Search results for: ultrasonically-assisted drilling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 297

Search results for: ultrasonically-assisted drilling

177 Wellbore Spiraling Induced through Systematic Micro-Sliding

Authors: Christopher Viens, Bosko Gajic, Steve Krase

Abstract:

Stick-Slip is a term that is often overused and commonly diagnosed from surface drilling parameters of torque and differential pressure, but the actual magnitude of the condition is rarely captured at the BHA level as the necessary measurements are seldom deployed. Deployment of an accurate stick-slip measurement downhole has led to an interesting discovery that goes against long held traditional drilling lore. A divide has been identified between stick-slip as independent bit and BHA conditions. This phenomenon in horizontal laterals is common, but few M/LWD systems have been able to capture it. Utilizing measurements of downhole RPM bore pressure, high-speed magnetometer data, bending moment, and continuous inclination, the wellbore spiraling phenomenon is able to be captured, quantified, and intimately tied back to systematic effects of BHA stalling and micro-sliding. An operator in the Permian Basin has identified that this phenomenon is contributing to increased tortuosity and drag. Utilizing downhole torque measurements the root causes of the stick-slip and spiraling phenomenon were identified and able to engineered out of the system.

Keywords: bending moment, downhole dynamics measurements, micro sliding, wellbore spiraling

Procedia PDF Downloads 252
176 Application of Electrical Resistivity, Induced Polarization and Statistical Methods in Chichak Iron Deposit Exploration

Authors: Shahrzad Maghsoodi, Hamid Reza Ranazi

Abstract:

This paper is devoted to exploration of Chichak (hematite) deposit, using electrical resistivity, chargeability and statistical methods. Chichak hematite deposit is located in Chichak area west Azarbaijan, northwest of Iran. There are some outcrops of hematite bodies in the area. The goal of this study was to identify the depth, thickness and shape of these bodies and to explore other probabile hematite bodies. Therefore nine profiles were considered to be surveyed by RS and IP method by utilizing an innovative electrode array so called CRSP (Combined Resistivity Sounding and Profiling). IP and RS sections were completed along each profile. In addition, the RS and IP data were analyzed and relation between these two variables was determined by statistical tools. Finally, hematite bodies were identified in each of the sections. The results showed that hematite bodies have a resistivity lower than 125 Ωm and very low chargeability, lower than 8 mV⁄V. After geophysical study some points were proposed for drilling, results obtained from drilling confirm the geophysical results.

Keywords: Hematite deposit, Iron exploration, Electrical resistivity, Chargeability, Iran, Chichak, Statistical, CRSP electrodes array

Procedia PDF Downloads 77
175 The Asymptotic Hole Shape in Long Pulse Laser Drilling: The Influence of Multiple Reflections

Authors: Torsten Hermanns, You Wang, Stefan Janssen, Markus Niessen, Christoph Schoeler, Ulrich Thombansen, Wolfgang Schulz

Abstract:

In long pulse laser drilling of metals, it can be demonstrated that the ablation shape approaches a so-called asymptotic shape such that it changes only slightly or not at all with further irradiation. These findings are already known from ultra short pulse (USP) ablation of dielectric and semiconducting materials. The explanation for the occurrence of an asymptotic shape in long pulse drilling of metals is identified, a model for the description of the asymptotic hole shape numerically implemented, tested and clearly confirmed by comparison with experimental data. The model assumes a robust process in that way that the characteristics of the melt flow inside the arising melt film does not change qualitatively by changing the laser or processing parameters. Only robust processes are technically controllable and thus of industrial interest. The condition for a robust process is identified by a threshold for the mass flow density of the assist gas at the hole entrance which has to be exceeded. Within a robust process regime the melt flow characteristics can be captured by only one model parameter, namely the intensity threshold. In analogy to USP ablation (where it is already known for a long time that the resulting hole shape results from a threshold for the absorbed laser fluency) it is demonstrated that in the case of robust long pulse ablation the asymptotic shape forms in that way that along the whole contour the absorbed heat flux density is equal to the intensity threshold. The intensity threshold depends on the special material and radiation properties and has to be calibrated be one reference experiment. The model is implemented in a numerical simulation which is called AsymptoticDrill and requires such a few amount of resources that it can run on common desktop PCs, laptops or even smart devices. Resulting hole shapes can be calculated within seconds what depicts a clear advantage over other simulations presented in literature in the context of industrial every day usage. Against this background the software additionally is equipped with a user-friendly GUI which allows an intuitive usage. Individual parameters can be adjusted using sliders while the simulation result appears immediately in an adjacent window. A platform independent development allow a flexible usage: the operator can use the tool to adjust the process in a very convenient manner on a tablet during the developer can execute the tool in his office in order to design new processes. Furthermore, at the best knowledge of the authors AsymptoticDrill is the first simulation which allows the import of measured real beam distributions and thus calculates the asymptotic hole shape on the basis of the real state of the specific manufacturing system. In this paper the emphasis is placed on the investigation of the effect of multiple reflections on the asymptotic hole shape which gain in importance when drilling holes with large aspect ratios.

Keywords: asymptotic hole shape, intensity threshold, long pulse laser drilling, robust process

Procedia PDF Downloads 213
174 Enhancing Wheat Productivity for Small-Scale Farmers in the Northern State of Sudan through Developing a Local Made Seed Cleaner and Different Seeding Methods

Authors: Yasir Hassan Satti Mohammed

Abstract:

The wheat cleaner was designed, manufactured, and tested in the workshop of the department of agricultural engineering, faculty of agricultural sciences, university of Dongola, the northern state of Sudan, for the purpose of enhancing productivity for small-scale-farmers who used to plant their saved wheat seeds every season with all risk of weed infestation and low viability. A one-season field experiment was then conducted according to the Randomized Complete Block Design (RCBD) experimental design in the demonstration farm of Dongola research station using clean seeds and unclean seeds of a local wheat variety (Imam); two different planting methods were also adopted in the experiment. One is the traditional seed drilling within the recommended seed rate (50 kg.feddan⁻¹), whereas the other was the precision seeding method using half of the recommended seed rate (25 kg.feddan⁻¹). The effect of seed type and planting method on field parameters were investigated, and the data was then analyzed using a computer application SAS system version 9.3. The results revealed significant (P ≥ 0.05) and highly significant (P ≥ 0.01) differences between treatments. The precision seeding method with clean seeds increased the number of kernels per spike (KS), tillers per plant (TPP), one thousand kernels mass (TKM), the biomass of wheat (BWT), and total yield (TOY), whereas weeds per area (WSM), the biomass of weeds (BWD) and weight of weed seeds were apparently decreased compared to seed drilling with unclean seed. Wheat seed cleaner could be of great benefit for small-scale wheat farmers in Sudan who cannot afford the cleaned seeds commercially provided by the local government.

Keywords: wheat cleaner, precision seeding, seed drilling method, small-scale farmers

Procedia PDF Downloads 95
173 Chromite Exploration Using Electrical Resistivity Tomography in Ingessana Hill, Blue Nile State, Sudan

Authors: Mohamed A. Mohamed-Ali, Jannis Simos, Khalid M. Kheiralla

Abstract:

The Ingessana hills in the southern Blue Nile of Sudan are part of the southern sector of the NE-SW trending ophiolithic belt of the Arab-Nubian Shield with mid-neoproterozoic age. The rocks are mainly serpentinized and in parts highly silicified dunites especially towards the contact with the intruding Bau granite. A promising chromite mineralization zones in the area tend to be generally associated with NE-SW trending shear-zones. A detailed geophysical survey employing electrical resistivity tomography (ERT) at 34 lines were carried out over a zone of a known chromite mineralization to test feasibility of detecting and delineating the ore (if exist) and accordingly facilitate the positioning of exploratory drill holes. ERT sections were inverted with smooth constraints inversion code where the contacts between the granite and the ultramafics are showing up clearly. The continuity of mineralization along the contact is not well confirmed. However, the low-resistivity anomalies are probably recognized as potential chromite mineralization zones. These anomalies represent prime targets for further exploration by drilling, trenching or shallow pits. If the results of the drilling or excavations are positive, small open pit exploitations may produce important tonnages of chromite.

Keywords: chromite exploration, ERT, Ingessana Hills, inversion

Procedia PDF Downloads 388
172 Application of Decline Curve Analysis to Depleted Wells in a Cluster and then Predicting the Performance of Currently Flowing Wells

Authors: Satish Kumar Pappu

Abstract:

The most common questions which are frequently asked in oil and gas industry are how much is the current production rate from a particular well and what is the approximate predicted life of that well. These questions can be answered through forecasting of important realistic data like flowing tubing hole pressures FTHP, Production decline curves which are used predict the future performance of a well in a reservoir. With the advent of directional drilling, cluster well drilling has gained much importance and in-fact has even revolutionized the whole world of oil and gas industry. An oil or gas reservoir can generally be described as a collection of several overlying, producing and potentially producing sands in to which a number of wells are drilled depending upon the in-place volume and several other important factors both technical and economical in nature, in some sands only one well is drilled and in some, more than one. The aim of this study is to derive important information from the data collected over a period of time at regular intervals on a depleted well in a reservoir sand and apply this information to predict the performance of other wells in that reservoir sand. The depleted wells are the most common observations when an oil or gas field is being visited, w the application of this study more realistic in nature.

Keywords: decline curve analysis, estimation of future gas reserves, reservoir sands, reservoir risk profile

Procedia PDF Downloads 437
171 A Unified Model for Predicting Particle Settling Velocity in Pipe, Annulus and Fracture

Authors: Zhaopeng Zhu, Xianzhi Song, Gensheng Li

Abstract:

Transports of solid particles through the drill pipe, drill string-hole annulus and hydraulically generated fractures are important dynamic processes encountered in oil and gas well drilling and completion operations. Different from particle transport in infinite space, the transports of cuttings, proppants and formation sand are hindered by a finite boundary. Therefore, an accurate description of the particle transport behavior under the bounded wall conditions encountered in drilling and hydraulic fracturing operations is needed to improve drilling safety and efficiency. In this study, the particle settling experiments were carried out to investigate the particle settling behavior in the pipe, annulus and between the parallel plates filled with power-law fluids. Experimental conditions simulated the particle Reynolds number ranges of 0.01-123.87, the dimensionless diameter ranges of 0.20-0.80 and the fluid flow behavior index ranges of 0.48-0.69. Firstly, the wall effect of the annulus is revealed by analyzing the settling process of the particles in the annular geometry with variable inner pipe diameter. Then, the geometric continuity among the pipe, annulus and parallel plates was determined by introducing the ratio of inner diameter to an outer diameter of the annulus. Further, a unified dimensionless diameter was defined to confirm the relationship between the three different geometry in terms of the wall effect. In addition, a dimensionless term independent from the settling velocity was introduced to establish a unified explicit settling velocity model applicable to pipes, annulus and fractures with a mean relative error of 8.71%. An example case study was provided to demonstrate the application of the unified model for predicting particle settling velocity. This paper is the first study of annulus wall effects based on the geometric continuity concept and the unified model presented here will provide theoretical guidance for improved hydraulic design of cuttings transport, proppant placement and sand management operations.

Keywords: wall effect, particle settling velocity, cuttings transport, proppant transport in fracture

Procedia PDF Downloads 160
170 Investigation and Analysis on Pore Pressure Variation by Sonic Impedance under Influence of Compressional, Shear, and Stonely Waves in High Pressure Zones

Authors: Nouri, K., Ghassem Alaskari, M., K., Amiri Hazaveh, A., Nabi Bidhendi, M.

Abstract:

Pore pressure is one on the key Petrophysical parameter in exploration discussion and survey on hydrocarbon reservoir. Determination of pore pressure in various levels of drilling and integrity of drilling mud and high pressure zones in order to restrict blow-out and following damages are significant. The pore pressure is obtained by seismic and well logging data. In this study the pore pressure and over burden pressure through the matrix stress and Tarzaqi equation and other related formulas are calculated. By making a comparison on variation of density log in over normal pressure zones with change of sonic impedance under influence of compressional, shear, and Stonely waves, the correlation level of sonic impedance with density log is studied. The level of correlation and variation trend is recorded in sonic impedance under influence Stonely wave with density log that key factor in recording of over burden pressure and pore pressure in Tarzaqi equation is high. The transition time is in divert relation with porosity and fluid type in the formation and as a consequence to the pore pressure. The density log is a key factor in determination of pore pressure therefore sonic impedance under Stonley wave is denotes well the identification of high pressure besides other used factors.

Keywords: pore pressure, stonely wave, density log, sonic impedance, high pressure zone

Procedia PDF Downloads 395
169 The Analysis of Drill Bit Optimization by the Application of New Electric Impulse Technology in Shallow Water Absheron Peninsula

Authors: Ayshan Gurbanova

Abstract:

Despite based on the fact that drill bit which is the smallest part of bottom hole assembly costs only in between 10% and 15% of the total expenses made, they are the first equipment that is in contact with the formation itself. Hence, it is consequential to choose the appropriate type and dimension of drilling bit, which will prevent majority of problems by not demanding many tripping procedure. However, within the advance in technology, it is now seamless to be beneficial in the terms of many concepts such as subsequent time of operation, energy, expenditure, power and so forth. With the intention of applying the method to Azerbaijan, the field of Shallow Water Absheron Peninsula has been suggested, where the mainland has been located 15 km away from the wildcat wells, named as “NKX01”. It has the water depth of 22 m as indicated. In 2015 and 2016, the seismic survey analysis of 2D and 3D have been conducted in contract area as well as onshore shallow water depth locations. With the aim of indicating clear elucidation, soil stability, possible submersible dangerous scenarios, geohazards and bathymetry surveys have been carried out as well. Within the seismic analysis results, the exact location of exploration wells have been determined and along with this, the correct measurement decisions have been made to divide the land into three productive zones. In the term of the method, Electric Impulse Technology (EIT) is based on discharge energies of electricity within the corrosivity in rock. Take it simply, the highest value of voltages could be created in the less range of nano time, where it is sent to the rock through electrodes’ baring as demonstrated below. These electrodes- higher voltage powered and grounded are placed on the formation which could be obscured in liquid. With the design, it is more seamless to drill horizontal well based on the advantage of loose contact of formation. There is also no chance of worn ability as there are no combustion, mechanical power exist. In the case of energy, the usage of conventional drilling accounts for 1000 𝐽/𝑐𝑚3 , where this value accounts for between 100 and 200 𝐽/𝑐𝑚3 in EIT. Last but not the least, from the test analysis, it has been yielded that it achieves the value of ROP more than 2 𝑚/ℎ𝑟 throughout 15 days. Taking everything into consideration, it is such a fact that with the comparison of data analysis, this method is highly applicable to the fields of Azerbaijan.

Keywords: drilling, drill bit cost, efficiency, cost

Procedia PDF Downloads 73
168 Application of a Geomechanical Model to Justify the Exploitation of Bazhenov-Abalak Formation, Western Siberia

Authors: Yan Yusupov, Aleksandra Soldatova, Yaroslav Zaglyadin

Abstract:

The object of this work is Bazhenov-Abalak unconventional formation (BAUF) of Western Siberia. On the base of the Geomechanical model (GMM), a methodology was developed for sweet spot intervals and zones for drilling horizontal wells with hydraulic fracturing. Based on mechanical rock typification, eight mechanical rock types (MRT) have been identified. Sweet spot intervals are represented by siliceous-carbonate (2), siliceous (5) and carbonate (8) MRT that have the greatest brittleness index (BRIT). A correlation has been established between the thickness of brittle intervals and the initial well production rates, which makes it possible to identify sweet spot zones for drilling horizontal wells with hydraulic fracturing. Brittle and ductile intervals are separated by a BRIT cut-off of 0.4 since wells located at points with BRIT < 0.4 have insignificant rates (less than 2 m³/day). Wells with an average BRIT in BAUF of more than 0.4 reach industrial production rates. The next application of GMM is associated with the instability of the overburdened clay formation above the top of the BAUF. According to the wellbore stability analysis, the recommended mud weight for this formation must be not less than 1.53–1.55 g/cc. The optimal direction for horizontal wells corresponds to the azimuth of Shmin equal to 70-80°.

Keywords: unconventional reservoirs, geomechanics, sweet spot zones, borehole stability

Procedia PDF Downloads 67
167 Geotechnical and Mineralogical Properties of Clay Soils in the Second Organized Industrial Region, Konya, Turkey

Authors: Mustafa Yıldız, Ali Ulvi Uzer, Murat Olgun

Abstract:

In this study, geotechnical and mineralogical properties of gypsum containing clay basis which form the ground of Second Organized Industrial Zone in Konya province have been researched through comprehensive field and laboratory experiments. Although sufficient geotechnical research has not been performed yet, an intensive structuring in the region continues at present. The study area consists of mid-lake sediments formed by gypsum containing soft silt-clay basis which evolves to a large area. To determine the soil profile and geotechnical specifications; 18 drilling holes were opened and disturbed / undisturbed soil samples have been taken through shelby tubes within 1.5m intervals. Tests have been performed on these samples to designate the index and strength properties of soil. Besides, at all drilling holes Standart Penetration Tests have been done within 1.5m intervals. For the purpose of determining the mineralogical characteristics of the soil; all rock and X-RD analysis have been carried out on 6 samples which were taken from various depths through the soil profile. Strength and compressibility characteristics of the soil were defined with correlations using laboratory and field test results. Unconfined compressive strength, undrained cohesion, compression index varies between 16 kN/m2 and 405.4 kN/m2, 6.5 kN/m2 and 72 kN/m2, 0.066 and 0.864, respectively.

Keywords: Konya second organized industrial region, strength, compressibility, soft clay

Procedia PDF Downloads 309
166 A Study on Impact of Scheduled Preventive Maintenance on Overall Self-Life as Well as Reduction of Operational down Time of Critical Oil Field Mobile Equipment

Authors: Dipankar Deka

Abstract:

Exploration and production of Oil & Gas is a very challenging business on which a nation’s energy security depends on. The exploration and Production of hydrocarbon is a very precise and time-bound process. The striking rate of hydrocarbon in a drilled well is so uncertain that the success rate is only 31% in 2021 as per Rigzone. Huge cost is involved in drilling as well as the production of hydrocarbon from a well. Due to this very reason, no one can effort to lose a well because of faulty machines, which increases the non-productive time (NPT). Numerous activities that include manpower and machines synchronized together works in a precise way to complete the full cycle of exploration, rig movement, drilling and production of crude oil. There are several machines, both fixed and mobile, are used in the complete cycle. Most of these machines have a tight schedule of work operating in various drilling sites that are simultaneously being drilled, providing a very narrow window for maintenance. The shutdown of any of these machines for even a small period of time delays the whole project and increases the cost of production of hydrocarbon by manifolds. Moreover, these machines are custom designed exclusively for oil field operations to be only used in Mining Exploration Licensed area (MEL) earmarked by the government and are imported and very costly in nature. The cost of some of these mobile units like Well Logging Units, Coil Tubing units, Nitrogen pumping units etc. that are used for Well stimulation and activation process exceeds more than 1 million USD per unit. So the increase of self-life of these units also generates huge revenues during the extended duration of their services. In this paper we are considering the very critical mobile oil field equipment like Well Logging Unit, Coil Tubing unit, well-killing unit, Nitrogen pumping unit, MOL Oil Field Truck, Hot Oil Circulation Unit etc., and their extensive preventive maintenance in our auto workshop. This paper is the outcome of 10 years of structured automobile maintenance and minute documentation of each associated event that allowed us to perform the comparative study between the new practices of preventive maintenance over the age-old practice of system-based corrective maintenance and its impact on the self-life of the equipment.

Keywords: automobile maintenance, preventive maintenance, symptom based maintenance, workshop technologies

Procedia PDF Downloads 74
165 Demulsification of Oil from Produced water Using Fibrous Coalescer

Authors: Nutcha Thianbut

Abstract:

In the petroleum drilling industry, besides oil and gas, water is also produced from petroleum production. which will have oil droplets dispersed in the water as an emulsion. Commonly referred to as produced water, most industrial water-based produced water methods use the method of pumping water back into wells or catchment areas. because it cannot be utilized further, but in the compression of water each time, the cost is quite high. And the survey found that the amount of water from the petroleum production process has increased every year. In this research, we would like to study the removal of oil in produced water by the Coalescer device using fibers from agricultural waste as an intermediary. As an alternative to reduce the cost of water management in the petroleum drilling industry. The objectives of this research are 1. To study the fiber pretreatment by chemical process for the efficiency of oil-water separation 2. To study and design the fiber-packed coalescer device to destroy the emulsion of crude oil in water. 3. To study the working conditions of coalescer devices in emulsion destruction. using a fiber medium. In this research, the experiment was divided into two parts. The first part will study the absorbency of fibers. It compares untreated fibers with chemically treated alkaline fibers that change over time as well as adjusting the amount of fiber on the absorbency of the fiber and the second part will study the separation of oil from produced water by Coalescer equipment using fiber as medium to study the optimum condition of coalescer equipment for further development and industrial application.

Keywords: produced water, fiber, surface modification, coalescer

Procedia PDF Downloads 166
164 Statistical Correlation between Logging-While-Drilling Measurements and Wireline Caliper Logs

Authors: Rima T. Alfaraj, Murtadha J. Al Tammar, Khaqan Khan, Khalid M. Alruwaili

Abstract:

OBJECTIVE/SCOPE (25-75): Caliper logging data provides critical information about wellbore shape and deformations, such as stress-induced borehole breakouts or washouts. Multiarm mechanical caliper logs are often run using wireline, which can be time-consuming, costly, and/or challenging to run in certain formations. To minimize rig time and improve operational safety, it is valuable to develop analytical solutions that can estimate caliper logs using available Logging-While-Drilling (LWD) data without the need to run wireline caliper logs. As a first step, the objective of this paper is to perform statistical analysis using an extensive datasetto identify important physical parameters that should be considered in developing such analytical solutions. METHODS, PROCEDURES, PROCESS (75-100): Caliper logs and LWD data of eleven wells, with a total of more than 80,000 data points, were obtained and imported into a data analytics software for analysis. Several parameters were selected to test the relationship of the parameters with the measured maximum and minimum caliper logs. These parameters includegamma ray, porosity, shear, and compressional sonic velocities, bulk densities, and azimuthal density. The data of the eleven wells were first visualized and cleaned.Using the analytics software, several analyses were then preformed, including the computation of Pearson’s correlation coefficients to show the statistical relationship between the selected parameters and the caliper logs. RESULTS, OBSERVATIONS, CONCLUSIONS (100-200): The results of this statistical analysis showed that some parameters show good correlation to the caliper log data. For instance, the bulk density and azimuthal directional densities showedPearson’s correlation coefficients in the range of 0.39 and 0.57, which wererelatively high when comparedto the correlation coefficients of caliper data with other parameters. Other parameters such as porosity exhibited extremely low correlation coefficients to the caliper data. Various crossplots and visualizations of the data were also demonstrated to gain further insights from the field data. NOVEL/ADDITIVE INFORMATION (25-75): This study offers a unique and novel look into the relative importance and correlation between different LWD measurements and wireline caliper logs via an extensive dataset. The results pave the way for a more informed development of new analytical solutions for estimating the size and shape of the wellbore in real-time while drilling using LWD data.

Keywords: LWD measurements, caliper log, correlations, analysis

Procedia PDF Downloads 121
163 Investigation on the Cooling Performance of Cooling Channels Fabricated via Selective Laser Melting for Injection Molding

Authors: Changyong Liu, Junda Tong, Feng Xu, Ninggui Huang

Abstract:

In the injection molding process, the performance of cooling channels is crucial to the part quality. Through the application of conformal cooling channels fabricated via metal additive manufacturing, part distortion, warpage can be greatly reduced and cycle time can be greatly shortened. However, the properties of additively manufactured conformal cooling channels are quite different from conventional drilling processes such as the poorer dimensional accuracy and larger surface roughness. These features have significant influences on its cooling performance. In this study, test molds with the cooling channel diameters of φ2 mm, φ3 mm and φ4 mm were fabricated via selective laser melting and conventional drilling process respectively. A test system was designed and manufactured to measure the pressure difference between the channel inlet and outlet, the coolant flow rate and the temperature variation during the heating process. It was found that the cooling performance of SLM-fabricated channels was poorer than drilled cooling channels due to the smaller sectional area of cooling channels resulted from the low dimensional accuracy and the unmolten particles adhered to the channel surface. Theoretical models were established to determine the friction factor and heat transfer coefficient of SLM-fabricated cooling channels. These findings may provide guidance to the design of conformal cooling channels.

Keywords: conformal cooling channels, selective laser melting, cooling performance, injection molding

Procedia PDF Downloads 150
162 A Model for Predicting Organic Compounds Concentration Change in Water Associated with Horizontal Hydraulic Fracturing

Authors: Ma Lanting, S. Eguilior, A. Hurtado, Juan F. Llamas Borrajo

Abstract:

Horizontal hydraulic fracturing is a technology to increase natural gas flow and improve productivity in the low permeability formation. During this drilling operation tons of flowback and produced water which contains many organic compounds return to the surface with a potential risk of influencing the surrounding environment and human health. A mathematical model is urgently needed to represent organic compounds in water transportation process behavior and the concentration change with time throughout the hydraulic fracturing operation life cycle. A comprehensive model combined Organic Matter Transport Dynamic Model with Two-Compartment First-order Model Constant (TFRC) Model has been established to quantify the organic compounds concentration. This algorithm model is composed of two transportation parts based on time factor. For the fast part, the curve fitting technique is applied using flowback water data from the Marcellus shale gas site fracturing and the coefficients of determination (R2) from all analyzed compounds demonstrate a high experimental feasibility of this numerical model. Furthermore, along a decade of drilling the concentration ratio curves have been estimated by the slow part of this model. The result shows that the larger value of Koc in chemicals, the later maximum concentration in water will reach, as well as all the maximum concentrations percentage would reach up to 90% of initial concentration from shale formation within a long sufficient period.

Keywords: model, shale gas, concentration, organic compounds

Procedia PDF Downloads 226
161 Identification of Deep Landslide on Erzurum-Turkey Highway by Geotechnical and Geophysical Methods and its Prevention

Authors: Neşe Işık, Şenol Altıok, Galip Devrim Eryılmaz, Aydın durukan, Hasan Özgür Daş

Abstract:

In this study, an active landslide zone affecting the road alignment on the Tortum-Uzundere (Erzurum/Turkey) highway was investigated. Due to the landslide movement, problems have occurred in the existing road pavement, which has caused both safety problems and reduced driving comfort in the operation of the road. In order to model the landslide, drilling, geophysical and inclinometer studies were carried out in the field within the scope of ground investigation. Laboratory tests were carried out on soil and rock samples obtained from the borings. When the drilling and geophysical studies were evaluated together, it was determined that the study area has a complex geological structure. In addition, according to the inclinometer results, the direction and speed of movement of the landslide mass were observed. In order to create an idealized geological profile, all field and laboratory studies were evaluated together and then the sliding surface of the landslide was determined by back analysis method. According to the findings obtained, it was determined that the landslide was massively large, and the movement occurred had a deep sliding surface. As a result of the numerical analyses, it was concluded that the Slope angle reduction is the most economical and environmentally friendly method for the control of the landslide mass.

Keywords: landslide, geotechnical methods, geophysics, monitoring, highway

Procedia PDF Downloads 68
160 Identifying and Review of Effective Factors on Marketing Relationship In National Iranian Drilling Company from Managers’ View

Authors: Hoda Ghorbani

Abstract:

Today, many markets are matured and faced by a congested competition and amount of supply that is quite greater than demand. With respect to such modifications, organizations shall make themselves more equipped beforehand and ready to tackle with their rivals. In this regard, Relationship Marketing tries to lower the cost for attracting new customers by establishment and maintenance long run relations with the current customers and by which they try to increase corporative profitability. Consequently, identifying of relationship marketing and its effective factors is an essential element for maintenance of market and improvement of corporative competition potential. The present study deals with identifying the effective factors on marketing relationship in National Iranian Drilling Company (NIDC) from managers’ point of view. Methodology of this study is of descriptive- survey type. In addition to an extensive review on secondary sources and interview with experienced members in NIDC, researcher identified the related factors and distributed a questionnaire, including 31 questions, among 144 participants from corporative managers and first-rank principals. After gathering information, the related data have been analyzed by using binomial test as well as Binomial Analytic Hierarchy Process (AHP) of pair-wise comparisons. Study results showed that some variable like communication, commitment, Conflict Management and trust have affected on relationship marketing based on their order preference.

Keywords: marketing relationship, trust, commitment, communication, conflict management

Procedia PDF Downloads 371
159 An Automated Approach to the Nozzle Configuration of Polycrystalline Diamond Compact Drill Bits for Effective Cuttings Removal

Authors: R. Suresh, Pavan Kumar Nimmagadda, Ming Zo Tan, Shane Hart, Sharp Ugwuocha

Abstract:

Polycrystalline diamond compact (PDC) drill bits are extensively used in the oil and gas industry as well as the mining industry. Industry engineers continually improve upon PDC drill bit designs and hydraulic conditions. Optimized injection nozzles play a key role in improving the drilling performance and efficiency of these ever changing PDC drill bits. In the first part of this study, computational fluid dynamics (CFD) modelling is performed to investigate the hydrodynamic characteristics of drilling fluid flow around the PDC drill bit. An Open-source CFD software – OpenFOAM simulates the flow around the drill bit, based on the field input data. A specifically developed console application integrates the entire CFD process including, domain extraction, meshing, and solving governing equations and post-processing. The results from the OpenFOAM solver are then compared with that of the ANSYS Fluent software. The data from both software programs agree. The second part of the paper describes the parametric study of the PDC drill bit nozzle to determine the effect of parameters such as number of nozzles, nozzle velocity, nozzle radial position and orientations on the flow field characteristics and bit washing patterns. After analyzing a series of nozzle configurations, the best configuration is identified and recommendations are made for modifying the PDC bit design.

Keywords: ANSYS Fluent, computational fluid dynamics, nozzle configuration, OpenFOAM, PDC dill bit

Procedia PDF Downloads 420
158 Risk Analysis of Leaks from a Subsea Oil Facility Based on Fuzzy Logic Techniques

Authors: Belén Vinaixa Kinnear, Arturo Hidalgo López, Bernardo Elembo Wilasi, Pablo Fernández Pérez, Cecilia Hernández Fuentealba

Abstract:

The expanded use of risk assessment in legislative and corporate decision-making has increased the role of expert judgement in giving data for security-related decision-making. Expert judgements are required in most steps of risk assessment: danger recognizable proof, hazard estimation, risk evaluation, and examination of choices. This paper presents a fault tree analysis (FTA), which implies a probabilistic failure analysis applied to leakage of oil in a subsea production system. In standard FTA, the failure probabilities of items of a framework are treated as exact values while evaluating the failure probability of the top event. There is continuously insufficiency of data for calculating the failure estimation of components within the drilling industry. Therefore, fuzzy hypothesis can be used as a solution to solve the issue. The aim of this paper is to examine the leaks from the Zafiro West subsea oil facility by using fuzzy fault tree analysis (FFTA). As a result, the research has given theoretical and practical contributions to maritime safety and environmental protection. It has been also an effective strategy used traditionally in identifying hazards in nuclear installations and power industries.

Keywords: expert judgment, probability assessment, fault tree analysis, risk analysis, oil pipelines, subsea production system, drilling, quantitative risk analysis, leakage failure, top event, off-shore industry

Procedia PDF Downloads 190
157 Finite Element Analysis of Cold Formed Steel Screwed Connections

Authors: Jikhil Joseph, S. R. Satish Kumar

Abstract:

Steel Structures are commonly used for rapid erections and multistory constructions due to its inherent advantages. However, the high accuracy required in detailing and heavier sections, make it difficult to erect in place and transport. Cold Formed steel which are specially made by reducing carbon and other alloys are used nowadays to make thin-walled structures. Various types of connections are being reported as well as practiced for the thin-walled members such as bolting, riveting, welding and other mechanical connections. Commonly self-drilling screw connections are used for cold-formed purlin sheeting connection. In this paper an attempt is made to develop a moment resting frame which can be rapidly and remotely constructed with thin walled sections and self-drilling screws. Semi-rigid Moment connections are developed with Rectangular thin-walled tubes and the screws. The Finite Element Analysis programme ABAQUS is used for modelling the screwed connections. The various modelling procedures for simulating the connection behavior such as tie-constraint model, oriented spring model and solid interaction modelling are compared and are critically reviewed. From the experimental validations the solid-interaction modelling identified to be the most accurate one and are used for predicting the connection behaviors. From the finite element analysis, hysteresis curves and the modes of failure were identified. Parametric studies were done on the connection model to optimize the connection configurations to get desired connection characteristics.

Keywords: buckling, cold formed steel, finite element analysis, screwed connections

Procedia PDF Downloads 187
156 Experimental Investigation on the Effect of Prestress on the Dynamic Mechanical Properties of Conglomerate Based on 3D-SHPB System

Authors: Wei Jun, Liao Hualin, Wang Huajian, Chen Jingkai, Liang Hongjun, Liu Chuanfu

Abstract:

Kuqa Piedmont is rich in oil and gas resources and has great development potential in Tarim Basin, China. However, there is a huge thick gravel layer developed with high content, wide distribution and variation in size of gravel, leading to the condition of strong heterogeneity. So that, the drill string is in a state of severe vibration and the drill bit is worn seriously while drilling, which greatly reduces the rock-breaking efficiency, and there is a complex load state of impact and three-dimensional in-situ stress acting on the rock in the bottom hole. The dynamic mechanical properties and the influencing factors of conglomerate, the main component of gravel layer, are the basis of engineering design and efficient rock breaking method and theoretical research. Limited by the previously experimental technique, there are few works published yet about conglomerate, especially rare in dynamic load. Based on this, a kind of 3D SHPB system, three-dimensional prestress, can be applied to simulate the in-situ stress characteristics, is adopted for the dynamic test of the conglomerate. The results show that the dynamic strength is higher than its static strength obviously, and while the three-dimensional prestress is 0 and the loading strain rate is 81.25~228.42 s-1, the true triaxial equivalent strength is 167.17~199.87 MPa, and the strong growth factor of dynamic and static is 1.61~1.92. And the higher the impact velocity, the greater the loading strain rate, the higher the dynamic strength and the greater the failure strain, which all increase linearly. There is a critical prestress in the impact direction and its vertical direction. In the impact direction, while the prestress is less than the critical one, the dynamic strength and the loading strain rate increase linearly; otherwise, the strength decreases slightly and the strain rate decreases rapidly. In the vertical direction of impact load, the strength increases and the strain rate decreases linearly before the critical prestress, after that, oppositely. The dynamic strength of the conglomerate can be reduced properly by reducing the amplitude of impact load so that the service life of rock-breaking tools can be prolonged while drilling in the stratum rich in gravel. The research has important reference significance for the speed-increasing technology and theoretical research while drilling in gravel layer.

Keywords: huge thick gravel layer, conglomerate, 3D SHPB, dynamic strength, the deformation characteristics, prestress

Procedia PDF Downloads 209
155 Comparison of Er:YAG Laser with Bur Prepared Cavities: A Systematic Review

Authors: Sarina Sahmeddini, Fahimeh Safarpour, Forough Pazhuheian

Abstract:

With the concepts of minimally invasive treatment and preventive dentistry gaining more and more recognition by dentists, there are many published clinical trials comparing the use of the erbium laser with traditional drilling for caries removal. However, the efficacy of the erbium laser is still controversial. The aim of this review study is to compare the effects of tooth preparation by laser irradiation and conventional preparation by bur to identify the best means for cavity preparation and reduction of recurrent caries. Randomized controlled trials, controlled clinical trials, and prospective, and retrospective cohort studies were included in this review. The eligibility criteria included studies in humans’ permanent teeth in which cavities were conducted in their cervical third and proximal surfaces. PubMed, Google scholar, and Scopus about Er:YAG laser and bur prepared cavities were carried out. The studies’ details were organized in four tables according to the groups: (1) Microleakage; (2) Morphological changes; (3) Microhardness; and (4) Bond strength. The initial search resulted in 134 articles, 12 studies published from 2012 up to March 2020 were included in this review. According to the risk of bias evaluation, all studies were classified as high quality. Clinical implications: Er:YAG lasers with the energy levels between 250 to 300 mJ can be proper alternatives to conventional burs, as minimal invasive instruments with no significant differences or better results in microleakage, microhardness, and bond strength compared with conventional burs. In conclusion, Er:YAG laser irradiations accompanied by phosphoric acid etching can reduce the chance of recurrent carries.

Keywords: lasers, drilling, caries, micro leakage

Procedia PDF Downloads 131
154 Application of Geosynthetics for the Recovery of Located Road on Geological Failure

Authors: Rideci Farias, Haroldo Paranhos

Abstract:

The present work deals with the use of drainage geo-composite as a deep drainage and geogrid element to reinforce the base of the body of the landfill destined to the road pavement on geological faults in the stretch of the TO-342 Highway, between the cities of Miracema and Miranorte, in the State of Tocantins / TO, Brazil, which for many years was the main link between TO-010 and BR-153, after the city of Palmas, also in the state of Tocantins / TO, Brazil. For this application, geotechnical and geological studies were carried out by means of SPT percussion drilling, drilling and rotary drilling, to understand the problem, identifying the type of faults, filling material and the definition of the water table. According to the geological and geotechnical studies carried out, the area where the route was defined, passes through a zone of longitudinal fault to the runway, with strong breaking / fracturing, with presence of voids, intense alteration and with advanced argilization of the rock and with the filling up parts of the faults by organic and compressible soils leachate from other horizons. This geology presents as a geotechnical aggravating agent a medium of high hydraulic load and very low resistance to penetration. For more than 20 years, the region presented constant excessive deformations in the upper layers of the pavement, which after routine services of regularization, reconformation, re-compaction of the layers and application of the asphalt coating. The faults were quickly propagated to the surface of the asphalt pavement, generating a longitudinal shear, forming steps (unevenness), close to 40 cm, causing numerous accidents and discomfort to the drivers, since the geometric positioning was in a horizontal curve. Several projects were presented to the region's highway department to solve the problem. Due to the need for partial closure of the runway, the short time for execution, the use of geosynthetics was proposed and the most adequate solution for the problem was taken into account the movement of existing geological faults and the position of the water level in relation to several Layers of pavement and failure. In order to avoid any flow of water in the body of the landfill and in the filling material of the faults, a drainage curtain solution was used, carried out at 4.0 meters depth, with drainage geo-composite and as reinforcement element and inhibitor of the possible A geogrid of 200 kN / m of resistance was inserted at the base of the reconstituted landfill. Recent evaluations, after 13 years of application of the solution, show the efficiency of the technique used, supported by the geotechnical studies carried out in the area.

Keywords: geosynthetics, geocomposite, geogrid, road, recovery, geological failure

Procedia PDF Downloads 170
153 6 DOF Cable-Driven Haptic Robot for Rendering High Axial Force with Low Off-Axis Impedance

Authors: Naghmeh Zamani, Ashkan Pourkand, David Grow

Abstract:

This paper presents the design and mechanical model of a hybrid impedance/admittance haptic device optimized for applications, like bone drilling, spinal awl probe use, and other surgical techniques were high force is required in the tool-axial direction, and low impedance is needed in all other directions. The performance levels required cannot be satisfied by existing, off-the-shelf haptic devices. This design may allow critical improvements in simulator fidelity for surgery training. The device consists primarily of two low-mass (carbon fiber) plates with a rod passing through them. Collectively, the device provides 6 DOF. The rod slides through a bushing in the top plate and it is connected to the bottom plate with a universal joint, constrained to move in only 2 DOF, allowing axial torque display the user’s hand. The two parallel plates are actuated and located by means of four cables pulled by motors. The forward kinematic equations are derived to ensure that the plates orientation remains constant. The corresponding equations are solved using the Newton-Raphson method. The static force/torque equations are also presented. Finally, we present the predicted distribution of location error, cables velocity, cable tension, force and torque for the device. These results and preliminary hardware fabrication indicate that this design may provide a revolutionary approach for haptic display of many surgical procedures by means of an architecture that allows arbitrary workspace scaling. Scaling of the height and width can be scaled arbitrarily.

Keywords: cable direct driven robot, haptics, parallel plates, bone drilling

Procedia PDF Downloads 258
152 Investigation of Effective Parameters on Pullout Capacity in Soil Nailing with Special Attention to International Design Codes

Authors: R. Ziaie Moayed, M. Mortezaee

Abstract:

An important and influential factor in design and determining the safety factor in Soil Nailing is the ultimate pullout capacity, or, in other words, bond strength. This important parameter depends on several factors such as material and soil texture, method of implementation, excavation diameter, friction angle between the nail and the soil, grouting pressure, the nail depth (overburden pressure), the angle of drilling and the degree of saturation in soil. Federal Highway Administration (FHWA), a customary regulation in the design of nailing, is considered only the effect of the soil type (or rock) and the method of implementation in determining the bond strength, which results in non-economic design. The other regulations are each of a kind, some of the parameters affecting bond resistance are not taken into account. Therefore, in the present paper, at first the relationships and tables presented by several valid regulations are presented for estimating the ultimate pullout capacity, and then the effect of several important factors affecting on ultimate Pullout capacity are studied. Finally, it was determined, the effect of overburden pressure (in method of injection with pressure), soil dilatation and roughness of the drilling surface on pullout strength is incremental, and effect of degree of soil saturation on pullout strength to a certain degree of saturation is increasing and then decreasing. therefore it is better to get help from nail pullout-strength test results and numerical modeling to evaluate the effect of parameters such as overburden pressure, dilatation, and degree of soil saturation, and so on to reach an optimal and economical design.

Keywords: soil nailing, pullout capacity, federal highway administration (FHWA), grout

Procedia PDF Downloads 152
151 Groundwater Treatment of Thailand's Mae Moh Lignite Mine

Authors: A. Laksanayothin, W. Ariyawong

Abstract:

Mae Moh Lignite Mine is the largest open-pit mine in Thailand. The mine serves coal to the power plant about 16 million tons per year. This amount of coal can produce electricity accounting for about 10% of Nation’s electric power generation. The mining area of Mae Moh Mine is about 28 km2. At present, the deepest area of the pit is about 280 m from ground level (+40 m. MSL) and in the future the depth of the pit can reach 520 m from ground level (-200 m.MSL). As the size of the pit is quite large, the stability of the pit is seriously important. Furthermore, the preliminary drilling and extended drilling in year 1989-1996 had found high pressure aquifer under the pit. As a result, the pressure of the underground water has to be released in order to control mine pit stability. The study by the consulting experts later found that 3-5 million m3 per year of the underground water is needed to be de-watered for the safety of mining. However, the quality of this discharged water should meet the standard. Therefore, the ground water treatment facility has been implemented, aiming to reduce the amount of naturally contaminated Arsenic (As) in discharged water lower than the standard limit of 10 ppb. The treatment system consists of coagulation and filtration process. The main components include rapid mixing tanks, slow mixing tanks, sedimentation tank, thickener tank and sludge drying bed. The treatment process uses 40% FeCl3 as a coagulant. The FeCl3 will adsorb with As(V), forming floc particles and separating from the water as precipitate. After that, the sludge is dried in the sand bed and then be disposed in the secured land fill. Since 2011, the treatment plant of 12,000 m3/day has been efficiently operated. The average removal efficiency of the process is about 95%.

Keywords: arsenic, coagulant, ferric chloride, groundwater, lignite, coal mine

Procedia PDF Downloads 310
150 Rheological Assessment of Oil Well Cement Paste Dosed with Cellulose Nanocrystal (CNC)

Authors: Mohammad Reza Dousti, Yaman Boluk, Vivek Bindiganavile

Abstract:

During the past few decades, oil and natural gas consumption have increased significantly. The limited amount of hydrocarbon resources on earth has led to a stronger desire towards efficient drilling, well completion and extracting, with the least time, energy and money wasted. Well cementing is one of the most crucial and important steps in any well completion, to fill the annulus between the casing string and the well bore. However, since it takes place at the end of the drilling process, a satisfying and acceptable job is rarely done. Hence, a large and significant amount of time and energy is then spent in order to do the required corrections or retrofitting the well in some cases. Oil well cement paste needs to be pumped during the cementing process, therefore the rheological and flow behavior of the paste is of great importance. This study examines the use of innovative cellulose-based nanomaterials on the flow properties of the resulting cementitious system. The cementitious paste developed in this research is composed of water, class G oil well cement, bentonite and cellulose nanocrystals (CNC). Bentonite is used as a cross contamination component. Initially, the influence of CNC on the flow and rheological behavior of CNC and bentonite suspensions was assessed. Furthermore, the rheological behavior of oil well cement pastes dosed with CNC was studied using a steady shear parallel-plate rheometer and the results were compared to the rheological behavior of a neat oil well cement paste with no CNC. The parameters assessed were the yield shear stress and the viscosity. Significant changes in yield shear stress and viscosity were observed due to the addition of the CNC. Based on the findings in this study, the addition of a very small dosage of CNC to the oil well cement paste results in a more viscous cement slurry with a higher yield stress, demonstrating a shear thinning behavior.

Keywords: cellulose nanocrystal, flow behavior, oil well cement, rheology

Procedia PDF Downloads 230
149 From Sampling to Sustainable Phosphate Recovery from Mine Waste Rock Piles

Authors: Hicham Amar, Mustapha El Ghorfi, Yassine Taha, Abdellatif Elghali, Rachid Hakkou, Mostafa Benzaazoua

Abstract:

Phosphate mine waste rock (PMWR) generated during ore extraction is continuously increasing, resulting in a significant environmental footprint. The main objectives of this study consist of i) elaboration of the sampling strategy of PMWR piles, ii) a mineralogical and chemical characterization of PMWR piles, and iii) 3D block model creation to evaluate the potential valorization of the existing PMWR. Destructive drilling using reverse circulation from 13 drills was used to collect samples for chemical (X-ray fluorescence analysis) and mineralogical assays. The 3D block model was created based on the data set, including chemical data of the realized drills using Datamine RM software. The optical microscopy observations showed that the sandy phosphate from drills in the PMWR piles is characterized by the abundance of carbonate fluorapatite with the presence of calcite, dolomite, and quartz. The mean grade of composite samples was around 19.5±2.7% for P₂O₅. The mean grade of P₂O₅ exhibited an increasing tendency by depth profile from bottom to top of PMWR piles. 3D block model generated with chemical data confirmed the tendency of the mean grades’ variation and may allow a potential selective extraction according to %P₂O₅. The 3D block model of P₂O₅ grade is an efficient sampling approach that confirmed the variation of P₂O₅ grade. This integrated approach for PMWR management will be a helpful tool for decision-making to recover the residual phosphate, adopting the circular economy and sustainability in the phosphate mining industry.

Keywords: 3D modelling, reverse circulation drilling, circular economy, phosphate mine waste rock, sampling

Procedia PDF Downloads 77
148 India's Geothermal Energy Landscape and Role of Geophysical Methods in Unravelling Untapped Reserves

Authors: Satya Narayan

Abstract:

India, a rapidly growing economy with a burgeoning population, grapples with the dual challenge of meeting rising energy demands and reducing its carbon footprint. Geothermal energy, an often overlooked and underutilized renewable source, holds immense potential for addressing this challenge. Geothermal resources offer a valuable, consistent, and sustainable energy source, and may significantly contribute to India's energy. This paper discusses the importance of geothermal exploration in India, emphasizing its role in achieving sustainable energy production while mitigating environmental impacts. It also delves into the methodology employed to assess geothermal resource feasibility, including geophysical surveys and borehole drilling. The results and discussion sections highlight promising geothermal sites across India, illuminating the nation's vast geothermal potential. It detects potential geothermal reservoirs, characterizes subsurface structures, maps temperature gradients, monitors fluid flow, and estimates key reservoir parameters. Globally, geothermal energy falls into high and low enthalpy categories, with India mainly having low enthalpy resources, especially in hot springs. The northwestern Himalayan region boasts high-temperature geothermal resources due to geological factors. Promising sites, like Puga Valley, Chhumthang, and others, feature hot springs suitable for various applications. The Son-Narmada-Tapti lineament intersects regions rich in geological history, contributing to geothermal resources. Southern India, including the Godavari Valley, has thermal springs suitable for power generation. The Andaman-Nicobar region, linked to subduction and volcanic activity, holds high-temperature geothermal potential. Geophysical surveys, utilizing gravity, magnetic, seismic, magnetotelluric, and electrical resistivity techniques, offer vital information on subsurface conditions essential for detecting, evaluating, and exploiting geothermal resources. The gravity and magnetic methods map the depth of the mantle boundary (high-temperature) and later accurately determine the Curie depth. Electrical methods indicate the presence of subsurface fluids. Seismic surveys create detailed sub-surface images, revealing faults and fractures and establishing possible connections to aquifers. Borehole drilling is crucial for assessing geothermal parameters at different depths. Detailed geochemical analysis and geophysical surveys in Dholera, Gujarat, reveal untapped geothermal potential in India, aligning with renewable energy goals. In conclusion, geophysical surveys and borehole drilling play a pivotal role in economically viable geothermal site selection and feasibility assessments. With ongoing exploration and innovative technology, these surveys effectively minimize drilling risks, optimize borehole placement, aid in environmental impact evaluations, and facilitate remote resource exploration. Their cost-effectiveness informs decisions regarding geothermal resource location and extent, ultimately promoting sustainable energy and reducing India's reliance on conventional fossil fuels.

Keywords: geothermal resources, geophysical methods, exploration, exploitation

Procedia PDF Downloads 85