Search results for: wellbore spiraling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 65

Search results for: wellbore spiraling

65 Wellbore Spiraling Induced through Systematic Micro-Sliding

Authors: Christopher Viens, Bosko Gajic, Steve Krase

Abstract:

Stick-Slip is a term that is often overused and commonly diagnosed from surface drilling parameters of torque and differential pressure, but the actual magnitude of the condition is rarely captured at the BHA level as the necessary measurements are seldom deployed. Deployment of an accurate stick-slip measurement downhole has led to an interesting discovery that goes against long held traditional drilling lore. A divide has been identified between stick-slip as independent bit and BHA conditions. This phenomenon in horizontal laterals is common, but few M/LWD systems have been able to capture it. Utilizing measurements of downhole RPM bore pressure, high-speed magnetometer data, bending moment, and continuous inclination, the wellbore spiraling phenomenon is able to be captured, quantified, and intimately tied back to systematic effects of BHA stalling and micro-sliding. An operator in the Permian Basin has identified that this phenomenon is contributing to increased tortuosity and drag. Utilizing downhole torque measurements the root causes of the stick-slip and spiraling phenomenon were identified and able to engineered out of the system.

Keywords: bending moment, downhole dynamics measurements, micro sliding, wellbore spiraling

Procedia PDF Downloads 222
64 Numerical Modelling of Crack Initiation around a Wellbore Due to Explosion

Authors: Meysam Lak, Mohammad Fatehi Marji, Alireza Yarahamdi Bafghi, Abolfazl Abdollahipour

Abstract:

A wellbore is a hole that is drilled to aid in the exploration and recovery of natural resources including oil and gas. Occasionally, in order to increase productivity index and porosity of the wellbore and reservoir, the well stimulation methods have been used. Hydraulic fracturing is one of these methods. Moreover, several explosions at the end of the well can stimulate the reservoir and create fractures around it. In this study, crack initiation in rock around the wellbore has been numerically modeled due to explosion. One, two, three, and four pairs of explosion have been set at the end of the wellbore on its wall. After each stage of the explosion, results have been presented and discussed. Results show that this method can initiate and probably propagate several fractures around the wellbore.

Keywords: crack initiation, explosion, finite difference modelling, well productivity

Procedia PDF Downloads 247
63 Thermal Effects on Wellbore Stability and Fluid Loss in High-Temperature Geothermal Drilling

Authors: Mubarek Alpkiray, Tan Nguyen, Arild Saasen

Abstract:

Geothermal drilling operations contain numerous challenges that are encountered to increase the well cost and nonproductive time. Fluid loss is one of the most undesirable troublesome that can cause well abandonment in geothermal drilling. Lost circulation can be seen due to natural fractures, high mud weight, and extremely high formation temperatures. This challenge may cause wellbore stability problems and lead to expensive drilling operations. Wellbore stability is the main domain that should be considered to mitigate or prevent fluid loss into the formation. This paper describes the causes of fluid loss in the Pamukoren geothermal field in Turkey. A geomechanics approach integration and assessment is applied to help the understanding of fluid loss problems. In geothermal drillings, geomechanics is primarily based on rock properties, in-situ stress characterization, the temperature of the rock, determination of stresses around the wellbore, and rock failure criteria. Since a high-temperature difference between the wellbore wall and drilling fluid is presented, temperature distribution through the wellbore is estimated and implemented to the wellbore stability approach. This study reviewed geothermal drilling data to analyze temperature estimation along the wellbore, the cause of fluid loss and stored electric capacity of the reservoir. Our observation demonstrates the geomechanical approach's significant role in understanding safe drilling operations on high-temperature wells. Fluid loss is encountered due to thermal stress effects around the borehole. This paper provides a wellbore stability analysis for a geothermal drilling operation to discuss the causes of lost circulation resulting in nonproductive time and cost.

Keywords: geothermal wells, drilling, wellbore stresses, drilling fluid loss, thermal stress

Procedia PDF Downloads 158
62 An Intelligent Prediction Method for Annular Pressure Driven by Mechanism and Data

Authors: Zhaopeng Zhu, Xianzhi Song, Gensheng Li, Shuo Zhu, Shiming Duan, Xuezhe Yao

Abstract:

Accurate calculation of wellbore pressure is of great significance to prevent wellbore risk during drilling. The traditional mechanism model needs a lot of iterative solving procedures in the calculation process, which reduces the calculation efficiency and is difficult to meet the demand of dynamic control of wellbore pressure. In recent years, many scholars have introduced artificial intelligence algorithms into wellbore pressure calculation, which significantly improves the calculation efficiency and accuracy of wellbore pressure. However, due to the ‘black box’ property of intelligent algorithm, the existing intelligent calculation model of wellbore pressure is difficult to play a role outside the scope of training data and overreacts to data noise, often resulting in abnormal calculation results. In this study, the multi-phase flow mechanism is embedded into the objective function of the neural network model as a constraint condition, and an intelligent prediction model of wellbore pressure under the constraint condition is established based on more than 400,000 sets of pressure measurement while drilling (MPD) data. The constraint of the multi-phase flow mechanism makes the prediction results of the neural network model more consistent with the distribution law of wellbore pressure, which overcomes the black-box attribute of the neural network model to some extent. The main performance is that the accuracy of the independent test data set is further improved, and the abnormal calculation values basically disappear. This method is a prediction method driven by MPD data and multi-phase flow mechanism, and it is the main way to predict wellbore pressure accurately and efficiently in the future.

Keywords: multiphase flow mechanism, pressure while drilling data, wellbore pressure, mechanism constraints, combined drive

Procedia PDF Downloads 148
61 Stability of the Wellhead in the Seabed in One of the Marine Reservoirs of Iran

Authors: Mahdi Aghaei, Saeid Jamshidi, Mastaneh Hajipour

Abstract:

Effective factors on the mechanical wellbore stability are divided in to two categories: 1) Controllable factors, 2) Uncontrollable factors. The purpose of geo-mechanical modeling of wells is to determine the limit of controlled parameters change based on the stress regime at each point and by solving the governing equations the pore-elastic environment around the well. In this research, the mechanical analysis of wellbore stability was carried out for Soroush oilfield. For this purpose, the geo-mechanical model of the field is made using available data. This model provides the necessary parameters for obtaining the distribution of stress around the wellbore. Initially, a basic model was designed to perform various analysis, based on obtained data, using Abaqus software. All of the subsequent sensitivity analysis such as sensitivity analysis on porosity, permeability, etc. was done on the same basic model. The results obtained from these analysis gives various result such as: with the constant geomechanical parameters, and sensitivity analysis on porosity permeability is ineffective. After the most important parameters affecting the wellbore stability and instability are geo-mechanical parameters.

Keywords: wellbore stability, movement, stress, instability

Procedia PDF Downloads 178
60 A Robust Theoretical Elastoplastic Continuum Damage T-H-M Model for Rock Surrounding a Wellbore

Authors: Nikolaos Reppas, Yilin Gui, Ben Wetenhall, Colin Davie

Abstract:

Injection of CO2 inside wellbore can induce different kind of loadings that can lead to thermal, hydraulic, and mechanical changes on the surrounding rock. A dual-porosity theoretical constitutive model will be presented for the stability analysis of the wellbore during CO2 injection. An elastoplastic damage response will be considered. A bounding yield surface will be presented considering damage effects on sandstone. The main target of the research paper is to present a theoretical constitutive model that can help industries to safely store CO2 in geological rock formations and forecast any changes on the surrounding rock of the wellbore. The fully coupled elasto-plastic damage Thermo-Hydraulic-Mechanical theoretical model will be validated from existing experimental data for sandstone after simulating some scenarios by using FEM on MATLAB software.

Keywords: carbon capture and storage, rock mechanics, THM effects on rock, constitutive model

Procedia PDF Downloads 124
59 Wellbore Stability Evaluation of Ratawi Shale Formation

Authors: Raed Hameed Allawi

Abstract:

Wellbore instability problems are considered the majority challenge for several wells in the Ratawi shale formation. However, it results in non-productive (NPT) time and increased well-drilling expenditures. This work aims to construct an integrated mechanical earth model (MEM) to predict the wellbore failure and design optimum mud weight to improve the drilling efficiency of future wells. The MEM was based on field data, including open-hole wireline logging and measurement data. Several failure criteria were applied in this work, including Modified Lade, Mogi-Coulomb, and Mohr-Coulomb that utilized to calculate the proper mud weight and practical drilling paths and orientations. Results showed that the leading cause of wellbore instability problems was inadequate mud weight. Moreover, some improper drilling practices and heterogeneity of Ratawi formation were additional causes of the increased risk of wellbore instability. Therefore, the suitable mud weight for safe drilling in the Ratawi shale formation should be 11.5-13.5 ppg. Furthermore, the mud weight should be increased as required depending on the trajectory of the planned well. The outcome of this study is as practical tools to reduce non-productive time and well costs and design future neighboring deviated wells to get high drilling efficiency. In addition, the current results serve as a reference for similar fields in that region because of the lacking of published studies regarding wellbore instability problems of the Ratawi Formation in southern Iraqi oilfields.

Keywords: wellbore stability, hole collapse, horizontal stress, MEM, mud window

Procedia PDF Downloads 154
58 A Fully Coupled Thermo-Hydraulic Mechanical Elastoplastic Damage Constitutive Model for Porous Fractured Medium during CO₂ Injection

Authors: Nikolaos Reppas, Yilin Gui

Abstract:

A dual-porosity finite element-code will be presented for the stability analysis of the wellbore during CO₂ injection. An elastoplastic damage response will be considered to the model. The Finite Element Method (FEM) will be validated using experimental results from literature or from experiments that are planned to be undertaken at Newcastle University. The main target of the research paper is to present a constitutive model that can help industries to safely store CO₂ in geological rock formations and forecast any changes on the surrounding rock of the wellbore. The fully coupled elastoplastic damage Thermo-Hydraulic-Mechanical (THM) model will determine the pressure and temperature of the injected CO₂ as well as the size of the radius of the wellbore that can make the Carbon Capture and Storage (CCS) procedure more efficient.

Keywords: carbon capture and storage, Wellbore stability, elastoplastic damage response for rock, constitutive THM model, fully coupled thermo-hydraulic-mechanical model

Procedia PDF Downloads 145
57 Performance Evaluation of Next Generation Shale Stabilizer

Authors: N. K. Thakur

Abstract:

A major proportion of the formations drilled for the production of hydrocarbons consists of clay containing shales. The petroleum industry has hugely investigated the role of clay minerals and their subsequent effect on wellbore stability during the drilling and production of hydrocarbons. It has been found that when the shale formation comes in contact with water-based drilling fluid, the interaction of clay minerals like montmorillonite with infiltrated water leads to hydration of the clay minerals, which causes shale swelling. When shale swelling proceeds further, it may lead to major drilling complications like caving, pipe sticking, which invariably influences wellbore stability, wellbore diameter, the mechanical strength of shale, stress distribution in the wellbore, etc. These problems ultimately lead to an increase in nonproductive time and additional costs during drilling. Several additives are used to prevent shale instability. Among the popular additives used for shale inhibition in drilling muds, ionic liquids and nanoparticles are emerging to be the best additives. The efficiency of the proposed additives will be studied and compared with conventional clay inhibitors like KCl. The main objective is to develop a highly efficient water-based mud for mitigating shale instability and reducing fluid loss which is environmentally friendly and does not alter the formation permeability. The use of nanoparticles has been exploited to enhance the rheological and fluid loss properties in water-based drilling fluid ionic liquid have attracted significant research interest due to its unique thermal stability. It is referred to as ‘green chemical’. The preliminary experimental studies performed are promising. The application of more effective mud additives is always desirable to make the drilling process techno-economically proficient.

Keywords: ionic liquid, shale inhibitor, wellbore stability, unconventional

Procedia PDF Downloads 158
56 Rich 3-Tori Dynamics in Small-Aspect-Ratio Highly Counter-Rotating Taylor-Couette Flow with Reversal of Spiraling Vortices

Authors: S. Altmeyer, B. Hof, F. Marques, J. M. Lopez

Abstract:

We present numerical simulations concerning the reversal of spiraling vortices in short highly counter-rotating cylinders. Increasing the differential cylinder rotation results in global flow-inversion is which develops various different and complex flow dynamics of several quasi-periodic solutions that differ in their number of vortex cells in the bulk. The dynamics change from being dominated of the inner cylinder boundary layer with ’passive’ only responding outer one to be dominated by the outer cylinder boundary layer with only responding inner one. Solutions exist on either two or three tori invariant manifolds whereby they appear as symmetric or asymmetric states. We find for either moderate and high inner cylinder rotation speed the quasiperiodic flow to consist of only two vortex cells but differ as the vortices has opposite spiraling direction. These both flows live on 2-tori but differ in number of symmetries. While for the quasi-periodic flow (q^a_2) at lower rotation speed a pair of symmetrically related 2-tori T2 exists the quasi-periodic flow (q^s_2) at higher rotation speeds is symmetric living on a single 2-torus T2. In addition these both flows differ due to their dominant azimuthal m modes. The first is dominated by m=1 whereas for the latter m=3 contribution is largest. The 2-tori states are separated by a further quasi-periodic flow (q^a_3) living on pair of symmetrically related 3-tori T3. This flow offers a ’periodical’ competition between a two and three vortex cell states in the bulk. This flow is also an m=1 solution as for the quasiperiodic flows living on the pair of symmetrically-related 2-tori states. Moreover we find hysteresis resulting in coexisting regions of different quasiperiodic flows q^s_2 and q^a_3 with increasing and decreasing the differential rotation.

Keywords: transition, bifurcation, torus, symmetries

Procedia PDF Downloads 337
55 Continuous and Discontinuos Modeling of Wellbore Instability in Anisotropic Rocks

Authors: C. Deangeli, P. Obentaku Obenebot, O. Omwanghe

Abstract:

The study focuses on the analysis of wellbore instability in rock masses affected by weakness planes. The occurrence of failure in such a type of rocks can occur in the rock matrix and/ or along the weakness planes, in relation to the mud weight gradient. In this case the simple Kirsch solution coupled with a failure criterion cannot supply a suitable scenario for borehole instabilities. Two different numerical approaches have been used in order to investigate the onset of local failure at the wall of a borehole. For each type of approach the influence of the inclination of weakness planes has been investigates, by considering joint sets at 0°, 35° and 90° to the horizontal. The first set of models have been carried out with FLAC 2D (Fast Lagrangian Analysis of Continua) by considering the rock material as a continuous medium, with a Mohr Coulomb criterion for the rock matrix and using the ubiquitous joint model for accounting for the presence of the weakness planes. In this model yield may occur in either the solid or along the weak plane, or both, depending on the stress state, the orientation of the weak plane and the material properties of the solid and weak plane. The second set of models have been performed with PFC2D (Particle Flow code). This code is based on the Discrete Element Method and considers the rock material as an assembly of grains bonded by cement-like materials, and pore spaces. The presence of weakness planes is simulated by the degradation of the bonds between grains along given directions. In general the results of the two approaches are in agreement. However the discrete approach seems to capture more complex phenomena related to local failure in the form of grain detachment at wall of the borehole. In fact the presence of weakness planes in the discontinuous medium leads to local instability along the weak planes also in conditions not predicted from the continuous solution. In general slip failure locations and directions do not follow the conventional wellbore breakout direction but depend upon the internal friction angle and the orientation of the bedding planes. When weakness plane is at 0° and 90° the behaviour are similar to that of a continuous rock material, but borehole instability is more severe when weakness planes are inclined at an angle between 0° and 90° to the horizontal. In conclusion, the results of the numerical simulations show that the prediction of local failure at the wall of the wellbore cannot disregard the presence of weakness planes and consequently the higher mud weight required for stability for any specific inclination of the joints. Despite the discrete approach can simulate smaller areas because of the large number of particles required for the generation of the rock material, however it seems to investigate more correctly the occurrence of failure at the miscroscale and eventually the propagation of the failed zone to a large portion of rock around the wellbore.

Keywords: continuous- discontinuous, numerical modelling, weakness planes wellbore, FLAC 2D

Procedia PDF Downloads 474
54 Estimation of Reservoirs Fracture Network Properties Using an Artificial Intelligence Technique

Authors: Reda Abdel Azim, Tariq Shehab

Abstract:

The main objective of this study is to develop a subsurface fracture map of naturally fractured reservoirs by overcoming the limitations associated with different data sources in characterising fracture properties. Some of these limitations are overcome by employing a nested neuro-stochastic technique to establish inter-relationship between different data, as conventional well logs, borehole images (FMI), core description, seismic attributes, and etc. and then characterise fracture properties in terms of fracture density and fractal dimension for each data source. Fracture density is an important property of a system of fracture network as it is a measure of the cumulative area of all the fractures in a unit volume of a fracture network system and Fractal dimension is also used to characterize self-similar objects such as fractures. At the wellbore locations, fracture density and fractal dimension can only be estimated for limited sections where FMI data are available. Therefore, artificial intelligence technique is applied to approximate the quantities at locations along the wellbore, where the hard data is not available. It should be noted that Artificial intelligence techniques have proven their effectiveness in this domain of applications.

Keywords: naturally fractured reservoirs, artificial intelligence, fracture intensity, fractal dimension

Procedia PDF Downloads 226
53 Effect of Multi-Stage Fractured Patterns on Production Improvement of Horizontal Wells

Authors: Armin Shirbazo, Mohammad Vahab, Hamed Lamei Ramandi, Jalal Fahimpour

Abstract:

One of the most effective ways for increasing production in wells that are faced with problems such as pressure depletion and low rate is hydraulic fracturing. Hydraulic fracturing is creating a high permeable path through the reservoir and simulated area around the wellbore. This is very important for low permeability reservoirs, which their production is uneconomical. In this study, the influence of the fracturing pattern in multi-stage fractured horizontal wells is analyzed for a tight, heavy oil reservoir to explore the impact of fracturing patterns on improving oil recovery. The horizontal well has five transverse fractures with the same fracture length, width, height, and conductivity properties. The fracture patterns are divided into four distinct shapes: uniform shape, diamond shape, U shape, and W shape. The results show that different fracturing patterns produce various cumulative production after ten years, and the best pattern can be selected based on the most cumulative production. The result also illustrates that optimum design in fracturing can boost the production up to 3% through the permeability distribution around the wellbore and reservoir.

Keywords: multi-stage fracturing, horizontal well, fracture patterns, fracture length, number of stages

Procedia PDF Downloads 191
52 The Effectiveness of Multiphase Flow in Well- Control Operations

Authors: Ahmed Borg, Elsa Aristodemou, Attia Attia

Abstract:

Well control involves managing the circulating drilling fluid within the wells and avoiding kicks and blowouts as these can lead to losses in human life and drilling facilities. Current practices for good control incorporate predictions of pressure losses through computational models. Developing a realistic hydraulic model for a good control problem is a very complicated process due to the existence of a complex multiphase region, which usually contains a non-Newtonian drilling fluid and the miscibility of formation gas in drilling fluid. The current approaches assume an inaccurate flow fluid model within the well, which leads to incorrect pressure loss calculations. To overcome this problem, researchers have been considering the more complex two-phase fluid flow models. However, even these more sophisticated two-phase models are unsuitable for applications where pressure dynamics are important, such as in managed pressure drilling. This study aims to develop and implement new fluid flow models that take into consideration the miscibility of fluids as well as their non-Newtonian properties for enabling realistic kick treatment. furthermore, a corresponding numerical solution method is built with an enriched data bank. The research work considers and implements models that take into consideration the effect of two phases in kick treatment for well control in conventional drilling. In this work, a corresponding numerical solution method is built with an enriched data bank. Software STARCCM+ for the computational studies to study the important parameters to describe wellbore multiphase flow, the mass flow rate, volumetric fraction, and velocity of each phase. Results showed that based on the analysis of these simulation studies, a coarser full-scale model of the wellbore, including chemical modeling established. The focus of the investigations was put on the near drill bit section. This inflow area shows certain characteristics that are dominated by the inflow conditions of the gas as well as by the configuration of the mud stream entering the annulus. Without considering the gas solubility effect, the bottom hole pressure could be underestimated by 4.2%, while the bottom hole temperature is overestimated by 3.2%. and without considering the heat transfer effect, the bottom hole pressure could be overestimated by 11.4% under steady flow conditions. Besides, larger reservoir pressure leads to a larger gas fraction in the wellbore. However, reservoir pressure has a minor effect on the steady wellbore temperature. Also as choke pressure increases, less gas will exist in the annulus in the form of free gas.

Keywords: multiphase flow, well- control, STARCCM+, petroleum engineering and gas technology, computational fluid dynamic

Procedia PDF Downloads 90
51 Simulation of Ester Based Mud Performance through Drilling Genting Timur Field

Authors: Lina Ismail Jassim, Robiah Yunus

Abstract:

To successfully drill oil or gas well, two main characteristics of numerous other tasks of an efficient drilling fluid are required, which are suspended and carrying cuttings from the beneath wellbore to the surface and managed between pore (formation) and hydrostatic pressure (mud pressure). Several factors like mud composition and its rheology, wellbore design, drilled cuttings characteristics and drilling string rotation contribute to drill wellbore successfully. Simulation model can support an appropriate indication on the drilling fluid performance in the real field as Genting Timur field, located in Pahang in Malaysia on 4295 m depth, held the world record in Sempah Muda 1 (Vertical). A detailed 3 dimensional CFD analysis of vertical, concentric annular two phase flow was developed to study and asses Herschel Bulkley drilling fluid. The effect of Hematite, Barite and calcium carbonates types and size of cutting rock particles on such flow is analyzed. The vertical flows are also associated with a good amount of temperature variation along the depth. This causes a good amount of change in viscosity of the fluid, which is non-Newtonian in nature. Good understanding of the nature of such flows is imperative in developing and maintaining successful vertical well systems. A detailed analysis of flow characteristics due to the drill pipe rotation is done in this work. The inner cylinder of the annulus gets different rotational speed, depending upon the operating conditions. This speed induces a good swirl on the particles and primary fluids which interpret in Ester based drilling fluid cleaning well ability, which in turn determines energy loss along the pipe. Energy loss is assessed in this work in terms of wall shear stress and pressure drop along the pipe. The flow is under an adverse pressure gradient condition, which causes chance of reversed flow and transfers the rock cuttings to the surface.

Keywords: concentric annulus, non-Newtonian, two phase, Herschel Bulkley

Procedia PDF Downloads 283
50 50/50 Oil-Water Ratio Invert Emulsion Drilling Mud Using Vegetable Oil as Continuous Phase

Authors: P. C. Ihenacho, M. Burby, G. G. Nasr, G. C. Enyi

Abstract:

Formulation of a low oil-water ratio drilling mud with vegetable oil continuous phase without adversely affecting the mud rheology and stability has been a major challenge. A low oil-water ratio is beneficial in producing low fluid loss which is essential for wellbore stability. This study examined the possibility of 50/50 oil-water ratio invert emulsion drilling mud using a vegetable oil continuous phase. Jatropha oil was used as continuous phase. 12 ml of egg yolk which was separated from the albumen was added as the primary emulsifier additive. The rheological, stability and filtration properties were examined. The plastic viscosity and yield point were found to be 36cp and 17 Ib/100 ft2 respectively. The electrical stability at 48.9ºC was 353v and the 30 minutes fluid loss was 6ml. The results compared favourably with a similar formulation using 70/30 oil - water ratio giving plastic viscosity of 31cp, yield point of 17 Ib/100 ft2, electrical stability value of 480v and 12ml for the 30 minutes fluid loss. This study indicates that with a good mud composition using guided empiricism, 50/50 oil-water ratio invert emulsion drilling mud is feasible with a vegetable oil continuous phase. The choice of egg yolk as emulsifier additive is for compatibility with the vegetable oil and environmental concern. The high water content with no fluid loss additive will also minimise the cost of mud formulation.

Keywords: environmental compatibility, low cost of mud formulation, low fluid loss, wellbore stability

Procedia PDF Downloads 366
49 Hydrofracturing for Low Temperature Waxy Reservoirs: Problems and Solutions

Authors: Megh Patel, Arjun Chauhan, Jay Thakkar

Abstract:

Hydrofracturing is the most prominent but at the same time expensive, highly skilled and time consuming well stimulation technique. Due to high cost and skilled labor involved, it is generally carried out as the consummate solution among other well stimulation techniques. Considering today’s global petroleum market, no gaffe or complications could be entertained during fracturing, as it would further hamper the current dwindling economy. The literature would be dealing with the challenges encountered during fracturing low temperature waxy reservoirs and the prominent solutions to overcome such teething troubles. During fracturing treatment for, shallow and high freezing point waxy oil reservoirs, the first line problems are to overcome uncompleted breakdown, uncompleted cleanup of fracturing fluids and cold damages to the formations by injecting cold fluid (fluid at ambient conditions). Injecting fracturing fluids at ambient conditions have the tendency to decrease the near wellbore reservoir temperature below the freezing point of oil reservoir and hence leading to wax deposition around the wellbore thereby hampering the fluid production as well as fracture propagation. To overcome such problems, solutions such as hot fracturing fluid injection, encapsulated heat generating hydraulic fracturing fluid system, and injection of wax inhibitor techniques would be discussed. The paper would also be throwing light on changes in rheological properties occurred during heating fracturing fluids and solutions to deal with it taking economic considerations into account.

Keywords: hydrofracturing, waxy reservoirs, low temperature, viscosity, crosslinkers

Procedia PDF Downloads 220
48 3D Geomechanical Model the Best Solution of the 21st Century for Perforation's Problems

Authors: Luis Guiliana, Andrea Osorio

Abstract:

The lack of comprehension of the reservoir geomechanics conditions may cause operational problems that cost to the industry billions of dollars per year. The drilling operations at the Ceuta Field, Area 2 South, Maracaibo Lake, have been very expensive due to problems associated with drilling. The principal objective of this investigation is to develop a 3D geomechanical model in this area, in order to optimize the future drillings in the field. For this purpose, a 1D geomechanical model was built at first instance, following the workflow of the MEM (Mechanical Earth Model), this consists of the following steps: 1) Data auditing, 2) Analysis of drilling events and structural model, 3) Mechanical stratigraphy, 4) Overburden stress, 5) Pore pressure, 6) Rock mechanical properties, 7) Horizontal stresses, 8) Direction of the horizontal stresses, 9) Wellbore stability. The 3D MEM was developed through the geostatistic model of the Eocene C-SUP VLG-3676 reservoir and the 1D MEM. With this data the geomechanical grid was embedded. The analysis of the results threw, that the problems occurred in the wells that were examined were mainly due to wellbore stability issues. It was determined that the stress field change as the stratigraphic column deepens, it is normal to strike-slip at the Middle Miocene and Lower Miocene, and strike-slipe to reverse at the Eocene. In agreement to this, at the level of the Eocene, the most advantageous direction to drill is parallel to the maximum horizontal stress (157º). The 3D MEM allowed having a tridimensional visualization of the rock mechanical properties, stresses and operational windows (mud weight and pressures) variations. This will facilitate the optimization of the future drillings in the area, including those zones without any geomechanics information.

Keywords: geomechanics, MEM, drilling, stress

Procedia PDF Downloads 250
47 A Novel Rapid Well Control Technique Modelled in Computational Fluid Dynamics Software

Authors: Michael Williams

Abstract:

The ability to control a flowing well is of the utmost important. During the kill phase, heavy weight kill mud is circulated around the well. While increasing bottom hole pressure near wellbore formation, the damage is increased. The addition of high density spherical objects has the potential to minimise this near wellbore damage, increase bottom hole pressure and reduce operational time to kill the well. This operational time saving is seen in the rapid deployment of high density spherical objects instead of building high density drilling fluid. The research aims to model the well kill process using a Computational Fluid Dynamics software. A model has been created as a proof of concept to analyse the flow of micron sized spherical objects in the drilling fluid. Initial results show that this new methodology of spherical objects in drilling fluid agrees with traditional stream lines seen in non-particle flow. Additional models have been created to demonstrate that areas of higher flow rate around the bit can lead to increased probability of wash out of formations but do not affect the flow of micron sized spherical objects. Interestingly, areas that experience dimensional changes such as tool joints and various BHA components do not appear at this initial stage to experience increased velocity or create areas of turbulent flow, which could lead to further borehole stability. In conclusion, the initial models of this novel well control methodology have not demonstrated any adverse flow patterns, which would conclude that this model may be viable under field conditions.

Keywords: well control, fluid mechanics, safety, environment

Procedia PDF Downloads 138
46 Gas Monitoring and Soil Control at the Natural Gas Storage Site (Minerbio, Italy)

Authors: Ana Maria Carmen Ilie, Carmela Vaccaro

Abstract:

Gas migration through wellbore failure, in particular from abandoned wells, is repeatedly identified as the highest risk mechanism. The vadose zone was subject to monitoring system close to the wellbore in Minerbio, methane storage site. The new technology has been well-developed and used with the purpose to provide reliable estimates of leakage parameters. Of these techniques, soil flux sampling at the soil surface, via the accumulation chamber method and soil flux sampling at the depths of 100cm below the ground surface, have been an important technique for characterizing the gas concentrations at the gas storage site. We present results of soil Radon Bq/m3, CO2%, CH4% and O2% concentration gases. Measurements have been taken for radon concentrations with an Durridge RAD7 Company, Inc., USA, instrument. We used for air and soil quality an Biogas ETG instrument monitoring system, with NDIR CO2, CH4 gas sensor and electrochemical O2 gas sensor. The measurements started in September-October 2015, where no outliers have been identified. The measurements have continued in March-April-July-August-September 2016, almost at the same time in the same place around the gas storage site, values measured 15 minutes for each sampling, to determine their concentration, their distribution and to understand the relationship among gases and atmospheric conditions. At a depth of 100 cm, the maximum soil radon gas concentrations were found to be 1770 ±±582 Bq/m3, the soil consists of 64.31% sand, 20.75% silt and 14.94% clay, and with 0.526 ppm of Uranium. The maximum concentration (September 2016), in soil at 100cm below the ground surface, with 83% sand, 8.96% silt and 7.89% clay, was about 0.06% CH4, and in atmosphere 0.06% CH4 at 40°C (T). In the other months the values have been on the range of 0.01% to 0.03% CH4. Since we did not have outliers in the gas storage site, soil-gas samples for isotopic analysis have not been done.

Keywords: leakage gas monitoring, lithology, soil gas, methane

Procedia PDF Downloads 419
45 A Zero-Flaring Flowback Solution to Revive Liquid Loaded Gas Wells

Authors: Elsayed Amer, Tarek Essam, Abdullah Hella, Mohammed Al-Ajmi

Abstract:

Hydrocarbon production decline in mature gas fields is inevitable, and mitigating these circumstances is essential to ensure a longer production period. Production decline is not only influenced by reservoir pressure and wellbore integrity; however, associated liquids in the reservoir rock have a considerable impact on the production process. The associated liquid may result in liquid loading, near wellbore damage, condensate banking, fine sand migration, and wellhead pressure depletion. Consequently, the producing well will suffocate, and the liquid column will seize the well from flowing. A common solution in such circumstances is reducing the surface pressure by opening the well to the atmospheric pressure and flaring the produced liquids. This practice may not be applicable to many cases since the atmospheric pressure is not low enough to create a sufficient driving force to flow the well. In addition, flaring the produced hydrocarbon is solving the issue on account of the environment, which is against the world's efforts to mitigate the impact of climate change. This paper presents a novel approach and a case study that utilizes a multi-phase mobile wellhead gas compression unit (MMWGC) to reduce surface pressure to the sub-atmospheric level and transfer the produced hydrocarbons to the sales line. As a result, the liquid column will unload in a zero-flaring manner, and the life of the producing well will extend considerably. The MMWGC unit was able to successfully kick off a dead well to produce up to 10 MMSCFD after reducing the surface pressure for 3 hours. Applying such novelty on a broader scale will not only extend the life of the producing wells yet will also provide a zero-flaring, economically and environmentally preferred solution.

Keywords: petroleum engineering, zero-flaring, liquid loading, well revival

Procedia PDF Downloads 77
44 Simulation of Nano Drilling Fluid in an Extended Reach Well

Authors: Lina Jassim, Robiah Yunus, , Amran Salleh

Abstract:

Since nano particles have been assessed as thermo stabilizer, rheology enhancer, and ecology safer, nano drilling fluid can be utilized to overcome the complexity of hole cleaning in highly deviated interval of an extended reach wells. The eccentric annular flow is a flow with special considerations; it forms a vital part of drilling fluid flow analysis in an extended reach wells. In this work eccentric, dual phase flow (different types of rock cuttings with different size were blended with nano fluid) through horizontal well (an extended reach well) are simulated with the help of CFD, Fluent package. In horizontal wells flow occurs in an adverse pressure gradient condition, that makes the particle inside it susceptible to reversed flow. Thus the flow has to be analyzed in a three dimensional manner. Moreover the non-Newtonian behavior of the nano fluid makes the problem really challenging in numerical and physical aspects. The primary objective of the work is to establish a relationship between different flow characteristics with the speed of inner wall rotation. The nano fluid flow characteristics include swirl of flow and its effect on wellbore cleaning ability , wall shear stress and its effect on fluid viscosity to suspend and carry the rock cuttings, axial velocity and its effect on transportation of rock cuttings to the wellbore surface, finally pressure drop and its effect on managed of drilling pressure. The importance of eccentricity of the inner cylinder has to be analyzed as a part of it. Practical horizontal well flows contain a good amount of particles (rock cuttings) with moderate axial velocity, which verified nano drilling fluid ability of carrying and transferring cuttings particles in the highly deviated eccentric annular flow is also of utmost importance.

Keywords: Non-Newtonian, dual phase, eccentric annular, CFD

Procedia PDF Downloads 407
43 Challenges and Opportunities for Online Consumer Selling Process Development in Coming Years in World

Authors: Prakash Prajapati

Abstract:

E commerce is certainly one of the business alternatives that individual will have to analyze in the forthcoming years. E-commerce is said to bring about arched type conversion in the world for exchange market. Prognosis E-commerce is presenting dreadful business advancement in our country. Endorsed by ascending online user base & mobile phone presentation, Indian e-commerce has been splendid development in the last few years. Conceding India’s analytical dividend and spiraling internet admittance, the sector is contracted to scale higher heights. Although, India’s overall peddle opportunity is consequential, the sector is beset with some deliberate challenges. The current study has been proceeded to explore the present scenario, status & future advancement of e-commerce in India and review the challenges and opportunities of e-commerce in India.

Keywords: online selling, retail selling online, product process, business opportunity

Procedia PDF Downloads 115
42 Statistical Correlation between Logging-While-Drilling Measurements and Wireline Caliper Logs

Authors: Rima T. Alfaraj, Murtadha J. Al Tammar, Khaqan Khan, Khalid M. Alruwaili

Abstract:

OBJECTIVE/SCOPE (25-75): Caliper logging data provides critical information about wellbore shape and deformations, such as stress-induced borehole breakouts or washouts. Multiarm mechanical caliper logs are often run using wireline, which can be time-consuming, costly, and/or challenging to run in certain formations. To minimize rig time and improve operational safety, it is valuable to develop analytical solutions that can estimate caliper logs using available Logging-While-Drilling (LWD) data without the need to run wireline caliper logs. As a first step, the objective of this paper is to perform statistical analysis using an extensive datasetto identify important physical parameters that should be considered in developing such analytical solutions. METHODS, PROCEDURES, PROCESS (75-100): Caliper logs and LWD data of eleven wells, with a total of more than 80,000 data points, were obtained and imported into a data analytics software for analysis. Several parameters were selected to test the relationship of the parameters with the measured maximum and minimum caliper logs. These parameters includegamma ray, porosity, shear, and compressional sonic velocities, bulk densities, and azimuthal density. The data of the eleven wells were first visualized and cleaned.Using the analytics software, several analyses were then preformed, including the computation of Pearson’s correlation coefficients to show the statistical relationship between the selected parameters and the caliper logs. RESULTS, OBSERVATIONS, CONCLUSIONS (100-200): The results of this statistical analysis showed that some parameters show good correlation to the caliper log data. For instance, the bulk density and azimuthal directional densities showedPearson’s correlation coefficients in the range of 0.39 and 0.57, which wererelatively high when comparedto the correlation coefficients of caliper data with other parameters. Other parameters such as porosity exhibited extremely low correlation coefficients to the caliper data. Various crossplots and visualizations of the data were also demonstrated to gain further insights from the field data. NOVEL/ADDITIVE INFORMATION (25-75): This study offers a unique and novel look into the relative importance and correlation between different LWD measurements and wireline caliper logs via an extensive dataset. The results pave the way for a more informed development of new analytical solutions for estimating the size and shape of the wellbore in real-time while drilling using LWD data.

Keywords: LWD measurements, caliper log, correlations, analysis

Procedia PDF Downloads 89
41 Placement of Inflow Control Valve for Horizontal Oil Well

Authors: S. Thanabanjerdsin, F. Srisuriyachai, J. Chewaroungroj

Abstract:

Drilling horizontal well is one of the most cost-effective method to exploit reservoir by increasing exposure area between well and formation. Together with horizontal well technology, intelligent completion is often co-utilized to increases petroleum production by monitoring/control downhole production. Combination of both technological results in an opportunity to lower water cresting phenomenon, a detrimental problem that does not lower only oil recovery but also cause environmental problem due to water disposal. Flow of reservoir fluid is a result from difference between reservoir and wellbore pressure. In horizontal well, reservoir fluid around the heel location enters wellbore at higher rate compared to the toe location. As a consequence, Oil-Water Contact (OWC) at the heel side of moves upward relatively faster compared to the toe side. This causes the well to encounter an early water encroachment problem. Installation of Inflow Control Valve (ICV) in particular sections of horizontal well can involve several parameters such as number of ICV, water cut constrain of each valve, length of each section. This study is mainly focused on optimization of ICV configuration to minimize water production and at the same time, to enhance oil production. A reservoir model consisting of high aspect ratio of oil bearing zone to underneath aquifer is drilled with horizontal well and completed with variation of ICV segments. Optimization of the horizontal well configuration is firstly performed by varying number of ICV, segment length, and individual preset water cut for each segment. Simulation results show that installing ICV can increase oil recovery factor up to 5% of Original Oil In Place (OOIP) and can reduce of produced water depending on ICV segment length as well as ICV parameters. For equally partitioned-ICV segment, more number of segment results in better oil recovery. However, number of segment exceeding 10 may not give a significant additional recovery. In first production period, deformation of OWC strongly depends on number of segment along the well. Higher number of segment results in smoother deformation of OWC. After water breakthrough at heel location segment, the second production period begins. Deformation of OWC is principally dominated by ICV parameters. In certain situations that OWC is unstable such as high production rate, high viscosity fluid above aquifer and strong aquifer, second production period may give wide enough window to ICV parameter to take the roll.

Keywords: horizontal well, water cresting, inflow control valve, reservoir simulation

Procedia PDF Downloads 379
40 Synthesis of Temperature Sensitive Nano/Microgels by Soap-Free Emulsion Polymerization and Their Application in Hydrate Sediments Drilling Operations

Authors: Xuan Li, Weian Huang, Jinsheng Sun, Fuhao Zhao, Zhiyuan Wang, Jintang Wang

Abstract:

Natural gas hydrates (NGHs) as promising alternative energy sources have gained increasing attention. Hydrate-bearing formation in marine areas is highly unconsolidated formation and is fragile, which is composed of weakly cemented sand-clay and silty sediments. During the drilling process, the invasion of drilling fluid can easily lead to excessive water content in the formation. It will change the soil liquid plastic limit index, which significantly affects the formation quality, leading to wellbore instability due to the metastable character of hydrate-bearing sediments. Therefore, controlling the filtrate loss into the formation in the drilling process has to be highly regarded for protecting the stability of the wellbore. In this study, the temperature-sensitive nanogel of P(NIPAM-co-AMPS-co-tBA) was prepared by soap-free emulsion polymerization, and the temperature-sensitive behavior was employed to achieve self-adaptive plugging in hydrate sediments. First, the effects of additional amounts of AMPS, tBA, and cross-linker MBA on the microgel synthesis process and temperature-sensitive behaviors were investigated. Results showed that, as a reactive emulsifier, AMPS can not only participate in the polymerization reaction but also act as an emulsifier to stabilize micelles and enhance the stability of nanoparticles. The volume phase transition temperature (VPTT) of nanogels gradually decreased with the increase of the contents of hydrophobic monomer tBA. An increase in the content of the cross-linking agent MBA can lead to a rise in the coagulum content and instability of the emulsion. The plugging performance of nanogel was evaluated in a core sample with a pore size distribution range of 100-1000nm. The temperature-sensitive nanogel can effectively improve the microfiltration performance of drilling fluid. Since a combination of a series of nanogels could have a wide particle size distribution at any temperature, around 200nm to 800nm, the self-adaptive plugging capacity of nanogels for the hydrate sediments was revealed. Thermosensitive nanogel is a potential intelligent plugging material for drilling operations in natural gas hydrate-bearing sediments.

Keywords: temperature-sensitive nanogel, NIPAM, self-adaptive plugging performance, drilling operations, hydrate-bearing sediments

Procedia PDF Downloads 111
39 Investigating the Effects of Hydrogen on Wet Cement for Underground Hydrogen Storage Applications in Oil and Gas Wells

Authors: Hamoud Al-Hadrami, Hossein Emadi, Athar Hussain

Abstract:

Green hydrogen is quickly emerging as a new source of renewable energy for the world. Hydrogen production using water electrolysis is deemed as an environmentally friendly and safe source of energy for transportation and other industries. However, storing a high volume of hydrogen seems to be a significant challenge. Abandoned hydrocarbon reservoirs are considered as viable hydrogen storage options because of the availability of the required infrastructure such as wells and surface facilities. However, long-term wellbore integrity in these wells could be a serious challenge. Hydrogen reduces the compressive strength of a set cement if it gets in contact with the cement slurry. Also, mixing hydrogen with cement slurry slightly increases its density and rheological properties, which need to be considered to have a successful primary cementing operation.

Keywords: hydrogen, well bore integrity, clean energy, cementing

Procedia PDF Downloads 181
38 The Pitfalls of Short-Range Endemism: High Vulnerability to Ecological and Landscape Traps

Authors: Leanda Denise Mason, Philip William Bateman, Grant Wardell-Johnson

Abstract:

Ecological traps attract biota to low-quality habitats. Landscape traps are zones caught in a vortex of spiraling degradation. Here, we demonstrate how short-range endemic traits may make such taxa vulnerable to ecological and landscape traps. Three short-range endemic mygalomorph spider species were used in this study. Mygalomorphs can be long-lived ( > 40 years) and select sites for permanent burrows in their early dispersal phase. Spiderlings from two species demonstrated choice for microhabitats that correspond to where adults typically occur. An invasive veldt grass microhabitat was selected almost exclusively by spiderlings of the third species. Habitat dominated by veldt grass has lower prey diversity and abundance than undisturbed habitats and therefore acts as an ecological trap for this species. Furthermore, as a homogenising force, veldt grass can spread to form a landscape trap in naturally heterogeneous ecosystems. Selection of specialised microhabitats of short-range endemics may explain high extinction rates in old, stable landscapes undergoing (human-induced) rapid change.

Keywords: biotic homogenization, invasive species, mygalomorph, short-range endemic

Procedia PDF Downloads 200
37 Molecular Dynamics Simulation Study of the Influence of Potassium Salts on the Adsorption and Surface Hydration Inhibition Performance of Hexane, 1,6 - Diamine Clay Mineral Inhibitor onto Sodium Montmorillonite

Authors: Justine Kiiza, Xu Jiafang

Abstract:

The world’s demand for energy is increasing rapidly due to population growth and a reduction in shallow conventional oil and gas reservoirs, resorting to deeper and mostly unconventional reserves like shale oil and gas. Most shale formations contain a large amount of expansive sodium montmorillonite (Na-Mnt), due to high water adsorption, hydration, and when the drilling fluid filtrate enters the formation with high Mnt content, the wellbore wall can be unstable due to hydration and swelling, resulting to shrinkage, sticking, balling, time wasting etc., and well collapse in extreme cases causing complex downhole accidents and high well costs. Recently, polyamines like 1, 6 – hexane diamine (HEDA) have been used as typical drilling fluid shale inhibitors to minimize and/or cab clay mineral swelling and maintain the wellbore stability. However, their application is limited to shallow drilling due to their sensitivity to elevated temperature and pressure. Inorganic potassium salts i.e., KCl, have long been applied for restriction of shale formation hydration expansion in deep wells, but their use is limited due to toxicity. Understanding the adsorption behaviour of HEDA on Na-Mnt surfaces in present of organo-salts, organic K-salts e.g., HCO₂K - main component of organo-salt drilling fluid, is of great significance in explaining the inhibitory performance of polyamine inhibitors. Molecular dynamic simulations (MD) were applied to investigate the influence of HCO₂K and KCl on the adsorption mechanism of HEDA on the Na-Mnt surface. Simulation results showed that adsorption configurations of HEDA are mainly by terminal amine groups with a flat-lying alkyl hydrophobic chain. Its interaction with the clay surface decreased the H-bond number between H₂O-clay and neutralized the negative charge of the Mnt surface, thus weakening the surface hydration ability of Na-Mnt. The introduction of HCO₂K greatly improved inhibition ability, coordination of interlayer ions with H₂O as they were replaced by K+, and H₂O-HCOO- coordination reduced H₂O-Mnt interactions, mobility and transport capability of H₂O molecules were more decreased. While KCl showed little ability and also caused more hydration with time, HCO₂K can be used as an alternative for offshore drilling instead of toxic KCl, with a maximum concentration noted in this study as 1.65 wt%. This study provides a theoretical elucidation for the inhibition mechanism and adsorption characteristics of HEDA inhibitor on Na-Mnt surfaces in the presence of K+-salts and may provide more insight into the evaluation, selection, and molecular design of new clay-swelling high-performance WBDF systems used in oil and gas complex offshore drilling well sections.

Keywords: shale, hydration, inhibition, polyamines, organo-salts, simulation

Procedia PDF Downloads 13
36 Hydrogen Peroxide: A Future for Well Stimulation and Heavy Oil Recovery

Authors: Meet Bhatia

Abstract:

Well stimulation and heavy oil recovery continue to be a hot topic in our industry, particularly with formation damage and viscous oil respectively. Cyclic steam injection has been recognised for most of the operations related to heavy oil recovery. However, the cost of implementation is high and operation is time-consuming, moreover most of the viscous oil reservoirs such as oil sands, Bitumen deposits and oil shales require additional treatment of well stimulation. The use of hydrogen peroxide can efficiently replace the cyclic steam injection process as it can be used for both well stimulation and heavy oil recovery simultaneously. The decomposition of Hydrogen peroxide produces oxygen, superheated steam and heat. The increase in temperature causes clays to shrink, destroy carbonates and remove emulsion thus it can efficiently remove the near wellbore damage. The paper includes mechanisms, parameters to be considered and the challenges during the treatment for the effective hydrogen peroxide injection for both conventional and heavy oil reservoirs.

Keywords: hydrogen peroxide, well stimulation, heavy oil recovery, steam injection

Procedia PDF Downloads 305