Search results for: vapor sensors
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1646

Search results for: vapor sensors

1526 Design and Development of Optical Sensor Based Ground Reaction Force Measurement Platform for GAIT and Geriatric Studies

Authors: K. Chethana, A. S. Guru Prasad, S. N. Omkar, B. Vadiraj, S. Asokan

Abstract:

This paper describes an ab-initio design, development and calibration results of an Optical Sensor Ground Reaction Force Measurement Platform (OSGRFP) for gait and geriatric studies. The developed system employs an array of FBG sensors to measure the respective ground reaction forces from all three axes (X, Y and Z), which are perpendicular to each other. The novelty of this work is two folded. One is in its uniqueness to resolve the tri axial resultant forces during the stance in to the respective pure axis loads and the other is the applicability of inherently advantageous FBG sensors which are most suitable for biomechanical instrumentation. To validate the response of the FBG sensors installed in OSGRFP and to measure the cross sensitivity of the force applied in other directions, load sensors with indicators are used. Further in this work, relevant mathematical formulations are presented for extracting respective ground reaction forces from wavelength shifts/strain of FBG sensors on the OSGRFP. The result of this device has implications in understanding the foot function, identifying issues in gait cycle and measuring discrepancies between left and right foot. The device also provides a method to quantify and compare relative postural stability of different subjects under test, which has implications in post surgical rehabilitation, geriatrics and optimizing training protocols for sports personnel.

Keywords: balance and stability, gait analysis, FBG applications, optical sensor ground reaction force platform

Procedia PDF Downloads 388
1525 Development of a Very High Sensitivity Magnetic Field Sensor Based on Planar Hall Effect

Authors: Arnab Roy, P. S. Anil Kumar

Abstract:

Hall bar magnetic field sensors based on planar hall effect were fabricated from permalloy (Ni¬80Fe20) thin films grown by pulsed laser ablation. As large as 400% planar Hall voltage change was observed for a magnetic field sweep within ±4 Oe, a value comparable with present day TMR sensors at room temperature. A very large planar Hall sensitivity of 1200 Ω/T was measured close to switching fields, which was not obtained so far apart from 2DEG Hall sensors. In summary, a highly sensitive low magnetic field sensor has been constructed which has the added advantage of simple architecture, good signal to noise ratio and robustness.

Keywords: planar hall effect, permalloy, NiFe, pulsed laser ablation, low magnetic field sensor, high sensitivity magnetic field sensor

Procedia PDF Downloads 500
1524 Design of Smart Catheter for Vascular Applications Using Optical Fiber Sensor

Authors: Lamiek Abraham, Xinli Du, Yohan Noh, Polin Hsu, Tingting Wu, Tom Logan, Ifan Yen

Abstract:

In the field of minimally invasive, smart medical instruments such as catheters and guidewires are typically used at a remote distance to gain access to the diseased artery, often negotiating tortuous, complex, and diseased vessels in the process. Three optical fiber sensors with a diameter of 1.5mm each that are 120° apart from each other is proposed to be mounted into a catheter-based pump device with a diameter of 10mm. These sensors are configured to solve the challenges surgeons face during insertion through curvy major vessels such as the aortic arch. Moreover, these sensors deal with providing information on rubbing the walls and shape sensing. This study presents an experimental and mathematical models of the optical fiber sensors with 2 degrees of freedom. There are two eight gear-shaped tubes made up of 3D printed thermoplastic Polyurethane (TPU) material that are connected. The optical fiber sensors are mounted inside the first tube for protection from external light and used TPU material as a prototype for a catheter. The second tube is used as a flat reflection for the light intensity modulation-based optical fiber sensors. The first tube is attached to the linear guide for insertion and withdrawal purposes and can manually turn it 45° by manipulating the tube gear. A 3D hard material phantom was developed that mimics the aortic arch anatomy structure in which the test was carried out. During the insertion of the sensors into the 3D phantom, datasets are obtained in terms of voltage, distance, and position of the sensors. These datasets reflect the characteristics of light intensity modulation of the optical fiber sensors with a plane project of the aortic arch structure shape. Mathematical modeling of the light intensity was carried out based on the projection plane and experiment set-up. The performance of the system was evaluated in terms of its accuracy in navigating through the curvature and information on the position of the sensors by investigating 40 single insertions of the sensors into the 3D phantom. The experiment demonstrated that the sensors were effectively steered through the 3D phantom curvature and to desired target references in all 2 degrees of freedom. The performance of the sensors echoes the reflectance of light theory, where the smaller the radius of curvature, the more of the shining LED lights are reflected and received by the photodiode. A mathematical model results are in good agreement with the experiment result and the operation principle of the light intensity modulation of the optical fiber sensors. A prototype of a catheter using TPU material with three optical fiber sensors mounted inside has been developed that is capable of navigating through the different radius of curvature with 2 degrees of freedom. The proposed system supports operators with pre-scan data to make maneuverability and bendability through curvy major vessels easier, accurate, and safe. The mathematical modelling accurately fits the experiment result.

Keywords: Intensity modulated optical fiber sensor, mathematical model, plane projection, shape sensing.

Procedia PDF Downloads 233
1523 Hand Gestures Based Emotion Identification Using Flex Sensors

Authors: S. Ali, R. Yunus, A. Arif, Y. Ayaz, M. Baber Sial, R. Asif, N. Naseer, M. Jawad Khan

Abstract:

In this study, we have proposed a gesture to emotion recognition method using flex sensors mounted on metacarpophalangeal joints. The flex sensors are fixed in a wearable glove. The data from the glove are sent to PC using Wi-Fi. Four gestures: finger pointing, thumbs up, fist open and fist close are performed by five subjects. Each gesture is categorized into sad, happy, and excited class based on the velocity and acceleration of the hand gesture. Seventeen inspectors observed the emotions and hand gestures of the five subjects. The emotional state based on the investigators assessment and acquired movement speed data is compared. Overall, we achieved 77% accurate results. Therefore, the proposed design can be used for emotional state detection applications.

Keywords: emotion identification, emotion models, gesture recognition, user perception

Procedia PDF Downloads 263
1522 Design, Construction and Evaluation of a Mechanical Vapor Compression Distillation System for Wastewater Treatment in a Poultry Company

Authors: Juan S. Vera, Miguel A. Gomez, Omar Gelvez

Abstract:

Water is Earth's most valuable resource, and the lack of it is currently a critical problem in today’s society. Non-treated wastewaters contribute to this situation, especially those coming from industrial activities, as they reduce the quality of the water bodies, annihilating all kind of life and bringing disease to people in contact with them. An effective solution for this problem is distillation, which removes most contaminants. However, this approach must also be energetically efficient in order to appeal to the industry. In this endeavour, most water distillation treatments fail, with the exception of the Mechanical Vapor Compression (MVC) distillation system, which has a great efficiency due to energy input by a compressor and the latent heat exchange. This paper presents the process of design, construction, and evaluation of a Mechanical Vapor Compression (MVC) distillation system for the main Colombian poultry company Avidesa Macpollo SA. The system will be located in the principal slaughterhouse in the state of Santander, and it will work along with the Gas Energy Mixing system (GEM) to treat the wastewaters from the plant. The main goal of the MVC distiller, rarely used in this type of application, is to reduce the chlorides, Chemical Oxygen Demand (COD) and Biological Oxygen Demand (BOD) levels according to the state regulations since the GEM cannot decrease them enough. The MVC distillation system works with three components, the evaporator/condenser heat exchanger where the distillation takes place, a low-pressure compressor which gives the energy to create the temperature differential between the evaporator and condenser cavities and a preheater to save the remaining energy in the distillate. The model equations used to describe how the compressor power consumption, heat exchange area and distilled water are related is based on a thermodynamic balance and heat transfer analysis, with correlations taken from the literature. Finally, the design calculations and the measurements of the installation are compared, showing accordance with the predictions in distillate production and power consumption, changing the temperature difference of the evaporator/condenser.

Keywords: mechanical vapor compression, distillation, wastewater, design, construction, evaluation

Procedia PDF Downloads 145
1521 Antireflection Performance of Graphene Directly Deposited on Silicon Substrate by the Atmospheric Pressure Chemical Vapor Deposition Method

Authors: Samira Naghdi, Kyong Yop Rhee

Abstract:

Transfer-free synthesis of graphene on dielectric substrates is highly desirable but remains challenging. Here, by using a thin sacrificial platinum layer as a catalyst, graphene was deposited on a silicon substrate through a simple and transfer-free synthesis method. During graphene growth, the platinum layer evaporated, resulting in direct deposition of graphene on the silicon substrate. In this work, different growth conditions of graphene were optimized. Raman spectra of the produced graphene indicated that the obtained graphene was bilayer. The sheet resistance obtained from four-point probe measurements demonstrated that the deposited graphene had high conductivity. Reflectance spectroscopy of graphene-coated silicon showed a decrease in reflectance across the wavelength range of 200-800 nm, indicating that the graphene coating on the silicon surface had antireflection capabilities.

Keywords: antireflection coating, chemical vapor deposition, graphene, the sheet resistance

Procedia PDF Downloads 166
1520 An Intelligent Watch-Over System Using an IoT Device, for Elderly People Living by Themselves

Authors: Hideo Suzuki, Yuya Kiyonobu, Kotaro Matsushita, Masaki Hanada, Rie Suzuki, Noriko Niijima, Noriko Uosaki, Tadao Nakamura

Abstract:

People often worry about their elderly family members who are living by themselves or staying alone somewhere. An intelligent watch-over system for such elderly people, using a Raspberry Pi IoT device, has been newly developed to monitor those who live or stay separately from their families and alert them if a problem occurs. The system consists of motion sensors and temperature-humidity combined sensors that are located at seven points within an elderly person's home. The intelligent algorithms of the system detect signs and the possibility of unhealthy situations arising for the elderly relative; e.g., an unusually long bathing time, or a visit to a restroom, too high a room temperature, etc., by using data cached by the sensors above, at seven points within their house. The system gives more consideration to the elderly person's privacy, by using the sensors above, instead of using cameras and microphones placed around the house. The system invented and described here, can send a Twitter direct message to designated family members when an elderly relative is possibly in an unhealthy condition. Thus the system helps decrease family members' anxieties regarding their elderly relatives and increases their sense of security.

Keywords: elderly person, IoT device, Raspberry Pi, watch-over system

Procedia PDF Downloads 205
1519 Miniaturized PVC Sensors for Determination of Fe2+, Mn2+ and Zn2+ in Buffalo-Cows’ Cervical Mucus Samples

Authors: Ahmed S. Fayed, Umima M. Mansour

Abstract:

Three polyvinyl chloride membrane sensors were developed for the electrochemical evaluation of ferrous, manganese and zinc ions. The sensors were used for assaying metal ions in cervical mucus (CM) of Egyptian river buffalo-cows (Bubalus bubalis) as their levels vary dependent on cyclical hormone variation during different phases of estrus cycle. The presented sensors are based on using ionophores, β-cyclodextrin (β-CD), hydroxypropyl β-cyclodextrin (HP-β-CD) and sulfocalix-4-arene (SCAL) for sensors 1, 2 and 3 for Fe2+, Mn2+ and Zn2+, respectively. Dioctyl phthalate (DOP) was used as the plasticizer in a polymeric matrix of polyvinylchloride (PVC). For increasing the selectivity and sensitivity of the sensors, each sensor was enriched with a suitable complexing agent, which enhanced the sensor’s response. For sensor 1, β-CD was mixed with bathophenanthroline; for sensor 2, porphyrin was incorporated with HP-β-CD; while for sensor 3, oxine was the used complexing agent with SCAL. Linear responses of 10-7-10-2 M with cationic slopes of 53.46, 45.01 and 50.96 over pH range 4-8 were obtained using coated graphite sensors for ferrous, manganese and zinc ionic solutions, respectively. The three sensors were validated, according to the IUPAC guidelines. The obtained results by the presented potentiometric procedures were statistically analyzed and compared with those obtained by atomic absorption spectrophotometric method (AAS). No significant differences for either accuracy or precision were observed between the two techniques. Successful application for the determination of the three studied cations in CM, for the purpose to determine the proper time for artificial insemination (AI) was achieved. The results were compared with those obtained upon analyzing the samples by AAS. Proper detection of estrus and correct time of AI was necessary to maximize the production of buffaloes. In this experiment, 30 multi-parous buffalo-cows were in second to third lactation and weighting 415-530 kg, and were synchronized with OVSynch protocol. Samples were taken in three times around ovulation, on day 8 of OVSynch protocol, on day 9 (20 h before AI) and on day 10 (1 h before AI). Beside analysis of trace elements (Fe2+, Mn2+ and Zn2+) in CM using the three sensors, the samples were analyzed for the three cations and also Cu2+ by AAS in the CM samples and blood samples. The results obtained were correlated with hormonal analysis of serum samples and ultrasonography for the purpose of determining of the optimum time of AI. The results showed significant differences and powerful correlation with Zn2+ composition of CM during heat phase and the ovulation time, indicating that the parameter could be used as a tool to decide optimal time of AI in buffalo-cows.

Keywords: PVC Sensors, buffalo-cows, cyclodextrins, atomic absorption spectrophotometry, artificial insemination, OVSynch protocol

Procedia PDF Downloads 205
1518 C2N2 Adsorption on the Surface of a BN Nanosheet: A DFT Study

Authors: Maziar Noei

Abstract:

Calculation showed that when the nanosheet is doped by Si, the adsorption energy is about -85.62 to -87.43kcal/mol and also the amount of HOMO/LUMO energy gap (Eg) will reduce significantly. Boron nitride nanosheet is a suitable adsorbent for cyanogen and can be used in separation processes cyanogen. It seems that nanosheet (BNNS) is a suitable semiconductor after doping. The doped BNNS in the presence of cyanogens (C2N2) an electrical signal is generating directly and, therefore, can potentially be used for cyanogen sensors.

Keywords: nanosheet, DFT, cyanogen, sensors

Procedia PDF Downloads 268
1517 Microwave Dielectric Properties and Microstructures of Nd(Ti₀.₅W₀.₅)O₄ Ceramics for Application in Wireless Gas Sensors

Authors: Yih-Chien Chen, Yue-Xuan Du, Min-Zhe Weng

Abstract:

Carbon monoxide is a substance produced by the incomplete combustion. It is toxic even at concentrations of less than 100ppm. Since it is colorless and odorless, it is difficult to detect. CO sensors have been developed using a variety of physical mechanisms, including semiconductor oxides, solid electrolytes, and organic semiconductors. Many works have focused on using semiconducting sensors composed of sensitive layers such as ZnO, TiO₂, and NiO with high sensitivity for gases. However, these sensors working at high temperatures increased their power consumption. On the other hand, the dielectric resonator (DR) is attractive for gas detection due to its large surface area and sensitivity for external environments. Materials that are to be employed in sensing devices must have a high-quality factor. Numerous researches into the fergusonite-type structure and related ceramic systems have explored. Extensive research into RENbO₄ ceramics has explored their potential application in resonators, filters, and antennas in modern communication systems, which are operated at microwave frequencies. Nd(Ti₀.₅W₀.₅)O₄ ceramics were synthesized herein using the conventional mixed-oxide method. The Nd(Ti₀.₅W₀.₅)O₄ ceramics were prepared using the conventional solid-state method. Dielectric constants (εᵣ) of 15.4-19.4 and quality factor (Q×f) of 3,600-11,100 GHz were obtained at sintering temperatures in the range 1425-1525°C for 4 h. The dielectric properties of the Nd(Ti₀.₅W₀.₅)O₄ ceramics at microwave frequencies were found to vary with the sintering temperature. For a further understanding of these microwave dielectric properties, they were analyzed by densification, X-ray diffraction (XRD), and by making microstructural observations.

Keywords: dielectric constant, dielectric resonators, sensors, quality factor

Procedia PDF Downloads 240
1516 Carboxymethyl Cellulose Coating onto Polypropylene Film Using Cold Atmospheric Plasma Treatment as Food Packaging

Authors: Z. Honarvar, M. Farhoodi, M. R. Khani, S. Shojaee-Aliabadi

Abstract:

Recently, edible films and coating have attracted much attention in food industry due to their environmentally friendly nature and safety in direct contact with food. However edible films have relatively weak mechanical properties and high water vapor permeability. Therefore, the aim of the study was to develop bilayer carboxymethyl cellulose (CMC) coated polypropylene (PP) films to increase mechanical properties and water vapor resistance of each pure CMC or PP films. To modify the surface properties of PE for better attachment of CMC coating layer to PP the atmospheric cold plasma treatment was used. Then the PP surface changes were evaluated by contact angle, AFM, and ATR-FTIR. Furthermore, the physical, mechanical, optical and microstructure characteristics of plasma-treated and untreated films were analyzed. ATR-FTIR results showed that plasma treatment created oxygen-containing groups on PP surface leading to an increase in hydrophilic properties of PP surface. Moreover, a decrease in water contact angle (from 88.92° to 52.15°) and an increase of roughness were observed on PP film surface indicating good adhesion between hydrophilic CMC and hydrophobic PP. Furthermore, plasma pre-treatment improved the tensile strength of CMC coated-PP films from 58.19 to 61.82. Water vapor permeability of plasma treated bilayer film was lower in comparison with untreated film. Therefore, cold plasma treatment has potential to improve attachment of CMC coating to PP layer, leading to enhanced water barrier and mechanical properties of CMC coated polypropylene as food packaging in which also CMC is in contact with food.

Keywords: carboxymethyl cellulose film, cold plasma, Polypropylene, surface properties

Procedia PDF Downloads 264
1515 Automatic Integrated Inverter Type Smart Device for Safe Kitchen

Authors: K. M. Jananni, R. Nandini

Abstract:

The proposed wireless, inverter type design of a LPG leakage monitoring system aims to provide a smart and safe kitchen. The system detects the LPG gas leak using Nano-sensors and alerts the concerned individual through GSM system. The system uses two sensors, one attached to the chimney and other to the regulator of the LPG cylinder. Upon a leakage being detected, the sensor at the regulator actuates the system to cut off the gas supply immediately using a solenoid control valve. The sensor at the chimney checks for the permissible level of LPG mix in the air and when the level exceeds the threshold, the system sends an automatic SMS to the numbers saved. Further the sensor actuates the mini suction system fixed at the chimney within 20 seconds of a leakage to suck out the gas until the level falls well below the threshold. As a safety measure, an automatic window opening and alarm feature is also incorporated into the system. The key feature of this design is that the system is provided with a special inverter designed to make the device function effectively even during power failures. In this paper, utilization of sensors in the kitchen area is discussed and this gives the proposed architecture for real time field monitoring with a PIC Micro-controller.

Keywords: nano sensors, global system for mobile communication, GSM, micro controller, inverter

Procedia PDF Downloads 458
1514 Stability Enhancement of Supported Ionic Liquid Membranes Using Ion Gels for Gas Separation

Authors: Y. H. Hwang, J. Won, Y. S. Kang

Abstract:

Supported ionic liquid membranes (SILMs) have attracted due to the negligible vapor pressure of ionic liquids (ILs) as well as the high gas selectivity for specific gases such as CO2 or olefin. 1-ethyl-3-methylimidazolium tricyanomethanide ([EMIM][TCM]), 1-butyl-3-methylimidazolium tricyanomethanide ([BMIM][TCM]), show high CO2 solubility, CO2 absorption, rapid CO2 absorption rate and negligible vapor pressure, SILMs using these ILs have been good candidates as CO2 separation membranes. However, SILM has to be operated at a low differential pressure to prevent the solvent from being expelled from the pores of supported membranes. In this paper, we improve the mechanical strength by forming ion gels which provide the stability while it retains the diffusion properties of the liquid stage which affects the gas separation properties. The ion gel was created by the addition of tri-block copolymer, poly(styrene-ethylene oxide-b-styrene) in RTIL. SILM using five different RTILs, are investigated with and without ion gels. The gas permeance were measured and the gas performance with and without the SEOS were investigated.

Keywords: ion gel, ionic liquid, membrane, nanostructure

Procedia PDF Downloads 299
1513 Numerical Design and Characterization of SiC Single Crystals Obtained with PVT Method

Authors: T. Wejrzanowski, M. Grybczuk, E. Tymicki, K. J. Kurzydlowski

Abstract:

In the present study, numerical simulations of heat and mass transfer in Physical Vapor Transport reactor during silicon carbide single crystal growth are addressed. Silicon carbide is a wide bandgap material with unique properties making it highly applicable for high power electronics applications. Because of high manufacturing costs improvements of SiC production process are required. In this study, numerical simulations were used as a tool of process optimization. Computer modeling allows for cost and time effective analysis of processes occurring during SiC single crystal growth and provides essential information needed for improvement of the process. Quantitative relationship between process conditions, such as temperature or pressure, and crystal growth rate and shape of crystallization front have been studied and verified using experimental data. Basing on modeling results, several process improvements were proposed and implemented.

Keywords: Finite Volume Method, semiconductors, Physica Vapor Transport, silicon carbide

Procedia PDF Downloads 480
1512 Computational Fluids Dynamics Investigation of the Effect of Geometric Parameters on the Ejector Performance

Authors: Michel Wakim, Rodrigo Rivera Tinoco

Abstract:

Supersonic ejector is an economical device that use high pressure vapor to compress a low pressure vapor without any rotating parts or external power sources. Entrainment ratio is a major characteristic of the ejector performance, so the ejector performance is highly dependent on its geometry. The aim of this paper is to design ejector geometry, based on pre-specified operating conditions, and to study the flow behavior inside the ejector by using computational fluid dynamics ‘CFD’ by using ‘ANSYS FLUENT 15.0’ software. In the first section; 1-D mathematical model is carried out to predict the ejector geometry. The second part describes the flow behavior inside the designed model. CFD is the most reliable tool to reveal the mixing process at different parts of the supersonic turbulent flow and to study the effect of the geometry on the effective ejector area. Finally, the results show the effect of the geometry on the entrainment ratio.

Keywords: computational fluids dynamics, ejector, entrainment ratio, geometry optimization, performance

Procedia PDF Downloads 259
1511 Electrochemical Performance of Carbon Nanotube Based Supercapacitor

Authors: Jafar Khan Kasi, Ajab Khan Kasi, Muzamil Bokhari

Abstract:

Carbon nanotube is one of the most attractive materials for the potential applications of nanotechnology due to its excellent mechanical, thermal, electrical and optical properties. In this paper we report a supercapacitor made of nickel foil electrodes, coated with multiwall carbon nanotubes (MWCNTs) thin film using electrophoretic deposition (EPD) method. Chemical vapor deposition method was used for the growth of MWCNTs and ethanol was used as a hydrocarbon source. High graphitic multiwall carbon nanotube was found at 750 C analyzing by Raman spectroscopy. We observed the electrochemical performance of supercapacitor by cyclic voltammetry. The electrodes of supercapacitor fabricated from MWCNTs exhibit considerably small equivalent series resistance (ESR), and a high specific power density. Electrophoretic deposition is an easy method in fabricating MWCNT electrodes for high performance supercapacitor.

Keywords: carbon nanotube, chemical vapor deposition, catalyst, charge, cyclic voltammetry

Procedia PDF Downloads 538
1510 Bismuth Telluride Topological Insulator: Physical Vapor Transport vs Molecular Beam Epitaxy

Authors: Omar Concepcion, Osvaldo De Melo, Arturo Escobosa

Abstract:

Topological insulator (TI) materials are insulating in the bulk and conducting in the surface. The unique electronic properties associated with these surface states make them strong candidates for exploring innovative quantum phenomena and as practical applications for quantum computing, spintronic and nanodevices. Many materials, including Bi₂Te₃, have been proposed as TIs and, in some cases, it has been demonstrated experimentally by angle-resolved photoemission spectroscopy (ARPES), scanning tunneling spectroscopy (STM) and/or magnetotransport measurements. A clean surface is necessary in order to make any of this measurements. Several techniques have been used to produce films and different kinds of nanostructures. Growth and characterization in situ is usually the best option although cleaving the films can be an alternative to have a suitable surface. In the present work, we report a comparison of Bi₂Te₃ grown by physical vapor transport (PVT) and molecular beam epitaxy (MBE). The samples were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and ARPES. The Bi₂Te₃ samples grown by PVT, were cleaved in the ultra-high vacuum in order to obtain a surface free of contaminants. In both cases, the XRD shows a c-axis orientation and the pole diagrams proved the epitaxial relationship between film and substrate. The ARPES image shows the linear dispersion characteristic of the surface states of the TI materials. The samples grown by PVT, a relatively simple and cost-effective technique shows the same high quality and TI properties than the grown by MBE.

Keywords: Bismuth telluride, molecular beam epitaxy, physical vapor transport, topological insulator

Procedia PDF Downloads 174
1509 Faulty Sensors Detection in Planar Array Antenna Using Pelican Optimization Algorithm

Authors: Shafqat Ullah Khan, Ammar Nasir

Abstract:

Using planar antenna array (PAA) in radars, Broadcasting, satellite antennas, and sonar for the detection of targets, Helps provide instant beam pattern control. High flexibility and Adaptability are achieved by multiple beam steering by using a Planar array and are particularly needed in real-life Sanrio’s where the need arises for several high-directivity beams. Faulty sensors in planar arrays generate asymmetry, which leads to service degradation, radiation pattern distortion, and increased levels of sidelobe. The POA, a nature-inspired optimization algorithm, accurately determines faulty sensors within an array, enhancing the reliability and performance of planar array antennas through extensive simulations and experiments. The analysis was done for different types of faults in 7 x 7 and 8 x 8 planar arrays in MATLAB.

Keywords: Planar antenna array, , Pelican optimisation Algorithm, , Faculty sensor, Antenna arrays

Procedia PDF Downloads 37
1508 Establishment of Landslide Warning System Using Surface or Sub-Surface Sensors Data

Authors: Neetu Tyagi, Sumit Sharma

Abstract:

The study illustrates the results of an integrated study done on Tangni landslide located on NH-58 at Chamoli, Uttarakhand. Geological, geo-morphological and geotechnical investigations were carried out to understand the mechanism of landslide and to plan further investigation and monitoring. At any rate, the movements were favored by continuous rainfall water infiltration from the zones where the phyllites/slates and Dolomites outcrop. The site investigations were carried out including the monitoring of landslide movements and of the water level fluctuations due to rainfall give us a better understanding of landslide dynamics that have been causing in time soil instability at Tangni landslide site. The Early Warning System (EWS) installed different types of sensors and all sensors were directly connected to data logger and raw data transfer to the Defence Terrain Research Laboratory (DTRL) server room with the help of File Transfer Protocol (FTP). The slip surfaces were found at depths ranging from 8 to 10 m from Geophysical survey and hence sensors were installed to the depth of 15m at various locations of landslide. Rainfall is the main triggering factor of landslide. In this study, the developed model of unsaturated soil slope stability is carried out. The analysis of sensors data available for one year, indicated the sliding surface of landslide at depth between 6 to 12m with total displacement up to 6cm per year recorded at the body of landslide. The aim of this study is to set the threshold and generate early warning. Local peoples already alert towards landslide, if they have any types of warning system.

Keywords: early warning system, file transfer protocol, geo-morphological, geotechnical, landslide

Procedia PDF Downloads 140
1507 Method of Successive Approximations for Modeling of Distributed Systems

Authors: A. Torokhti

Abstract:

A new method of mathematical modeling of the distributed nonlinear system is developed. The system is represented by a combination of the set of spatially distributed sensors and the fusion center. Its mathematical model is obtained from the iterative procedure that converges to the model which is optimal in the sense of minimizing an associated cost function.

Keywords: mathematical modeling, non-linear system, spatially distributed sensors, fusion center

Procedia PDF Downloads 367
1506 Investigating Activity Recognition Using 9-Axis Sensors and Filters in Wearable Devices

Authors: Jun Gil Ahn, Jong Kang Park, Jong Tae Kim

Abstract:

In this paper, we analyze major components of activity recognition (AR) in wearable device with 9-axis sensors and sensor fusion filters. 9-axis sensors commonly include 3-axis accelerometer, 3-axis gyroscope and 3-axis magnetometer. We chose sensor fusion filters as Kalman filter and Direction Cosine Matrix (DCM) filter. We also construct sensor fusion data from each activity sensor data and perform classification by accuracy of AR using Naïve Bayes and SVM. According to the classification results, we observed that the DCM filter and the specific combination of the sensing axes are more effective for AR in wearable devices while classifying walking, running, ascending and descending.

Keywords: accelerometer, activity recognition, directiona cosine matrix filter, gyroscope, Kalman filter, magnetometer

Procedia PDF Downloads 316
1505 Investigation of Comfort Properties of Knitted Fabrics

Authors: Mehmet Karahan, Nevin Karahan

Abstract:

Water and air permeability and thermal resistance of fabrics are the important attributes which strongly influence the thermo-physiological comfort properties of sportswear fabrics in different environmental conditions. In this work, terry and fleece fabrics were developed by varying the fiber content and areal density of fabrics. Further, the thermo-physical properties, including air permeability, water vapor permeability, and thermal resistance, of the developed fabrics were analyzed before and after washing. The multi-response optimization of thermo-physiological comfort properties was done by using principal component analysis (PCA) and Taguchi signal to noise ratio (PCA-S/N ratio) for optimal properties. It was found that the selected parameters resulted in a significant effect on thermo-physiological comfort properties of knitted fabrics. The PCA analysis showed that before wash, 100% cotton fabric with an aerial weight of 220 g.m⁻² gave optimum values of thermo-physiological comfort.

Keywords: thermo-physiological comfort, fleece knitted fabric, air permeability, water vapor transmission, cotton/polyester

Procedia PDF Downloads 94
1504 Prediction of Vapor Liquid Equilibrium for Dilute Solutions of Components in Ionic Liquid by Neural Networks

Authors: S. Mousavian, A. Abedianpour, A. Khanmohammadi, S. Hematian, Gh. Eidi Veisi

Abstract:

Ionic liquids are finding a wide range of applications from reaction media to separations and materials processing. In these applications, Vapor–Liquid equilibrium (VLE) is the most important one. VLE for six systems at 353 K and activity coefficients at infinite dilution 〖(γ〗_i^∞) for various solutes (alkanes, alkenes, cycloalkanes, cycloalkenes, aromatics, alcohols, ketones, esters, ethers, and water) in the ionic liquids (1-ethyl-3-methylimidazolium bis (trifluoromethylsulfonyl)imide [EMIM][BTI], 1-hexyl-3-methyl imidazolium bis (trifluoromethylsulfonyl) imide [HMIM][BTI], 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide [OMIM][BTI], and 1-butyl-1-methylpyrrolidinium bis (trifluoromethylsulfonyl) imide [BMPYR][BTI]) have been used to train neural networks in the temperature range from (303 to 333) K. Densities of the ionic liquids, Hildebrant constant of substances, and temperature were selected as input of neural networks. The networks with different hidden layers were examined. Networks with seven neurons in one hidden layer have minimum error and good agreement with experimental data.

Keywords: ionic liquid, neural networks, VLE, dilute solution

Procedia PDF Downloads 279
1503 Development of Risk Management System for Urban Railroad Underground Structures and Surrounding Ground

Authors: Y. K. Park, B. K. Kim, J. W. Lee, S. J. Lee

Abstract:

To assess the risk of the underground structures and surrounding ground, we collect basic data by the engineering method of measurement, exploration and surveys and, derive the risk through proper analysis and each assessment for urban railroad underground structures and surrounding ground including station inflow. Basic data are obtained by the fiber-optic sensors, MEMS sensors, water quantity/quality sensors, tunnel scanner, ground penetrating radar, light weight deflectometer, and are evaluated if they are more than the proper value or not. Based on these data, we analyze the risk level of urban railroad underground structures and surrounding ground. And we develop the risk management system to manage efficiently these data and to support a convenient interface environment at input/output of data.

Keywords: urban railroad, underground structures, ground subsidence, station inflow, risk

Procedia PDF Downloads 321
1502 Flow Boiling Heat Transfer at Low Mass and Heat Fluxes: Heat Transfer Coefficient, Flow Pattern Analysis and Correlation Assessment

Authors: Ernest Gyan Bediako, Petra Dancova, Tomas Vit

Abstract:

Flow boiling heat transfer remains an important area of research due to its relevance in thermal management systems and other applications. Despite the enormous work done in the field of flow boiling heat transfer over the years to understand how flow parameters such as mass flux, heat flux, saturation conditions and tube geometries influence the characteristics of flow boiling heat transfer, there are still many contradictions and lack of agreement on the actual mechanisms controlling heat transfer and how flow parameters impact the heat transfer. This work thus seeks to experimentally investigate the heat transfer characteristics and flow patterns at low mass fluxes, low heat fluxes and low saturation pressure conditions which are of less attention in literature but prevalent in refrigeration, air-conditioning and heat pump applications. In this study, flow boiling experiment was conducted for R134a working fluid in a 5 mm internal diameter stainless steel horizontal smooth tube with mass flux ranging from 80- 100 kg/m2 s, heat fluxes ranging from 3.55kW/m2 - 25.23 kW/m2 and saturation pressure of 460 kPa. Vapor quality ranged from 0 to 1. A well-known flow pattern map created by Wojtan et al. was used to predict the flow patterns noticed during the study. The experimental results were correlated with well-known flow boiling heat transfer correlations in literature. The findings show that, heat transfer coefficient was influenced by both mass flux and heat fluxes. However, for an increasing heat flux, nucleate boiling was observed to be the dominant mechanism controlling the heat transfer especially at low vapor quality region. For an increasing mass flux, convective boiling was the dominant mechanism controlling the heat transfer especially in the high vapor quality region. Also, the study observed an unusual high heat transfer coefficient at low vapor qualities which could be due to periodic wetting of the walls of the tube due to slug flow pattern and stratified wavy flow patterns. The flow patterns predicted by Wojtan et al. flow pattern map were mixture of slug and stratified wavy, purely stratified wavy and dry out. Statistical assessment of the experimental data with various well-known correlations from literature showed that, none of the correlations reported in literature could predicted the experimental data with enough accuracy.

Keywords: flow boiling, heat transfer coefficient, mass flux, heat flux.

Procedia PDF Downloads 95
1501 Design of a Controlled BHJ Solar Cell Using Modified Organic Vapor Spray Deposition Technique

Authors: F. Stephen Joe, V. Sathya Narayanan, V. R. Sanal Kumar

Abstract:

A comprehensive review of the literature on photovoltaic cells has been carried out for exploring the better options for cost efficient technologies for future solar cell applications. Literature review reveals that the Bulk Heterojunction (BHJ) Polymer Solar cells offer special opportunities as renewable energy resources. It is evident from the previous studies that the device fabricated with TiOx layer shows better power conversion efficiency than that of the device without TiOx layer. In this paper, authors designed a controlled BHJ solar cell using a modified organic vapor spray deposition technique facilitated with a vertical-moving gun named as 'Stephen Joe Technique' for getting a desirable surface pattern over the substrate to improving its efficiency over the years for industrial applications. We comprehended that the efficient processing and the interface engineering of these solar cells could increase the efficiency up to 5-10 %.

Keywords: BHJ polymer solar cell, photovoltaic cell, solar cell, Stephen Joe technique

Procedia PDF Downloads 524
1500 Dynamic Foot Pressure Measurement System Using Optical Sensors

Authors: Tanapon Keatsamarn, Chuchart Pintavirooj

Abstract:

Foot pressure measurement provides necessary information for diagnosis diseases, foot insole design, disorder prevention and other application. In this paper, dynamic foot pressure measurement is presented for pressure measuring with high resolution and accuracy. The dynamic foot pressure measurement system consists of hardware and software system. The hardware system uses a transparent acrylic plate and uses steel as the base. The glossy white paper is placed on the top of the transparent acrylic plate and covering with a black acrylic on the system to block external light. Lighting from LED strip entering around the transparent acrylic plate. The optical sensors, the digital cameras, are underneath the acrylic plate facing upwards. They have connected with software system to process and record foot pressure video in avi file. Visual Studio 2017 is used for software system using OpenCV library.

Keywords: foot, foot pressure, image processing, optical sensors

Procedia PDF Downloads 232
1499 Real Time Activity Recognition Framework for Health Monitoring Support in Home Environments

Authors: Shaikh Farhad Hossain, Liakot Ali

Abstract:

Technology advances accelerate the quality and type of services provided for health care and especially for monitoring health conditions. Sensors have turned out to be more effective to detect diverse physiological signs and can be worn on the human body utilizing remote correspondence modules. An assortment of programming devices have been created to help in preparing a difference rundown of essential signs by examining and envisioning information produced by different sensors. In this proposition, we presented a Health signs and Activity acknowledgment monitoring system. Utilizing off-the-rack sensors, we executed a movement location system for identifying five sorts of action: falling, lying down, sitting, standing, and walking. The framework collects and analyzes sensory data in real-time, and provides different feedback to the users. In addition, it can generate alerts based on the detected events and store the data collected to a medical server.

Keywords: ADL, SVM, TRIL , MEMS

Procedia PDF Downloads 382
1498 Smart Irrigation System

Authors: Levent Seyfi, Ertan Akman, Tuğrul C. Topak

Abstract:

In this study, irrigation automation with electronic sensors and its control with smartphones were aimed. In this context, temperature and soil humidity measurements of the area irrigated were obtained by temperature and humidity sensors. A micro controller (Arduino) was utilized for accessing values of these parameters and controlling the proposed irrigation system. The irrigation system could automatically be worked according to obtained measurement values. Besides, a GSM module used together with Arduino provided that the irrigation system was in connection to smartphones. Thus, the irrigation system can be remotely controlled. Not only can we observe whether the irrigation system is working or not via developed special android application but also we can see temperature and humidity measurement values. In addition to this, if desired, the irrigation system can be remotely and manually started or stopped regardless of measured sensor vales thanks to the developed android application. In addition to smartphones, the irrigation system can be alternatively controlled via the designed website (www.sulamadenetim.com).

Keywords: smartphone, Android Operating System, sensors, irrigation System, arduino

Procedia PDF Downloads 597
1497 High Frequency Nanomechanical Oscillators Based on Synthetic Nanowires

Authors: Minjin Kim, Jihwan Kim, Bongsoo Kim, Junho Suh

Abstract:

We demonstrate nanomechanical resonators constructed with synthetic nanowires (NWs) and study their electro-mechanical properties at millikelvin temperatures. Nanomechanical resonators are fabricated using single-crystalline Au NWs and InAs NWs. The mechanical resonance signals are acquired by either magnetomotive or capacitive detection methods. The Au NWs are synthesized by chemical vapor transport method at 1100 °C, and they exhibit clean surface and single-crystallinity with little defects. Due to pristine surface quality, these Au NW mechanical resonators could provide an ideal model system for studying surface-related effects on the mechanical systems. The InAs NWs are synthesized by molecular beam epitaxy or metal organic chemical vapor deposition method. The InAs NWs show electronic conductance modulation resembling Coulomb blockade, which also manifests in the mechanical resonance signals in the form of damping and resonance frequency shift. Our result provides an evidence of strong electro-mechanical coupling in synthetic NW nanomechanical resonators.

Keywords: Au nanowire, InAs nanowire, nanomechanical resonator, synthetic nanowires

Procedia PDF Downloads 195