Search results for: TGF-B
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3

Search results for: TGF-B

3 Curcumin Reduces the Expression of Main Fibrogenic Genes and Phosphorylation of Smad3C Signaling Pathway in TGFB-Activated Human HSCs. A New Remedy for Liver Fibrosis

Authors: Elham Shakerian, Reza Afarin

Abstract:

The hepatic disease causes approximately 2 million deaths/year worldwide. Liver fibrosis is the last stage of numerous chronic liver diseases, and until now there is no definite cure or drug for it. Activation of hepatic stellate cells (HSCs) is the main reason for fibrosis. Transforming growth factor (TGF-β), as a main profibrogenic cytokine, if increased in these cells, leads to liver fibrosis through smad3 signaling pathways and increasing the expressions of Collagen type I and III, and actin-alpha smooth muscle (αSMA) genes. Curcumin (CUR) is a polyphenolic compound and an active ingredient derived from the rhizome of the turmeric plant that exerts effective antioxidant, anti-inflammatory, and antimicrobial activity. It has been shown that daily consumption of curcumin may have a protective effect on the liver against oxidative stress associated with alcohol consumption. In this study, we investigate the role of Curcumin in decreasing HSC activation and treating liver fibrosis. First, the human HSCs were treated with 2 ng/ml of (TGF-β) for 24 hours to become activated, then with Silibinin for 24 hours. Total RNAs were extracted, reversely transcribed into cDNA, Quantitative Real-time PCR, and western blot were performed. The mRNA expression levels of Collagen type I and III, αSMA genes, and the level of smad3 phosphorylation in TGF-β activated human HSCs treated with Curcumin were significantly reduced compared to human HSCs untreated with Curcumin. Curcumin is effective in reducing the expression of fibrogenic genes in the activated human HSCs treated with TGFB through downregulation of the TGF-β/smad3 signaling pathway. Therefore, Curcumin possesses significant antifibrotic properties in hepatic fibrosis

Keywords: hepatic fibrosis, human HSCs, curcumin, fibrogenic genes

Procedia PDF Downloads 96
2 Methylation Analysis of PHF20L1 and DACT2 Gene Promoters in Women with Breast Cancer

Authors: Marta E. Hernandez-Caballero, Veronica Borgonio-Cuadra, Antonio Miranda-Duarte, Xochitl Rojas-Toledo, Normand Garcia-Hernandez, Maura Cardenas-Garcia, Teresa Abad-Camacho

Abstract:

Breast cancer (BC) is the most common tumor in women over the world. DNA methylation is an epigenetic modification critical in CpG sites, aberrant methylation of CpG islands in promoters is a hallmark of cancer. So, gene expression can be regulated by alterations in DNA methylation. In cell lines DACT2 gene reduces the growth and migration of tumor cells by its participation in the suppression of TGFb/SMAD2/3. PHF20L1 is involved in histone acetylation therefore, it regulates transcription. Our aim was to analyze the methylation status of the DACT2 and PHF20L1 promoter regions in tumoral and healthy mammary tissue from women with BC in different progression states. The study included 77 patients from Centro Medico Nacional La Raza in Mexico City. After identifying a CpG island in DACT2 and PHF20L1 promoters, DNA methylation status was analyzed through sodium bisulfite with subsequent amplification using methylation-specific PCR. Results revealed no changes in methylation status of PHF20L1 and cancer stages (II y III) or in comparison to healthy tissues, it was demethylated. DACT2 promoter methylation was no significant between tumoral stages (II, P = 0.37; III, P = 0.17) or with healthy tissue. Previous data reported DACT2 methylated in nasopharyngeal carcinoma but in this study promoter methylation was not observed. PHF20L1 protein contains N-terminal Tudor and C-terminal plant homeodomain domains, it has been suggested that can stabilize DNMT1 regulating DNA methylation, therefore, was associated with poor prognostic in BC. We found no evidence of methylation in patients and controls in PHF20L1 promoter, so its association with BC may have no direct relation with promoter methylation. More studies including other methylation sites in these genes in BC are necessary.

Keywords: bisulfite conversion, breast cancer, DACT2, DNA methylation, PHF20L1, tumoral status

Procedia PDF Downloads 272
1 Plasma Levels of Collagen Triple Helix Repeat Containing 1 (CTHRC1) as a Potential Biomarker in Interstitial Lung Disease

Authors: Rijnbout-St.James Willem, Lindner Volkhard, Scholand Mary Beth, Ashton M. Tillett, Di Gennaro Michael Jude, Smith Silvia Enrica

Abstract:

Introduction: Fibrosing lung diseases are characterized by changes in the lung interstitium and are classified based on etiology: 1) environmental/exposure-related, 2) autoimmune-related, 3) sarcoidosis, 4) interstitial pneumonia, and 4) idiopathic. Among interstitial lung diseases (ILD) idiopathic forms, idiopathic pulmonary fibrosis (IPF) is the most severe. Pathogenesis of IPF is characterized by an increased presence of proinflammatory mediators, resulting in alveolar injury, where injury to alveolar epithelium precipitates an increase in collagen deposition, subsequently thickening the alveolar septum and decreasing gas exchange. Identifying biomarkers implicated in the pathogenesis of lung fibrosis is key to developing new therapies and improving the efficacy of existing therapies. The transforming growth factor-beta (TGF-B1), a mediator of tissue repair associated with WNT5A signaling, is partially responsible for fibroblast proliferation in ILD and is the target of Pirfenidone, one of the antifibrotic therapies used for patients with IPF. Canonical TGF-B signaling is mediated by the proteins SMAD 2/3, which are, in turn, indirectly regulated by Collagen Triple Helix Repeat Containing 1 (CTHRC1). In this study, we tested the following hypotheses: 1) CTHRC1 is more elevated in the ILD cohort compared to unaffected controls, and 2) CTHRC1 is differently expressed among ILD types. Material and Methods: CTHRC1 levels were measured by ELISA in 171 plasma samples from the deidentified University of Utah ILD cohort. Data represent a cohort of 131 ILD-affected participants and 40 unaffected controls. CTHRC1 samples were categorized by a pulmonologist based on affectation status and disease subtypes: IPF (n = 45), sarcoidosis (4), nonspecific interstitial pneumonia (16), hypersensitivity pneumonitis (n = 7), interstitial pneumonia (n=13), autoimmune (n = 15), other ILD - a category that includes undifferentiated ILD diagnoses (n = 31), and unaffected controls (n = 40). We conducted a single-factor ANOVA of plasma CTHRC1 levels to test whether CTHRC1 variance among affected and non-affected participants is statistically significantly different. In-silico analysis was performed with Ingenuity Pathway Analysis® to characterize the role of CTHRC1 in the pathway of lung fibrosis. Results: Statistical analyses of CTHRC1 in plasma samples indicate that the average CTHRC1 level is significantly higher in ILD-affected participants than controls, with the autoimmune ILD being higher than other ILD types, thus supporting our hypotheses. In-silico analyses show that CTHRC1 indirectly activates and phosphorylates SMAD3, which in turn cross-regulates TGF-B1. CTHRC1 also may regulate the expression and transcription of TGFB-1 via WNT5A and its regulatory relationship with CTNNB1. Conclusion: In-silico pathway analyses demonstrate that CTHRC1 may be an important biomarker in ILD. Analysis of plasma samples indicates that CTHRC1 expression is positively associated with ILD affectation, with autoimmune ILD having the highest average CTHRC1 values. While characterizing CTHRC1 levels in plasma can help to differentiate among ILD types and predict response to Pirfenidone, the extent to which plasma CTHRC1 level is a function of ILD severity or chronicity is unknown.

Keywords: interstitial lung disease, CTHRC1, idiopathic pulmonary fibrosis, pathway analyses

Procedia PDF Downloads 164