Search results for: S1PR1 receptor protein
1221 Incidence and Molecular Mechanism of Human Pathogenic Bacterial Interaction with Phylloplane of Solanum lycopersicum
Authors: Indu Gaur, Neha Bhadauria, Shilpi Shilpi, Susmita Goswami, Prem D. Sharma, Prabir K. Paul
Abstract:
The concept of organic agriculture has been accepted as novelty in Indian society, but there is no data available on the human pathogens colonizing plant parts due to such practices. Also, the pattern and mechanism of their colonization need to be understood in order to devise possible strategies for their prevention. In the present study, human pathogenic bacteria were isolated from organically grown tomato plants and five of them were identified as Klebsiella pneumoniae, Enterobacter ludwigii, Serratia fonticola, Stenotrophomonas maltophilia and Chryseobacterium jejuense. Tomato plants were grown in controlled aseptic conditions with 25±1˚C, 70% humidity and 12 hour L/D photoperiod. Six weeks old plants were divided into 6 groups of 25 plants each and treated as follows: Group 1: K. pneumonia, Group 2: E. ludwigii, Group 3: S. fonticola, Group 4: S. maltophilia, Group 5: C. jejuense, Group 6: Sterile distilled water (control). The inoculums for all treatments were prepared by overnight growth with uniform concentration of 108 cells/ml. Leaf samples from above groups were collected at 0.5, 2, 4, 6 and 24 hours post inoculation for the colony forming unit counts (CFU/cm2 of leaf area) of individual pathogens using leaf impression method. These CFU counts were used for the in vivo colonization assay and adherence assay of individual pathogens. Also, resistance of these pathogens to at least 12 antibiotics was studied. Based on these findings S. fonticola was found to be most prominently colonizing the phylloplane of tomato and was further studied. Tomato plants grown in controlled aseptic conditions same as mentioned above were divided into 2 groups of 25 plants each and treated as follows: Group 1: S. fonticola, Group 2: Sterile distilled water (control). Leaf samples from above groups were collected at 0, 24, 48, 72 and 96 hours post inoculation and homogenized in suitable buffers for surface and cell wall protein isolation. Protein samples thus obtained were subjected to isocratic SDS-gel electrophoresis and analyzed. It was observed that presence of S. fonticola could induce the expression of at least 3 additional cell wall proteins at different time intervals. Surface proteins also showed variation in the expression pattern at different sampling intervals. Further identification of these proteins by MALDI-MS and bioinformatics tools revealed the gene(s) involved in the interaction of S. fonticola with tomato phylloplane.Keywords: cell wall proteins, human pathogenic bacteria, phylloplane, solanum lycopersicum
Procedia PDF Downloads 2281220 Systematic Identification of Noncoding Cancer Driver Somatic Mutations
Authors: Zohar Manber, Ran Elkon
Abstract:
Accumulation of somatic mutations (SMs) in the genome is a major driving force of cancer development. Most SMs in the tumor's genome are functionally neutral; however, some cause damage to critical processes and provide the tumor with a selective growth advantage (termed cancer driver mutations). Current research on functional significance of SMs is mainly focused on finding alterations in protein coding sequences. However, the exome comprises only 3% of the human genome, and thus, SMs in the noncoding genome significantly outnumber those that map to protein-coding regions. Although our understanding of noncoding driver SMs is very rudimentary, it is likely that disruption of regulatory elements in the genome is an important, yet largely underexplored mechanism by which somatic mutations contribute to cancer development. The expression of most human genes is controlled by multiple enhancers, and therefore, it is conceivable that regulatory SMs are distributed across different enhancers of the same target gene. Yet, to date, most statistical searches for regulatory SMs have considered each regulatory element individually, which may reduce statistical power. The first challenge in considering the cumulative activity of all the enhancers of a gene as a single unit is to map enhancers to their target promoters. Such mapping defines for each gene its set of regulating enhancers (termed "set of regulatory elements" (SRE)). Considering multiple enhancers of each gene as one unit holds great promise for enhancing the identification of driver regulatory SMs. However, the success of this approach is greatly dependent on the availability of comprehensive and accurate enhancer-promoter (E-P) maps. To date, the discovery of driver regulatory SMs has been hindered by insufficient sample sizes and statistical analyses that often considered each regulatory element separately. In this study, we analyzed more than 2,500 whole-genome sequence (WGS) samples provided by The Cancer Genome Atlas (TCGA) and The International Cancer Genome Consortium (ICGC) in order to identify such driver regulatory SMs. Our analyses took into account the combinatorial aspect of gene regulation by considering all the enhancers that control the same target gene as one unit, based on E-P maps from three genomics resources. The identification of candidate driver noncoding SMs is based on their recurrence. We searched for SREs of genes that are "hotspots" for SMs (that is, they accumulate SMs at a significantly elevated rate). To test the statistical significance of recurrence of SMs within a gene's SRE, we used both global and local background mutation rates. Using this approach, we detected - in seven different cancer types - numerous "hotspots" for SMs. To support the functional significance of these recurrent noncoding SMs, we further examined their association with the expression level of their target gene (using gene expression data provided by the ICGC and TCGA for samples that were also analyzed by WGS).Keywords: cancer genomics, enhancers, noncoding genome, regulatory elements
Procedia PDF Downloads 1041219 Role of Pro-Inflammatory and Regulatory Cytokines in Pathogenesis of Graves’ Disease in Association with Autoantibody Thyroid and Regulatory FoxP3 T-Cells
Authors: Dwitya Elvira, Eryati Darwin
Abstract:
Background: Graves’ disease (GD) is an autoimmune thyroid disease. Imbalance of Th1/Th2 cells and T-regulatory (Treg)/Th17 cells was thought to play pivotal role in the pathogenesis of GD. Treg FoxP3 produced TGF-β to maintain regulatory function, and Th17 cells produced IL-17 as cytokines that were thought in mediating several autoimmune diseases. The aim of this study is to assess the role of IL-17 and TGF-β in the pathogenesis of GD and to investigate its correlation with Thyroid Stimulating Hormone Receptor Antibody (TRAb) and Treg FoxP3 expression. Method: 30 GD patients and 27 age and sex-matched controls were enrolled in this study. Diagnosis of GD was based on clinical and biochemical of GD. Serum IL-17, TGF-β, TRAb, and FoxP3 were measured by enzyme-linked immunosorbent assay (ELISA). Data were analyzed by using SPSS 21.0 (SPSS Inc.). Spearman rank correlation test was used for assessment of correlation. The statistical significance was accepted as P<0.05. Result: There was no significant correlation between IL-17 and TGF-β serum with expression of FoxP3 level in GD, but there was significant correlation between TGF-β and TRAb serum level (P<0.05). Serum levels of IL-17 and TGF-β were found to be elevated in patient group compared to control, where mean values of IL-17 were 14.43±2.15 pg/mL and TGF-β were 10.44±3.19 pg/mL in patients group; and in control group, level of IL-17 were 7.1±1.45 pg/mL and TGF-β were 4.95±1.35 pg/mL. Conclusion: Serum Il-17 and TGF-β were elevated in GD patients that reflect the role of inflammatory and regulatory cytokines activation in pathogenesis of GD. There was significant correlation between TGF-β and TRAb, revealing that Treg cytokines may play a role in pathogenesis of GD.Keywords: IL-17, TGF-B, FoxP3, TRAb, Graves’ disease
Procedia PDF Downloads 2861218 Rumen Metabolites and Microbial Load in Fattening Yankasa Rams Fed Urea and Lime Treated Groundnut (Arachis Hypogeae) Shell in a Complete Diet
Authors: Bello Muhammad Dogon Kade
Abstract:
The study was conducted to determine the effect of a treated groundnut (Arachis hypogaea) shell in a complete diet on blood metabolites and microbial load in fattening Yankasa rams. The study was conducted at the Teaching and Research Farm (Small Ruminants Unit of Animal Science Department, Faculty of Agriculture, Ahmadu Bello University, Zaria. Each kilogram of groundnut shell was treated with 5% urea and 5% lime for treatments 2 (UTGNS) and 3 (LTGNS), respectively. For treatment 4 (ULTGNS), 1 kg of groundnut shell was treated with 2.5% urea and 2.5% lime, but the shell in treatment 1 was not treated (UNTGNS). Sixteen Yankasa rams were used and randomly assigned to the four treatment diets with four animals per treatment in a completely randomized design (CRD). The diet was formulated to have 14% crude protein (CP) content. Rumen fluid was collected from each ram at the end of the experiment at 0 and 4 hours post-feeding. The samples were then put in a 30 ml bottle and acidified with 5 drops of concentrated sulphuric (0.1N H₂SO4) acid to trap ammonia. The results of the blood metabolites showed that the mean values of NH₃-N differed significantly (P<0.05) among the treatment groups, with rams in the ULTGNS diet having the highest significant value (31.96 mg/L). TVFs were significantly (P<0.05) higher in rams fed UNTGNS diet and higher in total nitrogen; the effect of sampling periods revealed that NH3N, TVFs and TP were significantly (P<0.05) higher in rumen fluid collected 4hrs post feeding among the rams across the treatment groups, but rumen fluid pH was significantly (p<0.05) higher in 0-hour post-feeding in all the rams in the treatment diets. In the treatment and sampling period’s interaction effects, animals on the ULTGNS diet had the highest mean values of NH3N in both 0 and 4 hours post-feeding and were significantly (P<0.5) higher compared to rams on the other treatment diets. Rams on the UTGNS diet had the highest bacteria load of 4.96X105/ml, which was significantly (P<0.05) higher than a microbial load of animals fed UNTGNS, LTGNS and ULTGNS diets. However, protozoa counts were significantly (P<0.05) higher in rams fed the UTGNS diet than those followed by the ULTGNS diet. The results showed that there was no significant difference (P>0.05) in the bacteria count of the animals at both 0 and 4 hours post-feeding. But rumen fungi and protozoa load at 0 hours were significantly (P<0.05) higher than at 4 hours post-feeding. The use of untreated ground groundnut shells in the diet of fattening Yankasa ram is therefore recommended.Keywords: blood metabolites, microbial load, volatile fatty acid, ammonia, total protein
Procedia PDF Downloads 671217 Simulation of Remove the Fouling on the in vivo By Using MHD
Authors: Farhad Aalizadeh, Ali Moosavi
Abstract:
When a blood vessel is injured, the cells of your blood bond together to form a blood clot. The blood clot helps you stop bleeding. Blood clots are made of a combination of blood cells, platelets(small sticky cells that speed up the clot-making process), and fibrin (protein that forms a thread-like mesh to trap cells). Doctors call this kind of blood clot a “thrombus.”We study the effects of different parameters on the deposition of Nanoparticles on the surface of a bump in the blood vessels by the magnetic field. The Maxwell and the flow equations are solved for this purpose. It is assumed that the blood is non-Newtonian and the number of particles has been considered enough to rely on the results statistically. Using MHD and its property it is possible to control the flow velocity, remove the fouling on the walls and return the system to its original form.Keywords: MHD, fouling, in-vivo, blood clots, simulation
Procedia PDF Downloads 4691216 Degradation Kinetics of Cardiovascular Implants Employing Full Blood and Extra-Corporeal Circulation Principles: Mimicking the Human Circulation In vitro
Authors: Sara R. Knigge, Sugat R. Tuladhar, Hans-Klaus HöFfler, Tobias Schilling, Tim Kaufeld, Axel Haverich
Abstract:
Tissue engineered (TE) heart valves based on degradable electrospun fiber scaffold represent a promising approach to overcome the known limitations of mechanical or biological prostheses. But the mechanical stress in the high-pressure system of the human circulation is a severe challenge for the delicate materials. Hence, the prediction of the scaffolds` in vivo degradation kinetics must be as accurate as possible to prevent fatal events in future animal or even clinical trials. Therefore, this study investigates whether long-term testing in full blood provides more meaningful results regarding the degradation behavior than conventional tests in simulated body fluids (SBF) or Phosphate Buffered Saline (PBS). Fiber mats were produced from a polycaprolactone (PCL)/tetrafluoroethylene solution by electrospinning. The morphology of the fiber mats was characterized via scanning electron microscopy (SEM). A maximum physiological degradation environment utilizing a test set-up with porcine full blood was established. The set-up consists of a reaction vessel, an oxygenator unit, and a roller pump. The blood parameters (pO2, pCO2, temperature, and pH) were monitored with an online test system. All tests were also carried out in the test circuit with SBF and PBS to compare conventional degradation media with the novel full blood setting. The polymer's degradation is quantified by SEM picture analysis, differential scanning calorimetry (DSC), and Raman spectroscopy. Tensile and cyclic loading tests were performed to evaluate the mechanical integrity of the scaffold. Preliminary results indicate that PCL degraded slower in full blood than in SBF and PBS. The uptake of water is more pronounced in the full blood group. Also, PCL preserved its mechanical integrity longer when degraded in full blood. Protein absorption increased during the degradation process. Red blood cells, platelets, and their aggregates adhered on the PCL. Presumably, the degradation led to a more hydrophilic polymeric surface which promoted the protein adsorption and the blood cell adhesion. Testing degradable implants in full blood allows for developing more reliable scaffold materials in the future. Material tests in small and large animal trials thereby can be focused on testing candidates that have proven to function well in an in-vivo-like setting.Keywords: Electrospun scaffold, full blood degradation test, long-term polymer degradation, tissue engineered aortic heart valve
Procedia PDF Downloads 1501215 Light-Controlled Gene Expression in Yeast
Authors: Peter. M. Kusen, Georg Wandrey, Christopher Probst, Dietrich Kohlheyer, Jochen Buchs, Jorg Pietruszkau
Abstract:
Light as a stimulus provides the capability to develop regulation techniques for customizable gene expression. A great advantage is the extremely flexible and accurate dosing that can be performed in a non invasive and sterile manner even for high throughput technologies. Therefore, light regulation in a multiwell microbioreactor system was realized providing the opportunity to control gene expression with outstanding complexity. A light-regulated gene expression system in Saccharomyces cerevisiae was designed applying the strategy of caged compounds. These compounds are photo-labile protected and therefore biologically inactive regulator molecules which can be reactivated by irradiation with certain light conditions. The “caging” of a repressor molecule which is consumed after deprotection was essential to create a flexible expression system. Thereby, gene expression could be temporally repressed by irradiation and subsequent release of the active repressor molecule. Afterwards, the repressor molecule is consumed by the yeast cells leading to reactivation of gene expression. A yeast strain harboring a construct with the corresponding repressible promoter in combination with a fluorescent marker protein was applied in a Photo-BioLector platform which allows individual irradiation as well as online fluorescence and growth detection. This device was used to precisely control the repression duration by adjusting the amount of released repressor via different irradiation times. With the presented screening platform the regulation of complex expression procedures was achieved by combination of several repression/derepression intervals. In particular, a stepwise increase of temporally-constant expression levels was demonstrated which could be used to study concentration dependent effects on cell functions. Also linear expression rates with variable slopes could be shown representing a possible solution for challenging protein productions, whereby excessive production rates lead to misfolding or intoxication. Finally, the very flexible regulation enabled accurate control over the expression induction, although we used a repressible promoter. Summing up, the continuous online regulation of gene expression has the potential to synchronize gene expression levels to optimize metabolic flux, artificial enzyme cascades, growth rates for co cultivations and many other applications addicted to complex expression regulation. The developed light-regulated expression platform represents an innovative screening approach to find optimization potential for production processes.Keywords: caged-compounds, gene expression regulation, optogenetics, photo-labile protecting group
Procedia PDF Downloads 3261214 CP-96345 Rregulates Hydrogen Sulphide Induced TLR4 Signaling Pathway Adhesion Molecules in Caerulein Treated Pancreatic Acinar Cells
Authors: Ramasamy Tamizhselvi, Leema George, Madhav Bhatia
Abstract:
We have earlier shown that mouse pancreatic acinar cells produce hydrogen sulfide (H2S) and play a role in the pathogenesis of acute pancreatitis. This study is to determine the effect of H2S on TLR4 mediated innate immune signaling in acute pancreatitis via substance P (SP). Male Swiss mice were treated with hourly intraperitoneal injection of caerulein (50μg/kg) for 10 hour. DL-propargylglycine (PAG) (100 mg/kg i.p.), an inhibitor of H2S formation was administered 1h after the induction of acute pancreatitis. Pancreatic acinar cells from male Swiss mice were incubated with or without caerulein (10–7 M for 60 min) and CP-96345 (NK1R inhibitor). To better understand the effect of H2S in inflammation, acinar cells were stimulated with caerulein after addition of H2S donor, NaHS. In addition, caerulein treated pancreatic acinar cells were pretreated with PAG (30 µM), for 1h. H2S inhibitor, PAG, eliminated TLR4, IRAK4, TRAF6 and NF-kB levels in an in vitro and in vivo model of caerulein-induced acute pancreatitis. PPTA gene deletion reduced TLR4, MyD88, IRAK4, TRAF6, adhesion molecules and NF-kB in caerulein treated pancreatic acinar cells whereas administration of NaHS resulted in further rise in TLR4 and NF-kB levels in caerulein treated pancreatic acinar cells. In addition, acini isolated from mice and treated with PPTA gene receptor NK1R antagonist CP96345 did not exhibit further increase in TLR4, IRAK4, TRAF6, adhesion molecules and NF-kB levels after NaHS pretreatment. The present findings show for the first time that in acute pancreatitis, H2S up-regulates TLR4 pathway and NF-kB via substance P.Keywords: preprotachykinin-A gene, H2S, TLR4, acute pancreatitis
Procedia PDF Downloads 2761213 Macronutrients and the FTO Gene Expression in Hypothalamus: A Systematic Review of Experimental Studies
Authors: Saeid Doaei
Abstract:
The various studies have examined the relationship between FTO gene expression and macronutrients levels. In order to obtain better viewpoint from this interactions, all of the existing studies were reviewed systematically. All published papers have been obtained and reviewed using standard and sensitive keywords from databases such as CINAHL, Embase, PubMed, PsycInfo, and the Cochrane, from 1990 to 2016. The results indicated that all of 6 studies that met the inclusion criteria (from a total of 428 published article) found FTO gene expression changes at short-term follow-ups. Four of six studies found an increased FTO gene expression after calorie restriction, while two of them indicated decreased FTO gene expression. The effect of protein, carbohydrate and fat were separately assessed and suggested by all of six studies. In conclusion, the level of FTO gene expression in hypothalamus is related to macronutrients levels. Future research should evaluate the long-term impact of dietary interventions.Keywords: obesity, gene expression, FTO, macronutrients
Procedia PDF Downloads 2671212 Risk Association of RANKL and OPG Gene Polymorphism with Breast to Bone Metastasis
Authors: Najeeb Ullah Khan
Abstract:
Background: The receptor activator NF-κβ ligand (RANKL) and Osteoprotegerin (OPG) polymorphisms have been associated with the progression of breast cancer to bone metastasis. Here, we aimed to investigate the association of RANKL and OPG gene polymorphism with breast to bone metastasis in the Pashtun population, Pakistan. Methods: Genomic DNA was obtained from all the study subjects (106 breast cancer, 58 breast to bone metastasis, and 51 healthy controls). RANKL (rs9533156) and OPG (rs2073618, rs3102735) polymorphisms were genotyped using Tetra-ARMS PCR. Results: Our results indicated that the frequencies of OPG (rs3102735) risk allele and genotypes carrying risk allele in breast cancer vs healthy control (C- p=0.005; CC- p=0.0208; TC- p=0.0181), bone metastasis vs healthy control (C- p=0.0211; CC- p=0.0153; TC- p=0.0775), and breast cancer vs breast to bone metastasis (C- p=0.0001; CC- p=0.0001; TC- p=0.001) were found significantly associated with disease risk. However, there was no significant association observed for OPG (rs2073618) risk allele and risk allele containing genotypes in all study groups. Similarly, RANKL (rs9533156) risk alleles and corresponding genotypes in breast cancer vs healthy control (C- p=0.0001; CC- p=0.0001; TC- p=0.0084), bone metastasis vs healthy control (C- p=0.0001; CC- p=0.0001; TC- p=0.5593), and breast cancer vs breast to bone metastasis (C- p=0.0185; CC- p=0.6077; TC- p=0.1436) showed significant association except for the risk allele carrying genotypes in breast cancer to bone metastasis (TC, p=0.1436; CC, p=0.6077). Conclusion: OPG (rs3102735) and RANKL (rs9533156) showed significant association with breast to bone metastasis, while OPG (rs2073618) didn’t show a significant association with breast to bone metastasis in Pashtun population of Pakistan. However, more investigation will be required to disseminate the results while gene sequencing or whole-exome sequencing.Keywords: breast cancer, bone metastasis, OPG, RANKL, polymorphism
Procedia PDF Downloads 1911211 Amyloid-β Fibrils Remodeling by an Organic Molecule: Insight from All-Atomic Molecular Dynamics Simulations
Authors: Nikhil Agrawal, Adam A. Skelton
Abstract:
Alzheimer’s disease (AD) is one of the most common forms of dementia, which is caused by misfolding and aggregation of amyloid beta (Aβ) peptides into amyloid-β fibrils (Aβ fibrils). To disrupt the remodeling of Aβ fibrils, a number of candidate molecules have been proposed. To study the molecular mechanisms of Aβ fibrils remodeling we performed a series of all-atom molecular dynamics simulations, a total time of 3µs, in explicit solvent. Several previously undiscovered candidate molecule-Aβ fibrils binding modes are unraveled; one of which shows the direct conformational change of the Aβ fibril by understanding the physicochemical factors responsible for binding and subsequent remodeling of Aβ fibrils by the candidate molecule, open avenues into structure-based drug design for AD can be opened.Keywords: alzheimer’s disease, amyloid, MD simulations, misfolded protein
Procedia PDF Downloads 3471210 Opuntia ficus-indica var. Saboten Stimulates Adipogenesis, Lipolysis, and Glucose Uptake in 3T3-L1 Adipocytes
Authors: Hye Kyung Kim, Myung-Gyou Kim, Kang-Hyun Leem
Abstract:
The prickly pear cactus (Opuntia ficus-indica) has a global distribution and has been used for medicinal benefits such as artherosclerosis, diabetes, gastritis, and hyperglycemia. The prickly pear variety Opuntia ficus-indica var. Saboten (OFS) is widely cultivated in Cheju Island, the southwestern region of Korea, and used as a functional food. The present study investigated the effects of OFS on adipogenesis, lipolysis, glucose uptake, and glucose transporter (GLUT4) expression using preadipocyte 3T3-L1 cells. Adipogenesis was determined by preadipocyte differentiation and triglyceride accumulation assessed by Oil Red O staining. Lipolysis was determined as the rate of glycerol release. Insulin-stimulated glucose uptake and GLUT4 expression were measured using fluorescent glucose analogue, 2-NBDG, and ELISA, respectively. Quantitative real-time RT-PCR was performed to investigate the effects of OFS on the mRNA expression of peroxisome proliferator-activated receptor γ (PPARγ), a regulator of adipocyte differentiation. Ethanol extracts of OFS dose-dependently enhanced adipocyte differentiation and cellular triglyceride levels indicating the enhancement of the differentiation of preadipocytes into adipocytes. Insulin-stimulated glucose uptake and GLUT4 expression were also dose-dependently increased by OFS treatment. Furthermore, OFS treatment also increased the mRNA levels of PPARγ. These effects of OFS on adipocytes suggest that OFS is potentially beneficial for type 2 diabetes by due to its enhanced glucose uptake and balanced adipogenesis and lipolysis properties.Keywords: 3T3-L1 preadipocyte cell, adipogenesis, GLUT4, lipolysis, Opuntia ficus-indica var. Saboten, PPARγ, prickly pear cactus
Procedia PDF Downloads 3991209 Change of Substrate in Solid State Fermentation Can Produce Proteases and Phytases with Extremely Distinct Biochemical Characteristics and Promising Applications for Animal Nutrition
Authors: Paula K. Novelli, Margarida M. Barros, Luciana F. Flueri
Abstract:
Utilization of agricultural by-products, wheat ban and soybean bran, as substrate for solid state fermentation (SSF) was studied, aiming the achievement of different enzymes from Aspergillus sp. with distinct biological characteristics and its application and improvement on animal nutrition. Aspergillus niger and Aspergillus oryzea were studied as they showed very high yield of phytase and protease production, respectively. Phytase activity was measure using p-nitrophenilphosphate as substrate and a standard curve of p-nitrophenol, as the enzymatic activity unit was the quantity of enzyme necessary to release one μmol of p-nitrophenol. Protease activity was measure using azocasein as substrate. Activity for phytase and protease substantially increased when the different biochemical characteristics were considered in the study. Optimum pH and stability of the phytase produced by A. niger with wheat bran as substrate was between 4.0 - 5.0 and optimum temperature of activity was 37oC. Phytase fermented in soybean bran showed constant values at all pHs studied, for optimal and stability, but low production. Phytase with both substrates showed stable activity for temperatures higher than 80oC. Protease from A. niger showed very distinct behavior of optimum pH, acid for wheat bran and basic for soybean bran, respectively and optimal values of temperature and stability at 50oC. Phytase produced by A. oryzae in wheat bran had optimum pH and temperature of 9 and 37oC, respectively, but it was very unstable. On the other hand, proteases were stable at high temperatures, all pH’s studied and showed very high yield when fermented in wheat bran, however when it was fermented in soybean bran the production was very low. Subsequently the upscale production of phytase from A. niger and proteases from A. oryzae were applied as an enzyme additive in fish fed for digestibility studies. Phytases and proteases were produced with stable enzyme activity of 7,000 U.g-1 and 2,500 U.g-1, respectively. When those enzymes were applied in a plant protein based fish diet for digestibility studies, they increased protein, mineral, energy and lipids availability, showing that these new enzymes can improve animal production and performance. In conclusion, the substrate, as well as, the microorganism species can affect the biochemical character of the enzyme produced. Moreover, the production of these enzymes by SSF can be up to 90% cheaper than commercial ones produced with the same fungi species but submerged fermentation. Add to that these cheap enzymes can be easily applied as animal diet additives to improve production and performance.Keywords: agricultural by-products, animal nutrition, enzymes production, solid state fermentation
Procedia PDF Downloads 3261208 Study on the Effect of Vitamin D on the Biochemical Parameters in Cyprinus carpio
Authors: Mojdeh Chelemal Dezfoul Nejad, Ali Mohammadzadeh Shobeagar, Mehrzad Mesbah
Abstract:
This study was conducted in order to characterize the different levels of dietary vitamin D on some of biochemical parameters of Cyprinus carpio. For this purpose, 180 pieces of Cyprinus carpio with an average weight of 20-25 grams were divided into four treatments and each treatment was divided into three replications and treatments were fed at three different doses (1000 IU, 3000 IU, 5000 IU) of vitamin D for 60 days. The fish were fed 3% of their wet b.wt. per day for a 60 days period. Blood samples were obtained from six fish of each tank at the end of experiment. Based on the results significant difference was observed on the mean amount of total protein, urea, glucose and cholesterol between treatments (p < 0.05). But, there was no significant difference in the mean amount of triglyceride and albumin with the different diets designed for this experiment (p > 0.05).Keywords: Cyprinus carpio, vitamin D, biochemical parameters, glucose
Procedia PDF Downloads 3491207 The Beneficial Effects of Inhibition of Hepatic Adaptor Protein Phosphotyrosine Interacting with PH Domain and Leucine Zipper 2 on Glucose and Cholesterol Homeostasis
Authors: Xi Chen, King-Yip Cheng
Abstract:
Hypercholesterolemia, characterized by high low-density lipoprotein cholesterol (LDL-C), raises cardiovascular events in patients with type 2 diabetes (T2D). Although several drugs, such as statin and PCSK9 inhibitors, are available for the treatment of hypercholesterolemia, they exert detrimental effects on glucose metabolism and hence increase the risk of T2D. On the other hand, the drugs used to treat T2D have minimal effect on improving the lipid profile. Therefore, there is an urgent need to develop treatments that can simultaneously improve glucose and lipid homeostasis. Adaptor protein phosphotyrosine interacting with PH domain and leucine zipper 2 (APPL2) causes insulin resistance in the liver and skeletal muscle via inhibiting insulin and adiponectin actions in animal models. Single-nucleotide polymorphisms in the APPL2 gene were associated with LDL-C, non-alcoholic fatty liver disease, and coronary artery disease in humans. The aim of this project is to investigate whether APPL2 antisense oligonucleotide (ASO) can alleviate dietary-induced T2D and hypercholesterolemia. High-fat diet (HFD) was used to induce obesity and insulin resistance in mice. GalNAc-conjugated APPL2 ASO (GalNAc-APPL2-ASO) was used to silence hepatic APPL2 expression in C57/BL6J mice selectively. Glucose, lipid, and energy metabolism were monitored. Immunoblotting and quantitative PCR analysis showed that GalNAc-APPL2-ASO treatment selectively reduced APPL2 expression in the liver instead of other tissues, like adipose tissues, kidneys, muscle, and heart. The glucose tolerance test and insulin sensitivity test revealed that GalNAc-APPL2-ASO improved glucose tolerance and insulin sensitivity progressively. Blood chemistry analysis revealed that the mice treated with GalNAc-APPL2-ASO had significantly lower circulating levels of total cholesterol and LDL cholesterol. However, there was no difference in circulating levels of high-density lipoprotein (HDL) cholesterol, triglyceride, and free fatty acid between the mice treated with GalNac-APPL2-ASO and GalNAc-Control-ASO. No obvious effect on food intake, body weight, and liver injury markers after GalNAc-APPL2-ASO treatment was found, supporting its tolerability and safety. We showed that selectively silencing hepatic APPL2 alleviated insulin resistance and hypercholesterolemia and improved energy metabolism in the dietary-induced obese mouse model, indicating APPL2 as a therapeutic target for metabolic diseases.Keywords: APPL2, antisense oligonucleotide, hypercholesterolemia, type 2 diabetes
Procedia PDF Downloads 671206 Study on the Effects of Different Levels of Dietary Vitamin C on Some of Biochemical Parameters of Serum in Barbuas
Authors: M. Chelemal Dezfoul Nejad, M. Moradi, M. Mesbah, M. Javaheri
Abstract:
This study was conducted in order to characterize the different levels of dietary vitamin C on some of biochemical parameters of Barbus grypus. For this purpose 300 Barbus grypus were divided into 15 groups. Five levels of vitamin C (0, 200, 400, 800, 1600 mg kg-1 diet) and their combination were used to prepare five experimental diets. The fish were fed 3% of their wet b.wt. per day for a 60 days period. Blood samples were obtained from six fish of each tank at the end of experiment. The results reveal that fish fed diets containing 1600 mg kg-1 vitamin C had a significant decrease in the mean amount of cholesterol, glucose and triglyceride (p<0.05). Also, there was no significant difference in the mean amount of total protein, albumin, BuN, phosphorus, sodium and potassium between the fish fed with the different diets designed for this experiment (p>0.05).Keywords: Barbus grypus, vitamin C, biochemical parameters, diet
Procedia PDF Downloads 4531205 Effect of Phosphorus Solubilizing Bacteria on Yield and Seed Quality of Camelina (Camelina sativa L.) under Drought Stress
Authors: Muhammad Naeem Chaudhry, Fahim Nawaz, Rana Nauman Shabbir
Abstract:
New strategies aimed at increasing the resilience of crop plants to the negative effects of climate change represent important research priorities of plant scientists. The use of soil microorganisms to alleviate abiotic stresses like drought has gained particular importance in recent past. A field experiment was planned to investigate the effect of phosphorous solubilizing bacteria on yield and seed quality of Camelina (Camelina sativa L.) under water deficit conditions. The study was conducted at Agronomic Research Farm, University College of Agriculture and Environmental Sciences, The Islamia University Bahawalpur, during 4th week of November, 2013. The available seeds of Camelina sativa were inoculated with two bacterial strains (pseudomonas and Bacillus spp.) and grown under various water stress levels i.e. D0, (four irrigations), D3 (three irrigation), D2 (two irrigations), and D1 (one irrigation). The results revealed that drought stress significantly reduced the plant growth and yield, consequently reducing protein contents and oil concentration in camelina. The exposure to drought stress decreased plant height (16%), plant population (27%), number of fertile branches (41-59%), number of pods per plant (35%) and seed per pod (33%). Drought stress also exerted a negative impact on yield characteristics by reducing the 1000-seed weight (65%), final seed yield (52%), biological yield (22%) and harvest index (39%) of camelina. However, the inoculation of seeds with Pseudomonas and Bacillus spp. promoted the plant growth characterized by increased plant height and enhanced plant population. It was noted that inoculation of seeds with Pseudomonas resulted in the maximum plant population (113.4 cm), primary branches (19 plant-1), and number of pods (664 plant-1), whereas Bacillus inoculation resulted in maximum plant height (113.4 cm), seeds per pod (15.9), 1000-seed weight (1.85 g), and seed yield (3378.8 kg ha-1). Moreover, the inoculation with Bacillus also significantly improved the quality attributes of camelina and gave 3.5% and 2.1% higher oil contents than Pseudomonas and control (no-inoculation), respectively. Similarly, the same strain also resulted in maximum protein contents (33.3%). Our results confirmed the hypothesis that inoculation of seeds with phosphorous solubilizing bacterial strains is an effective, viable and environment-friendly approach to improve yield and quality of camelina under water deficit conditions. However, further studies are suggested to investigate the physiological and molecular processes, stimulated by bacterial strains, for increasing drought tolerance in food crops.Keywords: Camelina, drought stress, phosphate solubilizing bacteria, seed quality
Procedia PDF Downloads 2591204 Induction of HIV-1 Resistance: The New Approaches Based on Gene Modification and Stem Cell Engineering
Authors: Alieh Farshbaf
Abstract:
Introduction: Current anti-retroviral drugs have some restrictions for treatment of HIV-1 infection. The efficacy of retroviral drugs is not same in different infected patients and the virus rebound from latent reservoirs after stopping them. Recently, the engineering of stem cells and gene therapy provide new approaches to eliminate some drug problems by induction of resistance to HIV-1. Literature review: Up to now, AIDS-restriction genes (ARGs) were suitable candidate for gene and cell therapies, such as cc-chemokine receptor-5 (CCR5). In this manner, CCR5 provide effective cure in Berlin and Boston patients by inducing of HIV-1 resistance with allogeneic stem cell transplantation. It is showed that Zinc Finger Nuclease (ZFN) could induce HIV-1 resistance in stem cells of infected patients by homologous recombination or non-end joining mechanism and eliminate virus loading after returning the modified cells. Then, gene modification by HIV restriction factors, as TRIM5, introduced another gene candidate for HIV by interfering in infection process. These gene modifications/editing provided by stem cell futures that improve treatment in refractory disease such as HIV-1. Conclusion: Although stem cell transplantation has some complications, but in compare to retro-viral drugs demonstrated effective cure by elimination of virus loading. On the other hand, gene therapy is cost-effective for an infected patient than retroviral drugs payment in a person life-long. The results of umbilical cord blood stem cell transplantation showed that gene and cell therapy will be applied easier than previous treatment of AIDS with high efficacy.Keywords: stem cell, AIDS, gene modification, cell engineering
Procedia PDF Downloads 3011203 Evaluation of Moringa oleifera in Decolourization of Dyes in Textile Wastewater
Authors: Nagia Ali, R. S. R. El-Mohamedy
Abstract:
The purpose of this paper is to irradiate the dyes biologically through the use of Moreinga oleifera. The study confirms the potential use of Moringa oleifera in decolourization of dyes and thus opens up a scope for future analysis pertaining to its performance in treatment of textile effluent. In this paper, the ability of natural products in removing dyes was tested using two reactive dyes and one acid dye. After a preliminary screening for dye removal capacity, a vegetal protein extract derived from Moeringa oleifera seed was fully studied. The influences of several parameters such as pH, temperature or initial dye concentration were tested and the behavior of coagulants was compared. It was found that dye removal decreased as pH increased. Temperature did not seem to have a considerable effect, while initial dye concentration appeared to be a very important variable.Keywords: Moreinga oleifera, decolourization, waste water, reactive dyes, acid dyes
Procedia PDF Downloads 3661202 Investigation of Astrocyte Physiology on Stiffness-Controlled Cellulose Acetate Nanofiber as a Tissue Scaffold
Authors: Sun Il Yu, Jung Hyun Joo, Hwa Sung Shin
Abstract:
Astrocytes are known as dominant cells in CNS and play a role as a supporter of CNS activity and regeneration. Recently, three-dimensional culture of astrocytes were actively applied to understand in vivo astrocyte works. Electrospun nanofibers are attractive for 3D cell culture system because they have a high surface to volume ratio and porous structure, and have already been used for 3D astrocyte cultures. In this research, the stiffness of cellulose acetate (CA) nanofiber was controlled by heat treatment. As stiffness increased, astrocyte cell viability and adhesion increased. Reactivity of astrocyte was also upregulated in stiffer CA nanofiber in terms of GFAP, an intermediate filament protein. Finally, we demonstrated that stiffness-controllable CA is attractive for astrocyte tissue engineering.Keywords: astrocyte, cellulose acetate, nanofiber, tissue scaffold
Procedia PDF Downloads 3551201 Effects of Particle Sizes of Maize Flour on the Quality of Traditional Maize Snack, Kokoro
Authors: Adebola Ajayi, Olakunle M. Makanjuola
Abstract:
The effects of particle sizes of maize flour on the quality of traditional maize snack (Kokoro) were investigated. Maize flour of different sieve mesh sizes of 1.00mm, 1.9 mm, 1.4 mm, 1.68 mm and 2.0 mm was used to produce Kokoro. The samples were analysed for protein, fat, moisture content, crude fibre, ash and sensory evaluation. The various mixture obtained were separately processed into snacks following essential traditional method of production. The result of the sensory evaluation showed that Kokoro of sample 546 using 1.0mm mesh sieve size was the most preferred and sample 513 using 2.00 was least preferred. The result revealed that the more the maize was well blended the more acceptable the product is to the consumer.Keywords: particle sizes, maize flour, quality, Kokoro
Procedia PDF Downloads 1971200 Preservation of Historical Zelkova carpinifolia Wooden Structure in Humid Weather
Authors: A. Mahshid Kakouei, B. Kumaran Suberamanin, C. Sabzali Musa Kahn, D. Mina Kakouei
Abstract:
This study aims to identify suitable conservative product for the conservation and restoration of historical Zelkova Carpinifolia wood located in humid weather. The superficial properties and hardness of 14 compounds treated with several consolidants were compared. The consolidants have been applied alone, with synthetic resin or with protein glues and natural resins by the brushing method. Colorimetric measurements, observation methods and hardness tests were conducted before and after aging to verify the possible changes of the treated wood and the consolidating resistance. The compound 1:2 of Butvar B98 and sandarac in 5% ethanol was found to be more effective, providing a suitable compound compared to the other consolidants tested.Keywords: Zelkova carpinifolia, consolidation, synthetic resin, penetration depth, hardness
Procedia PDF Downloads 3571199 Genetic Analysis of Iron, Phosphorus, Potassium and Zinc Concentration in Peanut
Authors: Ajay B. C., Meena H. N., Dagla M. C., Narendra Kumar, Makwana A. D., Bera S. K., Kalariya K. A., Singh A. L.
Abstract:
The high-energy value, protein content and minerals makes peanut a rich source of nutrition at comparatively low cost. Basic information on genetics and inheritance of these mineral elements is very scarce. Hence, in the present study inheritance (using additive-dominance model) and association of mineral elements was studied in two peanut crosses. Dominance variance (H) played an important role in the inheritance of P, K, Fe and Zn in peanut pods. Average degree of dominance for most of the traits was greater than unity indicating over dominance for these traits. Significant associations were also observed among mineral elements both in F2 and F3 generations but pod yield had no associations with mineral elements (with few exceptions). Di-allele/bi-parental mating could be followed to identify high yielding and mineral dense segregates.Keywords: correlation, dominance variance, mineral elements, peanut
Procedia PDF Downloads 4131198 Genetic Variations of Two Casein Genes among Maghrabi Camels Reared in Egypt
Authors: Othman E. Othman, Amira M. Nowier, Medhat El-Denary
Abstract:
Camels play an important socio-economic role within the pastoral and agricultural system in the dry and semidry zones of Asia and Africa. Camels are economically important animals in Egypt where they are dual purpose animals (meat and milk). The analysis of chemical composition of camel milk showed that the total protein contents ranged from 2.4% to 5.3% and it is divided into casein and whey proteins. The casein fraction constitutes 52% to 89% of total camel milk protein and it divided into 4 fractions namely αs1, αs2, β and κ-caseins which are encoded by four tightly genes. In spite of the important role of casein genes and the effects of their genetic polymorphisms on quantitative traits and technological properties of milk, the studies for the detection of genetic polymorphism of camel milk genes are still limited. Due to this fact, this work focused - using PCR-RFP and sequencing analysis - on the identification of genetic polymorphisms and SNPs of two casein genes in Maghrabi camel breed which is a dual purpose camel breed in Egypt. The amplified fragments at 488-bp of the camel κ-CN gene were digested with AluI endonuclease. The results showed the appearance of three different genotypes in the tested animals; CC with three digested fragments at 203-, 127- and 120-bp, TT with three digested fragments at 203-, 158- and 127-bp and CT with four digested fragments at 203-, 158-, 127- and 120-bp. The frequencies of three detected genotypes were 11.0% for CC, 48.0% for TT and 41.0% for CT genotypes. The sequencing analysis of the two different alleles declared the presence of a single nucleotide polymorphism (C→T) at position 121 in the amplified fragments which is responsible for the destruction of a restriction site (AG/CT) in allele T and resulted in the presence of two different alleles C and T in tested animals. The nucleotide sequences of κ-CN alleles C and T were submitted to GenBank with the accession numbers; KU055605 and KU055606, respectively. The primers used in this study amplified 942-bp fragments spanning from exon 4 to exon 6 of camel αS1-Casein gene. The amplified fragments were digested with two different restriction enzymes; SmlI and AluI. The results of SmlI digestion did not show any restriction site whereas the digestion with AluI endonuclease revealed the presence of two restriction sites AG^CT at positions 68^69 and 631^632 yielding the presence of three digested fragments with sizes 68-, 563- and 293-bp.The nucleotide sequences of this fragment from camel αS1-Casein gene were submitted to GenBank with the accession number KU145820. In conclusion, the genetic characterization of quantitative traits genes which are associated with the production traits like milk yield and composition is considered an important step towards the genetic improvement of livestock species through the selection of superior animals depending on the favorable alleles and genotypes; marker assisted selection (MAS).Keywords: genetic polymorphism, SNP polymorphism, Maghrabi camels, κ-Casein gene, αS1-Casein gene
Procedia PDF Downloads 6131197 Homeostatic Analysis of the Integrated Insulin and Glucagon Signaling Network: Demonstration of Bistable Response in Catabolic and Anabolic States
Authors: Pramod Somvanshi, Manu Tomar, K. V. Venkatesh
Abstract:
Insulin and glucagon are responsible for homeostasis of key plasma metabolites like glucose, amino acids and fatty acids in the blood plasma. These hormones act antagonistically to each other during the secretion and signaling stages. In the present work, we analyze the effect of macronutrients on the response from integrated insulin and glucagon signaling pathways. The insulin and glucagon pathways are connected by DAG (a calcium signaling component which is part of the glucagon signaling module) which activates PKC and inhibits IRS (insulin signaling component) constituting a crosstalk. AKT (insulin signaling component) inhibits cAMP (glucagon signaling component) through PDE3 forming the other crosstalk between the two signaling pathways. Physiological level of anabolism and catabolism is captured through a metric quantified by the activity levels of AKT and PKA in their phosphorylated states, which represent the insulin and glucagon signaling endpoints, respectively. Under resting and starving conditions, the phosphorylation metric represents homeostasis indicating a balance between the anabolic and catabolic activities in the tissues. The steady state analysis of the integrated network demonstrates the presence of a bistable response in the phosphorylation metric with respect to input plasma glucose levels. This indicates that two steady state conditions (one in the homeostatic zone and other in the anabolic zone) are possible for a given glucose concentration depending on the ON or OFF path. When glucose levels rise above normal, during post-meal conditions, the bistability is observed in the anabolic space denoting the dominance of the glycogenesis in liver. For glucose concentrations lower than the physiological levels, while exercising, metabolic response lies in the catabolic space denoting the prevalence of glycogenolysis in liver. The non-linear positive feedback of AKT on IRS in insulin signaling module of the network is the main cause of the bistable response. The span of bistability in the phosphorylation metric increases as plasma fatty acid and amino acid levels rise and eventually the response turns monostable and catabolic representing diabetic conditions. In the case of high fat or protein diet, fatty acids and amino acids have an inhibitory effect on the insulin signaling pathway by increasing the serine phosphorylation of IRS protein via the activation of PKC and S6K, respectively. Similar analysis was also performed with respect to input amino acid and fatty acid levels. This emergent property of bistability in the integrated network helps us understand why it becomes extremely difficult to treat obesity and diabetes when blood glucose level rises beyond a certain value.Keywords: bistability, diabetes, feedback and crosstalk, obesity
Procedia PDF Downloads 2751196 Oxidosqualene Cyclase: A Novel Inhibitor
Authors: Devadrita Dey Sarkar
Abstract:
Oxidosqualene cyclase is a membrane bound enzyme in which helps in the formation of steroid scaffold in higher organisms. In a highly selective cyclization reaction oxidosqualene cyclase forms LANOSTEROL with seven chiral centres starting from the linear substrate 2,3-oxidosqualene. In humans OSC in cholesterol biosynthesis it represents a target for the discovery of novel anticholesteraemic drugs that could complement the widely used statins. The enzyme oxidosqualene: lanosterol cyclase (OSC) represents a novel target for the treatment of hypercholesterolemia. OSC catalyzes the cyclization of the linear 2,3-monoepoxysqualene to lanosterol, the initial four-ringed sterol intermediate in the cholesterol biosynthetic pathway. OSC also catalyzes the formation of 24(S), 25-epoxycholesterol, a ligand activator of the liver X receptor. Inhibition of OSC reduces cholesterol biosynthesis and selectively enhances 24(S),25-epoxycholesterol synthesis. Through this dual mechanism, OSC inhibition decreases plasma levels of low-density lipoprotein (LDL)-cholesterol and prevents cholesterol deposition within macrophages. The recent crystallization of OSC identifies the mechanism of action for this complex enzyme, setting the stage for the design of OSC inhibitors with improved pharmacological properties for cholesterol lowering and treatment of atherosclerosis. While studying and designing the inhibitor of oxidosqulene cyclase, I worked on the pdb id of 1w6k which was the most worked on pdb id and I used several methods, techniques and softwares to identify and validate the top most molecules which could be acting as an inhibitor for oxidosqualene cyclase. Thus, by partial blockage of this enzyme, both an inhibition of lanosterol and subsequently cholesterol formation as well as a concomitant effect on HMG-CoA reductase can be achieved. Both effects complement each other and lead to an effective control of cholesterol biosynthesis. It is therefore concluded that 2,3-oxidosqualene cyclase plays a crucial role in the regulation of intracellular cholesterol homeostasis. 2,3-Oxidosqualene cyclase inhibitors offer an attractive approach for novel lipid-lowering agents.Keywords: anticholesteraemic, crystallization, statins, homeostasis
Procedia PDF Downloads 3511195 Effects of Cassava Pulp Fermentation by Yeast on Meat Goats Performances and Nitrogen Retention
Authors: S. Paengkoum, P. Paengkoum, W. Kaewwongsa
Abstract:
Twenty-four male growing goats were randomly assigned to a Randomized Complete Block Design. Dietary treatments were different level of feeding concentrate diet at 1.0, 1.5, 2.0, and 2.5% of body weight (BW). The results showed that average daily gain, microbial N supply, N retention of meat goats in the group of feeding level at 2.0% BW and 2.5% BW were significantly higher (P<0.05) than those goats fed with feeding levels of 1.0% BW and 1.5% BW. Based on this result the conclusion can be made that using 75% fermented cassava pulp by Saccharomyces cerevisiae as the main source of protein to completely replace soybean meal was beneficial to meat goats in terms of feed intake. The feeding concentrate at levels between 2.0-2.5% BW gives highest in the growth of meat goat in this experiment.Keywords: cassava pulp, yeast, goat, nitrogen retention
Procedia PDF Downloads 2451194 Physicochemical Properties of Moringa oleifera Seeds
Authors: Oyewusi Peter Ayodele, Onipede Ayodeji
Abstract:
Our research focuses on some physicochemical parameters of Moringa Oleifera seed meal and its seed oil to determine its nutritional quality. Proximate, mineral, and vitamin analyses were performed on the defatted seed meal, while fatty acid determination was carried out on the seed oil. The results of the proximate composition show moisture content (3.52 ± 0.01), ash (2.80 ± 0.33), crude fibre (3.92 ± 0.01), protein (42.96 ± 0.05), crude fat (7.04 ± 0.01) and carbohydrate (36.79 ± 0.04). The mineral composition shows that the seed is rich in Ca, K, and Na with 220ppm, 205ppm, and 118ppm, respectively. The seed has vitamins A and C with 2.17 ± 0.01mg/100g and 6.95 ± 0.00 mg/100g respectively. The seed also contains 56.62 %, 38.50 %, and 5.24 % saturated, monounsaturated, and polyunsaturated fatty acids, respectively. It could be illustrated that Moringa seeds and their oil can be considered potential sources for both dietary and industrial purposes.Keywords: Moringa oleifera seed, chemical composition, fatty acid, proximate, minerals and vitamins compositions
Procedia PDF Downloads 2881193 Cloning and Characterization of UDP-Glucose Pyrophosphorylases from Lactobacillus kefiranofaciens and Rhodococcus wratislaviensis
Authors: Mesfin Angaw Tesfay
Abstract:
Uridine-5’-diphosphate (UDP)-glucose is one of the most versatile building blocks within the metabolism of prokaryotes and eukaryotes, serving as an activated sugar donor during the glycosylation of natural products. It is formed by the enzyme UDP-glucose pyrophosphorylase (UGPase) using uridine-5′-triphosphate (UTP) and α-d-glucose 1-phosphate as a substrate. Herein, two UGPase genes from Lactobacillus kefiranofaciens ZW3 (LkUGPase) and Rhodococcus wratislaviensis IFP 2016 (RwUGPase) were identified through genome mining approaches. The LkUGPase and RwUGPase have 299 and 306 amino acids, respectively. Both UGPase has the conserved UTP binding site (G-X-G-T-R-X-L-P) and the glucose -1-phosphate binding site (V-E-K-P). The LkUGPase and RwUGPase were cloned in E. coli, and SDS-PAGE analysis showed the expression of both enzymes forming about 36 KDa of protein band after induction. LkUGPase and RwUGPase have an activity of 1549.95 and 671.53 U/mg, respectively. Currently, their kinetic properties are under investigation.Keywords: UGPase, LkUGPase, RwUGPase, UDP-glucose, glycosylation
Procedia PDF Downloads 241192 Amifostine Analogue, Drde-30, Attenuates Radiation-Induced Lung Injury in Mice
Authors: Aastha Arora, Vikas Bhuria, Saurabh Singh, Uma Pathak, Shweta Mathur, Puja P. Hazari, Rajat Sandhir, Ravi Soni, Anant N. Bhatt, Bilikere S. Dwarakanath
Abstract:
Radiotherapy is an effective curative and palliative option for patients with thoracic malignancies. However, lung injury, comprising of pneumonitis and fibrosis, remains a significant clin¬ical complication of thoracic radiation, thus making it a dose-limiting factor. Also, injury to the lung is often reported as part of multi-organ failure in victims of accidental radiation exposures. Radiation induced inflammatory response in the lung, characterized by leukocyte infiltration and vascular changes, is an important contributing factor for the injury. Therefore, countermeasure agents to attenuate radiation induced inflammatory response are considered as an important approach to prevent chronic lung damage. Although Amifostine, the widely used, FDA approved radio-protector, has been found to reduce the radiation induced pneumonitis during radiation therapy of non-small cell lung carcinoma, its application during mass and field exposure is limited due to associated toxicity and ineffectiveness with the oral administration. The amifostine analogue (DRDE-30) overcomes this limitation as it is orally effective in reducing the mortality of whole body irradiated mice. The current study was undertaken to investigate the potential of DRDE-30 to ameliorate radiation induced lung damage. DRDE-30 was administered intra-peritoneally, 30 minutes prior to 13.5 Gy thoracic (60Co-gamma) radiation in C57BL/6 mice. Broncheo- alveolar lavage fluid (BALF) and lung tissues were harvested at 12 and 24 weeks post irradiation for studying inflammatory and fibrotic markers. Lactate dehydrogenase (LDH) leakage, leukocyte count and protein content in BALF were used as parameters to evaluate lung vascular permeability. Inflammatory cell signaling (p38 phosphorylation) and anti-oxidant status (MnSOD and Catalase level) was assessed by Western blot, while X-ray CT scan, H & E staining and trichrome staining were done to study the lung architecture and collagen deposition. Irradiation of the lung increased the total protein content, LDH leakage and total leukocyte count in the BALF, reflecting endothelial barrier dysfunction. These disruptive effects were significantly abolished by DRDE-30, which appear to be linked to the DRDE-30 mediated abrogation of activation of the redox-sensitive pro- inflammatory signaling cascade, the MAPK pathway. Concurrent administration of DRDE-30 with radiation inhibited radiation-induced oxidative stress by strengthening the anti-oxidant defense system and abrogated p38 mitogen-activated protein kinase activation, which was associated with reduced vascular leak and macrophage recruitment to the lungs. Histopathological examination (by H & E staining) of the lung showed radiation-induced inflammation of the lungs, characterized by cellular infiltration, interstitial oedema, alveolar wall thickening, perivascular fibrosis and obstruction of alveolar spaces, which were all reduced by pre-administration of DRDE-30. Structural analysis with X-ray CT indicated lung architecture (linked to the degree of opacity) comparable to un-irradiated mice that correlated well with the lung morphology and reduced collagen deposition. Reduction in the radiation-induced inflammation and fibrosis brought about by DRDE-30 resulted in a profound increase in animal survival (72 % in the combination vs 24% with radiation) observed at the end of 24 weeks following irradiation. These findings establish the potential of the Amifostine analogue, DRDE-30, in reducing radiation induced pulmonary injury by attenuating the inflammatory and fibrotic responses.Keywords: amifostine, fibrosis, inflammation, lung injury radiation
Procedia PDF Downloads 510