies on tumor genesis revealed a number of factors that may potentially serve as molecular targets for immunotherapies. One of such promising targets are PD1 and PDL1 proteins. PD1 (Programmed cell death protein 1) is expressed by activated T cells and plays a critical role in modulation of the host's immune response. One of the PD1 ligands -PDL1- is expressed by macrophages, monocytes and cancer cells which exploit it to avoid immune attack. The notion of the mechanisms used by cancer cells to block the immune system response was utilized in the development of therapies blocking PD1-PDL1 interaction. Up to date, human PD1-PDL1 complex has not been crystallized and structure of the mouse-human complex does not provide a complete view of the molecular basis of PD1-PDL1 interactions. The purpose of this study is to obtain crystal structure of the human PD1-PDL1 complex which shall allow rational design of small molecule inhibitors of the interaction. In addition, the study presents results of binding small-molecules to PD1 and fragment docking towards PD1 protein which will facilitate the design and development of small–molecule inhibitors of PD1-PDL1 interaction.

Keywords: PD1, PDL1, cancer, small molecule, drug discovery

Procedia PDF Downloads 370
1463 Conversion of Atmospheric Carbone Dioxide into Minerals at Room Conditions by Using the Sea Water Plus Various Additives

Authors: Muthana A. M. Jamel Al-Gburi

Abstract:

Elimination of carbon dioxide (CO2) gas from the atmosphere is very important but complicated since there is increasing in the amounts of carbon dioxide and other greenhouse gases in the atmosphere, which mainly caused by some of the human activities and the burning of fossil fuels. So that will lead to global warming. The global warming affects the earth temperature causing an increase to a higher level and, at the same time, creates tornadoes and storms. In this project, we are going to do a new technique for extracting carbon dioxide directly from the air and change it to useful minerals and Nano scale fibers made of carbon by using several chemical processes through chemical reactions. So, that could lead to an economical and healthy way to make some valuable building materials. Also, it may even work as a weapon against environmental change. In our device (Carbone Dioxide Domestic Extractor), we are using Ocean-seawater to dissolve the CO₂ gas and then converted it into carbonate minerals by using a number of additives like Shampoo, clay, and MgO. Note that the atmospheric air includes CO₂ gas, has circulated within the seawater by the air pump. More, that we will use a number of chemicals agents to convert the water acid into useful minerals. After we constructed the system, we did intense experiments and investigations to find the optimum chemical agent, which must be work at the environmental condition. Further to that, we will measure the solubility of CO₂ and other salts in the seawater.

Keywords: global warming, CO₂ gas, ocean-sea water, additives, solubility level

Procedia PDF Downloads 85
1462 Modeling and Optimal Control of Acetylene Catalytic Hydrogenation Reactor in Olefin Plant by Artificial Neural Network

Authors: Faezeh Aghazadeh, Mohammad Javad Sharifi

Abstract:

The application of neural networks to model a full-scale industrial acetylene hydrogenation in olefin plant has been studied. The operating variables studied are the, input-temperature of the reactor, output-temperature of the reactor, hydrogen ratio of the reactor, [C₂H₂]input, and [C₂H₆]input. The studied operating variables were used as the input to the constructed neural network to predict the [C₂H₆]output at any time as the output or the target. The constructed neural network was found to be highly precise in predicting the quantity of [C₂H₆]output for the new input data, which are kept unaware of the trained neural network showing its applicability to determine the [C₂H₆]output for any operating conditions. The enhancement of [C₂H₆]output as compared with [C₂H₆]input was a consequence of low selective acetylene hydrogenation to ethylene.

Keywords: acetylene hydrogenation, Pd-Ag/Al₂O₃, artificial neural network, modeling, optimal design

Procedia PDF Downloads 244
1461 Thermal Radiation Effect on Mixed Convection Boundary Layer Flow over a Vertical Plate with Varying Density and Volumetric Expansion Coefficient

Authors: Sadia Siddiqa, Z. Khan, M. A. Hossain

Abstract:

In this article, the effect of thermal radiation on mixed convection boundary layer flow of a viscous fluid along a highly heated vertical flat plate is considered with varying density and volumetric expansion coefficient. The density of the fluid is assumed to vary exponentially with temperature, however; volumetric expansion coefficient depends linearly on temperature. Boundary layer equations are transformed into convenient form by introducing primitive variable formulations. Solutions of transformed system of equations are obtained numerically through implicit finite difference method along with Gaussian elimination technique. Results are discussed in view of various parameters, like thermal radiation parameter, volumetric expansion parameter and density variation parameter on the wall shear stress and heat transfer rate. It is concluded from the present investigation that increase in volumetric expansion parameter decreases wall shear stress and enhances heat transfer rate.

Keywords: thermal radiation, mixed convection, variable density, variable volumetric expansion coefficient

Procedia PDF Downloads 349
1460 The Effect of Nitrogen Fertilizer Use Efficiency in Corn Yield and Yield Components in Cultivars KSC 704

Authors: Elham Bagherzadeh, Mohammad Fadaee, Rouhollah Keykhosravi

Abstract:

In order to survey the nitrogen use efficiency in corn, the experimental plot in a randomized complete block design 2014 agricultural farm was Islamic Azad University of Karaj. The main factor was four levels of nitrogen fertilizer (respectively control, 150, 200 and 250 kg nitrogen fertilizer) and subplots consisted two levels of superabsorbent polymer Stockosorb (use, do not use). Analysis of variance is showed that different nitrogen levels and different superabsorbent of levels statistically significant. Comparisons average also showed there is a significant difference between use and non-use of superabsorbent. The results showed the interactions nitrogen and SAP by one percent level has a significant and effect on Fresh weight per plant, plant dry weight, biological yield, harvest index, cob diameter, cob dry weight, leaf width, leaf area were at the level of five percent statistical significant effect on Ear weight and grain yield.

Keywords: corn, nitrogen, comparison, biological yield

Procedia PDF Downloads 327
1459 Study of Reporting System for Adverse Events Related to Common Medical Devices at a Tertiary Care Public Sector Hospital in India

Authors: S. Kurian, S. Satpathy, S. K. Gupta, S. Arya, D. K. Sharma

Abstract:

Advances in the use of health care technology have resulted in increased adverse events (AEs) related to the use of medical devices. The study focused on the existing reporting systems. This study was conducted in a tertiary care public sector hospital. Devices included Syringe infusion pumps, Cardiac monitors, Pulse oximeters, Ventilators and Defibrillators. A total of 211 respondents were recruited. Interviews were held with 30 key informants. Medical records were scrutinized. Relevant statistical tests were used. Resident doctors reported maximum frequency of AEs, followed by nurses; and least by consultants. A significant association was found between the cadre of health care personnel and awareness that the patients and bystanders have a risk of sustaining AE. Awareness regarding reporting of AEs was low, and it was generally done verbally. Other critical findings are discussed in the light of the barriers to reporting, reasons for non-compliance, recording system, and so on.

Keywords: adverse events, health care technology, medical devices, public sector hospital, reporting systems

Procedia PDF Downloads 308
1458 Laser Welding of Titanium Alloy Ti64 to Polyamide 6.6: Effects of Welding Parameters on Temperature Profile Evolution

Authors: A. Al-Sayyad, P. Lama, J. Bardon, P. Hirchenhahn, L. Houssiau, P. Plapper

Abstract:

Composite metal–polymer materials, in particular titanium alloy (Ti-6Al-4V) to polyamide (PA6.6), fabricated by laser joining, have gained cogent interest among industries and researchers concerned with aerospace and biomedical applications. This work adopts infrared (IR) thermography technique to investigate effects of laser parameters used in the welding process on the three-dimensional temperature profile at the rear-side of titanium, at the region to be welded with polyamide. Cross sectional analysis of welded joints showed correlations between the morphology of titanium and polyamide at the weld zone with the corresponding temperature profile. In particular, spatial temperature profile was found to be correlated with the laser beam energy density, titanium molten pool width and depth, and polyamide heat affected zone depth.

Keywords: laser welding, metals to polymers joining, process monitoring, temperature profile, thermography

Procedia PDF Downloads 113
1457 Implementation of Stop Tuberculosis Strategy in High Burden Country like India and the Role of Ni-Kshay Mitra

Authors: Upvan Chobera

Abstract:

India bears the highest burden of tuberculosis globally, facing a significant incidence rate. To combat this public health challenge, the Ministry of Health and Family Welfare in India has launched an ambitious national strategic plan with the aim of achieving END TB targets by 2025. Addressing tuberculosis requires a comprehensive, multi-sectoral approach that encompasses factors such as nutritional support, living and working conditions, and improved access to diagnostics and treatment services. This study delves into the burden of tuberculosis in India, examining the government's strategic plan to combat the disease. Additionally, it explores the role of Ni-Kshay Mitra (community support) in this fight, encompassing various entities such as cooperative societies, corporations, elected representatives, individuals, institutions, non-government organizations, and political parties or individual donors. These efforts aim to enhance the response against tuberculosis, complementing the government's initiatives and catering to district-specific requirements, all coordinated with the district administration. It is important to note that the support provided under the Ni-Kshay Mitra initiative is supplementary to the free services offered by the National TB Elimination Program (NTEP) available to all patients.

Keywords: end TB targets, Ni-kshay Mitra, NTEP, tuberculosis burden in India

Procedia PDF Downloads 59
1456 Aquafaba Derived from Korean Soybean Cultivars: A Novel Vegan Egg Replacer

Authors: Yue He, Youn Young Shim, Ji Hye Kim, Jae Youl Cho, Martin J. T. Reaney

Abstract:

Recently, pulse cooking water (a.k.a. Aquafaba) has been used as an important and cost-effective alternative to eggs in gluten-free, vegan cooking and baking applications. The aquafaba (AQ) is primarily due to its excellent ability to stabilize foams and emulsions in foods. However, the functional ingredients of this excellent AQ are usually discarded with the compound release. This study developed a high-functional food material, AQ, using functional soybean AQ that has not been studied in Korea. A zero-waste and cost-effective hybrid process were used to produce oil emulsifiers from Korean soybeans. The treatment technique was implemented using a small number of efficient steps. Aquafaba from Backtae had the best emulsion properties (92%) and has the potential to produce more stable food oil emulsions. Therefore, this study is expected to be utilized in the development of the first gluten-free, vegan product for vegetarians and consumers with animal protein allergies, utilizing wastewater from cooked soybeans as a source of plant protein that can replace animal protein.

Keywords: aquafaba, soybean, chickpea, emulsifiers, egg replacer, egg-free products

Procedia PDF Downloads 156
1455 Innovative Pump Design Using the Concept of Viscous Fluid Sinusoidal Excitation

Authors: Ahmed H. Elkholy

Abstract:

The concept of applying a prescribed oscillation to viscous fluids to aid or increase flow is used to produce a maintenance free pump. Application of this technique to fluids presents unique problems such as physical separation; control of heat and mass transfer in certain industrial applications; and improvement of some fluid process methods. The problem as stated is to obtain the velocity distribution, wall shear stress and energy expended when a pipe containing a stagnant viscous fluid is externally excited by a sinusoidal pulse, one end of the pipe being pinned. On the other hand, the effect of different parameters on the results are presented. Such parameters include fluid viscosity, frequency of oscillations and pipe geometry. It was found that the flow velocity through the pump is maximum at the pipe wall, and it decreases rapidly towards the pipe centerline. The frequency of oscillation should be above a certain value in order to obtain meaningful flow velocity. The amount of energy absorbed in the system is mainly due to pipe wall strain energy, while the fluid pressure and kinetic energies are comparatively small.

Keywords: sinusoidal excitation, pump, shear stress, flow

Procedia PDF Downloads 296
1454 Pharmacokinetic Monitoring of Glimepiride and Ilaprazole in Rat Plasma by High Performance Liquid Chromatography with Diode Array Detection

Authors: Anil P. Dewani, Alok S. Tripathi, Anil V. Chandewar

Abstract:

Present manuscript reports the development and validation of a quantitative high performance liquid chromatography method for the pharmacokinetic evaluation of Glimepiride (GLM) and Ilaprazole (ILA) in rat plasma. The plasma samples were involved with Solid phase extraction process (SPE). The analytes were resolved on a Phenomenex C18 column (4.6 mm× 250 mm; 5 µm particle size) using a isocratic elution mode comprising methanol:water (80:20 % v/v) with pH of water modified to 3 using Formic acid, the total run time was 10 min at 225 nm as common wavelength, the flow rate throughout was 1ml/min. The method was validated over the concentration range from 10 to 600 ng/mL for GLM and ILA, in rat plasma. Metformin (MET) was used as Internal Standard. Validation data demonstrated the method to be selective, sensitive, accurate and precise. The limit of detection was 1.54 and 4.08 and limit of quantification was 5.15 and 13.62 for GLM and ILA respectively, the method demonstrated excellent linearity with correlation coefficients (r2) 0.999. The intra and inter-day precision (RSD%) values were < 2.0% for both ILA and GLM. The method was successfully applied in pharmacokinetic studies followed by oral administration in rats.

Keywords: pharmacokinetics, glimepiride, ilaprazole, HPLC, SPE

Procedia PDF Downloads 343
1453 Performance Evaluation of an Inventive Co2 Gas Separation Inorganic Ceramic Membrane System

Authors: Ngozi Claribelle Nwogu, Mohammed Nasir Kajama, Oyoh Kechinyere, Edward Gobina

Abstract:

Atmospheric carbon dioxide emissions are considered as the greatest environmental challenge the world is facing today. The challenges to control the emissions include the recovery of CO2 from flue gas. This concern has been improved due to recent advances in materials process engineering resulting in the development of inorganic gas separation membranes with excellent thermal and mechanical stability required for most gas separations. This paper therefore evaluates the performance of a highly selective inorganic membrane for CO2 recovery applications. Analysis of results obtained is in agreement with experimental literature data. Further results show the prediction performance of the membranes for gas separation and the future direction of research. The materials selection and the membrane preparation techniques are discussed. Method of improving the interface defects in the membrane and its effect on the separation performance has also been reviewed and in addition advances to totally exploit the potential usage of this innovative membrane.

Keywords: carbon dioxide, gas separation, inorganic ceramic membrane, permselectivity

Procedia PDF Downloads 302
1452 Lean Manufacturing Implementation in Fused Plastic Bags Industry

Authors: Tareq Issa

Abstract:

Lean manufacturing is concerned with the implementation of several tools and methodologies that aim for the continuous elimination of wastes throughout manufacturing process flow in the production system. This research addresses the implementation of lean principles and tools in a small-medium industry focusing on 'fused' plastic bags production company in Amman, Jordan. In this production operation, the major type of waste to eliminate include material, waiting-transportation, and setup wastes. The primary goal is to identify and implement selected lean strategies to eliminate waste in the manufacturing process flow. A systematic approach was used for the implementation of lean principles and techniques, through the application of Value Stream Mapping analysis. The current state value stream map was constructed to improve the plastic bags manufacturing process through identifying opportunities to eliminate waste and its sources. Also, the future-state value stream map was developed describing improvements in the overall manufacturing process resulting from eliminating wastes. The implementation of VSM, 5S, Kanban, Kaizen, and Reduced lot size methods have provided significant benefits and results. Productivity has increased to 95.4%, delivery schedule attained at 99-100%, reduction in total inventory to 1.4 days and the setup time for the melting process was reduced to about 30 minutes.

Keywords: lean implementation, plastic bags industry, value stream map, process flow

Procedia PDF Downloads 153