Search results for: resilience optimization model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19613

Search results for: resilience optimization model

19493 Speed Optimization Model for Reducing Fuel Consumption Based on Shipping Log Data

Authors: Ayudhia P. Gusti, Semin

Abstract:

It is known that total operating cost of a vessel is dominated by the cost of fuel consumption. How to reduce the fuel cost of ship so that the operational costs of fuel can be minimized is the question that arises. As the basis of these kinds of problem, sailing speed determination is an important factor to be considered by a shipping company. Optimal speed determination will give a significant influence on the route and berth schedule of ships, which also affect vessel operating costs. The purpose of this paper is to clarify some important issues about ship speed optimization. Sailing speed, displacement, sailing time, and specific fuel consumption were obtained from shipping log data to be further analyzed for modeling the speed optimization. The presented speed optimization model is expected to affect the fuel consumption and to reduce the cost of fuel consumption.

Keywords: maritime transportation, reducing fuel, shipping log data, speed optimization

Procedia PDF Downloads 568
19492 Multiobjective Optimization of a Pharmaceutical Formulation Using Regression Method

Authors: J. Satya Eswari, Ch. Venkateswarlu

Abstract:

The formulation of a commercial pharmaceutical product involves several composition factors and response characteristics. When the formulation requires to satisfy multiple response characteristics which are conflicting, an optimal solution requires the need for an efficient multiobjective optimization technique. In this work, a regression is combined with a non-dominated sorting differential evolution (NSDE) involving Naïve & Slow and ε constraint techniques to derive different multiobjective optimization strategies, which are then evaluated by means of a trapidil pharmaceutical formulation. The analysis of the results show the effectiveness of the strategy that combines the regression model and NSDE with the integration of both Naïve & Slow and ε constraint techniques for Pareto optimization of trapidil formulation. With this strategy, the optimal formulation at pH=6.8 is obtained with the decision variables of micro crystalline cellulose, hydroxypropyl methylcellulose and compression pressure. The corresponding response characteristics of rate constant and release order are also noted down. The comparison of these results with the experimental data and with those of other multiple regression model based multiobjective evolutionary optimization strategies signify the better performance for optimal trapidil formulation.

Keywords: pharmaceutical formulation, multiple regression model, response surface method, radial basis function network, differential evolution, multiobjective optimization

Procedia PDF Downloads 409
19491 Factors Influencing Family Resilience and Quality of Life in Pediatric Cancer Patients and Their Caregivers: A Cluster Analysis

Authors: Li Wang, Dan Shu, Shiguang Pang, Lixiu Wang, Bing Xiang Yang, Qian Liu

Abstract:

Background: Cancer is one of the most severe diseases in childhood; long-term treatment and its side effects significantly impact the patient's physical, psychological, social functioning and quality of life while also placing substantial physical and psychological burdens on caregivers and families. Family resilience is crucial for children with cancer, helping them cope better with the disease and supporting the family in facing challenges together. As a family-level variable, family resilience requires information from multiple family members. However, to our best knowledge, there is currently no research investigating family resilience from both the perspectives of pediatric cancer patients and their caregivers. Therefore, this study aims to investigate the family resilience and quality of life of pediatric cancer patients from a patient–caregiver dyadic perspective. Methods: A total of 149 dyads of patients diagnosed with pediatric cancer patients and their principal caregivers were recruited from oncology departments of 4 tertiary hospitals in Wuhan and Taiyuan, China. All participants completed questionnaires that identified their demographic and clinical characteristics as well as assessed their family resilience and quality of life for both the patients and their caregivers. K-means cluster analysis was used to identify different clusters of family resilience based on the reports from patients and caregivers. Multivariate logistic regression and linear regression are used to analyze the factors influencing family resilience and quality of life, as well as the relationship between the two. Results: Three clusters of family resilience were identified: a cluster of high family resilience (HR), a cluster of low family resilience (LR), and a cluster of discrepant family resilience (DR). Most (67.1%) families fell into the cluster with low resilience. Characteristics such as the types of caregivers perceived social support of the patient were different among the three clusters. Compared to the LR group, families where the mother is the caregiver and where the patient has high social support are more likely to be assigned to the HR. The quality of life for caregivers was consistently highest in the HR cluster and lowest in the LR cluster. The patient's quality of life is not related to family resilience. In the linear regression analysis of the patient's quality of life, patients who are the first-born have higher quality of life, while those living with their parents have lower quality of life. The participants' characteristics were not associated with the quality of life for caregivers. Conclusions: In most families, family resilience was low. Families with maternal caregivers and patients receiving high levels of social support are more inclined to be higher levels of family resilience. Family resilience was linked to the quality of life of caregivers of pediatric cancer patients. The clinical implications of this findings suggest that healthcare and social support organizations should prioritize and support the participation of mothers in caregiving responsibilities. Furthermore, they should assist families in accessing social support to enhance family resilience. This study also emphasizes the importance of promoting family resilience for enhancing family health and happiness, as well as improving the quality of life for caregivers.

Keywords: pediatric cancer, cluster analysis, family resilience, quality of life

Procedia PDF Downloads 37
19490 Comparative Study of Deep Reinforcement Learning Algorithm Against Evolutionary Algorithms for Finding the Optimal Values in a Simulated Environment Space

Authors: Akshay Paranjape, Nils Plettenberg, Robert Schmitt

Abstract:

Traditional optimization methods like evolutionary algorithms are widely used in production processes to find an optimal or near-optimal solution of control parameters based on the simulated environment space of a process. These algorithms are computationally intensive and therefore do not provide the opportunity for real-time optimization. This paper utilizes the Deep Reinforcement Learning (DRL) framework to find an optimal or near-optimal solution for control parameters. A model based on maximum a posteriori policy optimization (Hybrid-MPO) that can handle both numerical and categorical parameters is used as a benchmark for comparison. A comparative study shows that DRL can find optimal solutions of similar quality as compared to evolutionary algorithms while requiring significantly less time making them preferable for real-time optimization. The results are confirmed in a large-scale validation study on datasets from production and other fields. A trained XGBoost model is used as a surrogate for process simulation. Finally, multiple ways to improve the model are discussed.

Keywords: reinforcement learning, evolutionary algorithms, production process optimization, real-time optimization, hybrid-MPO

Procedia PDF Downloads 112
19489 Application the Queuing Theory in the Warehouse Optimization

Authors: Jaroslav Masek, Juraj Camaj, Eva Nedeliakova

Abstract:

The aim of optimization of store management is not only designing the situation of store management itself including its equipment, technology and operation. In optimization of store management we need to consider also synchronizing of technological, transport, store and service operations throughout the whole process of logistic chain in such a way that a natural flow of material from provider to consumer will be achieved the shortest possible way, in the shortest possible time in requested quality and quantity and with minimum costs. The paper deals with the application of the queuing theory for optimization of warehouse processes. The first part refers to common information about the problematic of warehousing and using mathematical methods for logistics chains optimization. The second part refers to preparing a model of a warehouse within queuing theory. The conclusion of the paper includes two examples of using queuing theory in praxis.

Keywords: queuing theory, logistics system, mathematical methods, warehouse optimization

Procedia PDF Downloads 593
19488 Environmental and Socioeconomic Determinants of Climate Change Resilience in Rural Nigeria: Empirical Evidence towards Resilience Building

Authors: Ignatius Madu

Abstract:

The study aims at assessing the environmental and socioeconomic determinants of climate change resilience in rural Nigeria. This is necessary because researches and development efforts on building climate change resilience of rural areas in developing countries are usually made without the knowledge of the impacts of the inherent rural characteristics that determine resilient capacities of the households. This has, in many cases, led to costly mistakes, delayed responses, inaccurate outcomes, and other difficulties. Consequently, this assessment becomes crucial not only to policymakers and people living in risk-prone environments in rural areas but also to fill the research gap. To achieve the aim, secondary data were obtained from the Annual Abstract of Statistics 2017, LSMS-Integrated Surveys on Agriculture and General Household Survey Panel 2015/2016, and National Agriculture Sample Survey (NASS), 2010/2011.Resilience was calculated by weighting and adding the adaptive, absorptive and anticipatory measures of households variables aggregated at state levels and then regressed against rural environmental and socioeconomic characteristics influencing it. From the regression, the coefficients of the variables were used to compute the impacts of the variables using the Stochastic Regression of Impacts on Population, Affluence and Technology (STIRPAT) Model. The results showed that the northern States are generally low in resilient indices and are impacted less by the development indicators. The major determining factors are percentage of non-poor, environmental protection, road transport development, landholding, agricultural input, population density, dependency ratio (inverse), household asserts, education and maternal care. The paper concludes that any effort to a successful resilient building in rural areas of the country should first address these key factors that enhance rural development and wellbeing since it is better to take action before shocks take place.

Keywords: climate change resilience; spatial impacts; STIRPAT model; Nigeria

Procedia PDF Downloads 150
19487 Topology and Shape Optimization of Macpherson Control Arm under Fatigue Loading

Authors: Abolfazl Hosseinpour, Javad Marzbanrad

Abstract:

In this research, the topology and shape optimization of a Macpherson control arm has been accomplished to achieve lighter weight. Present automotive market demands low cost and light weight component to meet the need of fuel efficient and cost effective vehicle. This in turn gives the rise to more effective use of materials for automotive parts which can reduce the mass of vehicle. Since automotive components are under dynamic loads which cause fatigue damage, considering fatigue criteria seems to be essential in designing automotive components. At first, in order to create severe loading condition for control arm, some rough roads are generated through power spectral density. Then, the most critical loading conditions are obtained through multibody dynamics analysis of a full vehicle model. Then, the topology optimization is performed based on fatigue life criterion using HyperMesh software, which resulted to 50 percent mass reduction. In the next step a CAD model is created using CATIA software and shape optimization is performed to achieve accurate dimensions with less mass.

Keywords: topology optimization, shape optimization, fatigue life, MacPherson control arm

Procedia PDF Downloads 316
19486 Optimal Hybrid Linear and Nonlinear Control for a Quadcopter Drone

Authors: Xinhuang Wu, Yousef Sardahi

Abstract:

A hybrid and optimal multi-loop control structure combining linear and nonlinear control algorithms are introduced in this paper to regulate the position of a quadcopter unmanned aerial vehicle (UAV) driven by four brushless DC motors. To this end, a nonlinear mathematical model of the UAV is derived and then linearized around one of its operating points. Using the nonlinear version of the model, a sliding mode control is used to derive the control laws of the motor thrust forces required to drive the UAV to a certain position. The linear model is used to design two controllers, XG-controller and YG-controller, responsible for calculating the required roll and pitch to maneuver the vehicle to the desired X and Y position. Three attitude controllers are designed to calculate the desired angular rates of rotors, assuming that the Euler angles are minimal. After that, a many-objective optimization problem involving 20 design parameters and ten objective functions is formulated and solved by HypE (Hypervolume estimation algorithm), one of the widely used many-objective optimization algorithms approaches. Both stability and performance constraints are imposed on the optimization problem. The optimization results in terms of Pareto sets and fronts are obtained and show that some of the design objectives are competing. That is, when one objective goes down, the other goes up. Also, Numerical simulations conducted on the nonlinear UAV model show that the proposed optimization method is quite effective.

Keywords: optimal control, many-objective optimization, sliding mode control, linear control, cascade controllers, UAV, drones

Procedia PDF Downloads 73
19485 Human Relationships in the Virtual Classrooms as Predictors of Students Academic Resilience and Performance

Authors: Eddiebal P. Layco

Abstract:

The purpose of this study is to describe students' virtual classroom relationships in terms of their relationship to their peers and teachers; academic resilience; and performance. Further, the researcher wants to examine if these virtual classroom relations predict students' resilience and performance in their academics. The data were collected from 720 junior and senior high school or grade 7 to 12 students in selected state universities and colleges (SUCs) in Region III offering online or virtual classes during S.Y. 2020-2021. Results revealed that virtual classroom relationships such as teacher-student and peer relationships predict academic resilience and performance. This implies that students' academic relations with their teachers and peers have something to do with their ability to bounce back and beat the odds amidst challenges they faced in the online or virtual learning environment. These virtual relationships significantly influence also their academic performance. Adequate teacher support and positive peer relations may lead to enhanced academic resilience, which may also promote a meaningful and fulfilled life academically. Result suggests that teachers should develop their students' academic resiliency and maintain good relationships in the classroom since these results in academic success.

Keywords: virtual classroom relationships, teacher-pupil relationship, peer-relationship, academic resilience, academic performance

Procedia PDF Downloads 153
19484 Assessing the Resilience of the Insurance Industry under Solvency II

Authors: Vincenzo Russo, Rosella Giacometti

Abstract:

The paper aims to assess the insurance industry's resilience under Solvency II against adverse scenarios. Starting from the economic balance sheet available under Solvency II for insurance and reinsurance undertakings, we assume that assets and liabilities follow a bivariate geometric Brownian motion (GBM). Then, using the results available under Margrabe's formula, we establish an analytical solution to calibrate the volatility of the asset-liability ratio. In such a way, we can estimate the probability of default and the probability of breaching the undertaking's Solvency Capital Requirement (SCR). Furthermore, since estimating the volatility of the Solvency Ratio became crucial for insurers in light of the financial crises featured in the last decades, we introduce a novel measure that we call Resiliency Ratio. The Resiliency Ratio can be used, in addition to the Solvency Ratio, to evaluate the insurance industry's resilience in case of adverse scenarios. Finally, we introduce a simplified stress test tool to evaluate the economic balance sheet under stressed conditions. The model we propose is featured by analytical tractability and fast calibration procedure where only the disclosed data available under the Solvency II public reporting are needed for the calibration. Using the data published regularly by the European Insurance and Occupational Pensions Authority (EIOPA) in an aggregated form by country, an empirical analysis has been performed to calibrate the model and provide the related results at the country level.

Keywords: Solvency II, solvency ratio, volatility of the asset-liability ratio, probability of default, probability to breach the SCR, resilience ratio, stress test

Procedia PDF Downloads 81
19483 Reshoring Strategies for Enhanced Supply Chain Resilience: A Comprehensive Analysis of Procurement Challenges and Solutions in the United States

Authors: Emilia Segun-Ajao

Abstract:

The strategy of relocation aimed at strengthening supply chain resilience in the United States is examined, taking into account recent global disturbances and vulnerabilities in offshore manufacturing. It explains the procurement challenges faced by enterprises and offers solutions to mitigate risks and improve resilience. Through the analysis of innovative approaches, including technological advances, policy considerations, and strategic frameworks, this study provides insights to decision-makers about the complexity of supply chain management. Reshoring has gained attention as a strategy to improve supply chain resilience in the face of global disruptions. This analysis focuses on the importance of relocating as a multifaceted approach to strengthening supply chains, advocating economic benefits, technological advances, and policy frameworks to create a more robust supply landscape in the United States.

Keywords: collaborative partnerships, supply chain resilience, procurement challenges, technology adoption

Procedia PDF Downloads 63
19482 Assessment and Evaluation Resilience of Urban Neighborhoods in Coping with Natural Disasters in in the Metropolis of Tabriz (Case Study: Region 6 of Tabriz)

Authors: Ali panahi-Kosar Khosravi

Abstract:

Earthquake resilience is one of the most important theoretical and practical concepts in crisis management. Over the past few decades, the rapid growth of urban areas and developing lower urban areas (especially in developing countries) have made them more vulnerable to human and natural crises. Therefore, the resilience of urban communities, especially low-income and unhealthy neighborhoods, is of particular importance. The present study seeks to assess and evaluate the resilience of neighborhoods in the center of district 6 of Tabriz in terms of awareness, knowledge and personal skills, social and psychological capital, managerial-institutional, and the ability to return to appropriate and sustainable conditions. The research method in this research is descriptive-analytical. The authors used library and survey methods to collect information and a questionnaire to assess resilience. The statistical population of this study is the total households living in the four neighborhoods of Shanb Ghazan, Khatib, Gharamalek, and Abuzar alley. Three hundred eighty-four families from four neighborhoods were selected based on the Cochran formula using a simple random sampling method. A one-sample t-test, simple linear regression, and structural equations were used to test the research hypotheses. Findings showed that only two social and psychological awareness and capital indicators in district 6 of Tabriz had a favorable and approved status. Therefore, considering the multidimensional concept of resilience, district 6 of Tabriz is in an unfavorable resilience situation. Also, the findings based on the analysis of variance indicated no significant difference between the neighborhoods of district 6 in terms of resilience, and most neighborhoods are in an unfavorable situation.

Keywords: resilience, statistical analysis, earthquake, district 6 of tabriz

Procedia PDF Downloads 78
19481 Exploring Barriers and Pathways to Wellbeing and Sources of Resilience of Refugee Mothers in Calgary during the COVID-19 Pandemic: The Role of Home Instruction for Parents of Preschool Youngsters (HIPPY)

Authors: Chloe Zivot, Natasha Vattikonda, Debbie Bell

Abstract:

We conducted interviews with refugee mothers (n=28) participating in the Home Instruction for Parents of Preschool Youngsters (HIPPY) program in Calgary to explore experiences of wellbeing and resilience during the COVID-19 pandemic. Disruptions to education and increased isolation, and parental duties contributed to decreased wellbeing. Mothers identified tangible protective factors at the micro, meso, and macro levels. HIPPY played a substantial role in pandemic resilience, speaking to the potential of home-based intervention models in mitigating household adversity.

Keywords: refugee resettlement, family wellbeing, COVID-19, motherhood, resilience, gender, health

Procedia PDF Downloads 205
19480 Assessing the Feasibility of Italian Hydrogen Targets with the Open-Source Energy System Optimization Model TEMOA - Italy

Authors: Alessandro Balbo, Gianvito Colucci, Matteo Nicoli, Laura Savoldi

Abstract:

Hydrogen is expected to become a game changer in the energy transition, especially enabling sector coupling possibilities and the decarbonization of hard-to-abate end-uses. The Italian National Recovery and Resilience Plan identifies hydrogen as one of the key elements of the ecologic transition to meet international decarbonization objectives, also including it in several pilot projects for the early development in Italy. This matches the European energy strategy, which aims to make hydrogen a leading energy carrier of the future, setting ambitious goals to be accomplished by 2030. The huge efforts needed to achieve the announced targets require to carefully investigate of their feasibility in terms of economic expenditures and technical aspects. In order to quantitatively assess the hydrogen potential within the Italian context and the feasibility of the planned investments and projects, this work uses the TEMOA-Italy energy system model to study pathways to meet the strict objectives above cited. The possible hydrogen development has been studied both in the supply-side and demand-side of the energy system, also including storage options and distribution chains. The assessment comprehends alternative hydrogen production technologies involved in a competition market, reflecting the several possible investments declined by the Italian National Recovery and Resilience Plan to boost the development and spread of this infrastructure, including the sector coupling potential with natural gas through the currently existing infrastructure and CO2 capture for the production of synfuels. On the other hand, the hydrogen end-uses phase covers a wide range of consumption alternatives, from fuel-cell vehicles, for which both road and non-road transport categories are considered, to steel, and chemical industries uses and cogeneration for residential and commercial buildings. The model includes both high and low TRL technologies in order to provide a consistent outcome for the future decades as it does for the present day, and since it is developed through the use of an open-source code instance and database, transparency and accessibility are fully granted.

Keywords: decarbonization, energy system optimization models, hydrogen, open-source modeling, TEMOA

Procedia PDF Downloads 101
19479 Integrated Simulation and Optimization for Carbon Capture and Storage System

Authors: Taekyoon Park, Seokgoo Lee, Sungho Kim, Ung Lee, Jong Min Lee, Chonghun Han

Abstract:

CO2 capture and storage/sequestration (CCS) is a key technology for addressing the global warming issue. This paper proposes an integrated model for the whole chain of CCS, from a power plant to a reservoir. The integrated model is further utilized to determine optimal operating conditions and study responses to various changes in input variables.

Keywords: CCS, caron dioxide, carbon capture and storage, simulation, optimization

Procedia PDF Downloads 350
19478 Subjective Well-Being in Individuals Diagnosed with an Autoimmune Disease: Resilience, and Rumination as Moderating Factors

Authors: Renae McNair

Abstract:

Subjective well-being levels were assessed in individuals diagnosed with an autoimmune disease. The current exploratory analysis sought to examine two factors that impact subjective well-being in individuals diagnosed with a chronic health condition. The two factors, resilience, and rumination, were assessed as possible moderators in self-reported levels of subjective well-being were measured. The importance of understanding the psychological state of perceived well-being in an individual diagnosed with an autoimmune disease is important given the impact of the level of subjective well-being on life longevity. In previous research, higher levels of subjective well-being are correlated with longer life longevity, including those individuals who have been diagnosed with an autoimmune disease. Conversely, individuals who report higher levels of negative affect have a shorter length of life longevity. According to the Center for Disease Control (CDC) and a report from the National Health Council, currently, 8-10% of individuals in the United States have been diagnosed with at least one autoimmune disease. Although treatment plans are in place to help manage the physical effects of disease, the psychological state of the person impacts life longevity. Resilience and rumination impact subjective well-being as an outcome in individuals diagnosed with an autoimmune disease. Resilience is the ability to adjust or adapt effectively and positively to unfavorable life conditions or events. Resilience acts as a protective factor in life, allowing those who face adversity to successfully adapt, regardless of the health diagnosis. Rumination is the worry or dwelling on the negative aspects of a given situation. Rumination interrupts the adaptive response, leading to a decrease in well-being. The relationship between resilience and subjective well-being were examined correlated with higher levels of resilience and higher levels of self-reported subjective well-being.

Keywords: subjective well-being, rumination, resilience, autoimmune disease

Procedia PDF Downloads 251
19477 A Study of Spatial Resilience Strategies for Schools Based on Sustainable Development

Authors: Xiaohan Gao, Kai Liu

Abstract:

As essential components of urban areas, primary and secondary schools are extensively distributed throughout various regions of the city. During times of urban disturbances, these schools become direct carriers of complex disruptions. Therefore, fostering resilient schools becomes a pivotal driving force to promote high-quality urban development and a cornerstone of sustainable school growth. This paper adopts the theory of spatial resilience and focuses on primary and secondary schools in Chinese cities as the research subject. The study first explores the potential disturbance risks faced by schools and delves into the origin and concept of spatial resilience in the educational context. Subsequently, the paper conducts a meta-analysis to characterize the spatial resilience of primary and secondary schools and devises a spatial resilience planning mechanism. Drawing insights from exemplary cases both domestically and internationally, the research formulates spatial and planning resilience strategies for primary and secondary schools to cope with perturbations. These strategies encompass creating an overall layout that integrates harmoniously with nature, promoting organic growth in the planning structure, fostering ecological balance in the landscape system, and enabling dynamic adaptation in architectural spaces. By cultivating the capacity for "resistance-adaptation-transformation," these approaches support sustainable development within the school space. The ultimate goal of this project is to establish a cohesive and harmonious layout that advances the sustainable development of primary and secondary schools while contributing to the overall resilience of urban areas.

Keywords: complex disruption, primary and secondary schools, spatial resilience, sustainable development

Procedia PDF Downloads 77
19476 An Enhanced Particle Swarm Optimization Algorithm for Multiobjective Problems

Authors: Houda Abadlia, Nadia Smairi, Khaled Ghedira

Abstract:

Multiobjective Particle Swarm Optimization (MOPSO) has shown an effective performance for solving test functions and real-world optimization problems. However, this method has a premature convergence problem, which may lead to lack of diversity. In order to improve its performance, this paper presents a hybrid approach which embedded the MOPSO into the island model and integrated a local search technique, Variable Neighborhood Search, to enhance the diversity into the swarm. Experiments on two series of test functions have shown the effectiveness of the proposed approach. A comparison with other evolutionary algorithms shows that the proposed approach presented a good performance in solving multiobjective optimization problems.

Keywords: particle swarm optimization, migration, variable neighborhood search, multiobjective optimization

Procedia PDF Downloads 167
19475 Analysis of CO₂ Two-Phase Ejector with Taguchi and ANOVA Optimization and Refrigerant Selection with Enviro Economic Concerns by TOPSIS Analysis

Authors: Karima Megdouli, Bourhan tachtouch

Abstract:

Ejector refrigeration cycles offer an alternative to conventional systems for producing cold from low-temperature heat. In this article, a thermodynamic model is presented. This model has the advantage of simplifying the calculation algorithm and describes the complex double-throttling mechanism that occurs in the ejector. The model assumption and calculation algorithm are presented first. The impact of each efficiency is evaluated. Validation is performed on several data sets. The ejector model is then used to simulate a RES (refrigeration ejector system), to validate its robustness and suitability for use in predicting thermodynamic cycle performance. A Taguchi and ANOVA optimization is carried out on a RES. TOPSIS analysis was applied to decide the optimum refrigerants with cost, safety, environmental and enviro economic concerns along with thermophysical properties.

Keywords: ejector, velocity distribution, shock circle, Taguchi and ANOVA optimization, TOPSIS analysis

Procedia PDF Downloads 89
19474 An Investigation on Organisation Cyber Resilience

Authors: Arniyati Ahmad, Christopher Johnson, Timothy Storer

Abstract:

Cyber exercises used to assess the preparedness of a community against cyber crises, technology failures and critical information infrastructure (CII) incidents. The cyber exercises also called cyber crisis exercise or cyber drill, involved partnerships or collaboration of public and private agencies from several sectors. This study investigates organisation cyber resilience (OCR) of participation sectors in cyber exercise called X Maya in Malaysia. This study used a principal based cyber resilience survey called C-Suite Executive checklist developed by World Economic Forum in 2012. To ensure suitability of the survey to investigate the OCR, the reliability test was conducted on C-Suite Executive checklist items. The research further investigates the differences of OCR in ten Critical National Infrastructure Information (CNII) sectors participated in the cyber exercise. The One Way ANOVA test result showed a statistically significant difference of OCR among ten CNII sectors participated in the cyber exercise.

Keywords: critical information infrastructure, cyber resilience, organisation cyber resilience, reliability test

Procedia PDF Downloads 358
19473 Nelder-Mead Parametric Optimization of Elastic Metamaterials with Artificial Neural Network Surrogate Model

Authors: Jiaqi Dong, Qing-Hua Qin, Yi Xiao

Abstract:

Some of the most fundamental challenges of elastic metamaterials (EMMs) optimization can be attributed to the high consumption of computational power resulted from finite element analysis (FEA) simulations that render the optimization process inefficient. Furthermore, due to the inherent mesh dependence of FEA, minuscule geometry features, which often emerge during the later stages of optimization, induce very fine elements, resulting in enormously high time consumption, particularly when repetitive solutions are needed for computing the objective function. In this study, a surrogate modelling algorithm is developed to reduce computational time in structural optimization of EMMs. The surrogate model is constructed based on a multilayer feedforward artificial neural network (ANN) architecture, trained with prepopulated eigenfrequency data prepopulated from FEA simulation and optimized through regime selection with genetic algorithm (GA) to improve its accuracy in predicting the location and width of the primary elastic band gap. With the optimized ANN surrogate at the core, a Nelder-Mead (NM) algorithm is established and its performance inspected in comparison to the FEA solution. The ANNNM model shows remarkable accuracy in predicting the band gap width and a reduction of time consumption by 47%.

Keywords: artificial neural network, machine learning, mechanical metamaterials, Nelder-Mead optimization

Procedia PDF Downloads 128
19472 COVID-19 and College Students: Insights into Coping Schemas and Resilience

Authors: Yassir Semmar

Abstract:

The ability to cope during trying times is essential for psychological well-being. 101 college students attending a northeastern university in the United States took part in a study that examined their coping schemas and resilience during the COVID-19 pandemic. The first aim was to determine the types of coping strategies and resilience domains that students most frequently relied on. The second purpose was to investigate whether demographic variables correlated with certain coping schemas and resilience scales. First year students were particularly more vulnerable to the stressors brought by the pandemic as they frequently resorted to more maladaptive strategies in comparison to their older peers. The latter were deemed more resilient in the sense of feeling in control, staying focused, and regulating their emotions. Participants from different racial backgrounds appeared to differ in the extent to which they sought support from others. Students who were employed part-time felt less optimistic and knowledgeable about where to seek assistance and how to cope with various stressors as compared to their unemployed counterparts. Implications are discussed in terms of developing a holistic, proactive approach to identifying, understanding, and effectively responding to the unique needs of our diverse student population from an equity-mindedness stance.

Keywords: COVID-19, coping schemas, resilience, wellbeing, college students

Procedia PDF Downloads 20
19471 Environmental Resilience in Sustainability Outcomes of Spatial-Economic Model Structure on the Topology of Construction Ecology

Authors: Moustafa Osman Mohammed

Abstract:

The resilient and sustainable of construction ecology is essential to world’s socio-economic development. Environmental resilience is crucial in relating construction ecology to topology of spatial-economic model. Sustainability of spatial-economic model gives attention to green business to comply with Earth’s System for naturally exchange patterns of ecosystems. The systems ecology has consistent and periodic cycles to preserve energy and materials flow in Earth’s System. When model structure is influencing communication of internal and external features in system networks, it postulated the valence of the first-level spatial outcomes (i.e., project compatibility success). These instrumentalities are dependent on second-level outcomes (i.e., participant security satisfaction). These outcomes of model are based on measuring database efficiency, from 2015 to 2025. The model topology has state-of-the-art in value-orientation impact and correspond complexity of sustainability issues (e.g., build a consistent database necessary to approach spatial structure; construct the spatial-economic model; develop a set of sustainability indicators associated with model; allow quantification of social, economic and environmental impact; use the value-orientation as a set of important sustainability policy measures), and demonstrate environmental resilience. The model is managing and developing schemes from perspective of multiple sources pollutants through the input–output criteria. These criteria are evaluated the external insertions effects to conduct Monte Carlo simulations and analysis for using matrices in a unique spatial structure. The balance “equilibrium patterns” such as collective biosphere features, has a composite index of the distributed feedback flows. These feedback flows have a dynamic structure with physical and chemical properties for gradual prolong of incremental patterns. While these structures argue from system ecology, static loads are not decisive from an artistic/architectural perspective. The popularity of system resilience, in the systems structure related to ecology has not been achieved without the generation of confusion and vagueness. However, this topic is relevant to forecast future scenarios where industrial regions will need to keep on dealing with the impact of relative environmental deviations. The model attempts to unify analytic and analogical structure of urban environments using database software to integrate sustainability outcomes where the process based on systems topology of construction ecology.

Keywords: system ecology, construction ecology, industrial ecology, spatial-economic model, systems topology

Procedia PDF Downloads 19
19470 Configuring Resilience and Environmental Sustainability to Achieve Superior Performance under Differing Conditions of Transportation Disruptions

Authors: Henry Ataburo, Dominic Essuman, Emmanuel Kwabena Anin

Abstract:

Recent trends of catastrophic events, such as the Covid-19 pandemic, the Suez Canal blockage, the Russia-Ukraine conflict, the Israel-Hamas conflict, and the climate change crisis, continue to devastate supply chains and the broader society. Prior authors have advocated for a simultaneous pursuit of resilience and sustainability as crucial for navigating these challenges. Nevertheless, the relationship between resilience and sustainability is a rather complex one: resilience and sustainability are considered unrelated, substitutes, or complements. Scholars also suggest that different firms prioritize resilience and sustainability differently for varied strategic reasons. However, we know little about whether, how, and when these choices produce different typologies of firms to explain differences in financial and market performance outcomes. This research draws inferences from the systems configuration approach to organizational fit to contend that a taxonomy of firms may emerge based on how firms configure resilience and environmental sustainability. The study further examines the effects of these taxonomies on financial and market performance in differing transportation disruption conditions. Resilience is operationalized as a firm’s ability to adjust current operations, structure, knowledge, and resources in response to disruptions, whereas environmental sustainability is operationalized as the extent to which a firm deploys resources judiciously and keeps the ecological impact of its operations to the barest minimum. Using primary data from 199 firms in Ghana and cluster analysis as an analytical tool, the study identifies four clusters of firms based on how they prioritize resilience and sustainability: Cluster 1 - "strong, moderate resilience, high sustainability firms," Cluster 2 - "sigh resilience, high sustainability firms," Cluster 3 - "high resilience, strong, moderate sustainability firms," and Cluster 4 - "weak, moderate resilience, strong, moderate sustainability firms". In addition, ANOVA and regression analysis revealed the following findings: Only clusters 1 and 2 were significantly associated with both market and financial performance. Under high transportation disruption conditions, cluster 1 firms excel better in market performance, whereas cluster 2 firms excel better in financial performance. Conversely, under low transportation disruption conditions, cluster 1 firms excel better in financial performance, whereas cluster 2 firms excel better in market performance. The study provides theoretical and empirical evidence of how resilience and environmental sustainability can be configured to achieve specific performance objectives under different disruption conditions.

Keywords: resilience, environmental sustainability, developing economy, transportation disruption

Procedia PDF Downloads 67
19469 The Process of Critical Care Nursing Resilience in Workplace Adversity

Authors: Jennifer Jackson

Abstract:

Critical care nurses are at risk for burnout when confronted with sustained workplace adversity, which stems from a variety of social, structural, and environmental factors. Researchers have suggested that nurses can become resilient and overcome workplace adversity to achieve positive outcomes. The purpose of this study is to learn more about critical care nurses’ experiences with workplace adversity, and their process of becoming resilient. The research question will be: what is the process of critical care nursing resilience in workplace adversity? In-depth interviews with critical care nurses will provide the data to inductively generate the grounded theory. The resultant grounded theory will provide a framework to inform nurses and managers in developing interventions to support critical care nurses in their workplace. By enhancing nursing resilience, burnout may be avoided, and nurse satisfaction and overall quality of care may be improved.

Keywords: nursing, resilience, burnout, critical care

Procedia PDF Downloads 487
19468 National Scope Study on Resilience of Nursing Teams During the COVID-19 Pandemic: Brazilian Experience

Authors: Elucir Gir, Laelson Rochelle Milanês Sousa, Pedro Henrique Tertuliano Leoni, Carla Aparecida Arena Ventura, Ana Cristina de Oliveira e Silva, Renata Karina Reis

Abstract:

Context and significance: Resilience is a protective agent for the physical and mental well-being of nursing professionals. Team members are constantly subjected to high levels of work stress that can negatively impact care performance and users of health services. Stress levels have been exacerbated with the COVID-19 pandemic. Objective: The aim of this study was to analyze the resilience of nursing professionals in Brazil during the COVID-19 pandemic. Method: Cross-sectional study with a quantitative approach carried out with professionals from nursing teams from all regions of Brazil. Data collection took place in the first year of the pandemic between October and December 2020. Data were obtained through an online questionnaire posted on social networks. The information collected included the sociodemographic characterization of the nursing professionals and the Brief Resilient Coping Scale was applied. Student's t-test for independent samples and analysis of variance (ANOVA) were used to compare resilience scores with sociodemographic variables. Results: 8,792 nursing professionals participated in the study, 5,767 (65.6%) were nurses, 7,437 (84.6%) were female and 2,643 (30.1%) were from the Northeast region of Brazil, 5,124 (58.8% ) had low levels of resilience. The results showed a statistically significant difference between the resilience score and the variables: professional category (p<0.001); sex (p = 0.003); age range (p<0.001); region of Brazil (p<0.001); marital status (p=0.029) and providing assistance in a field hospital (p<0.001). Conclusion: Participants in this study had, in general, low levels of resilience. There is an urgent need for actions aimed at promoting the psychological health of nursing professionals inserted in pandemic contexts. Descriptors: Psychological Resilience; Nursing professionals; COVID-19; SARSCoV-2.

Keywords: psychological resilience, nursing professionals, COVID-19, SARS-CoV-2

Procedia PDF Downloads 87
19467 Measuring Systems Interoperability: A Focal Point for Standardized Assessment of Regional Disaster Resilience

Authors: Joel Thomas, Alexa Squirini

Abstract:

The key argument of this research is that every element of systems interoperability is an enabler of regional disaster resilience, and arguably should become a focal point for standardized measurement of communities’ ability to work together. Few resilience research efforts have focused on the development and application of solutions that measurably improve communities’ ability to work together at a regional level, yet a majority of the most devastating and disruptive disasters are those that have had a regional impact. The key findings of the research include a unique theoretical, mathematical, and operational approach to tangibly and defensibly measure and assess systems interoperability required to support crisis information management activities performed by governments, the private sector, and humanitarian organizations. A most effective way for communities to measurably improve regional disaster resilience is through deliberately executed disaster preparedness activities. Developing interoperable crisis information management capabilities is a crosscutting preparedness activity that greatly affects a community’s readiness and ability to work together in times of crisis. Thus, improving communities’ human and technical posture to work together in advance of a crisis, with the ultimate goal of enabling information sharing to support coordination and the careful management of available resources, is a primary means by which communities may improve regional disaster resilience. This model describes how systems interoperability can be qualitatively and quantitatively assessed when characterized as five forms of capital: governance; standard operating procedures; technology; training and exercises; and usage. The unique measurement framework presented defines the relationships between systems interoperability, information sharing and safeguarding, operational coordination, community preparedness and regional disaster resilience, and offers a means by which to implement real-world solutions and measure progress over the course of a multi-year program. The model is being developed and piloted in partnership with the U.S. Department of Homeland Security (DHS) Science and Technology Directorate (S&T) and the North Atlantic Treaty Organization (NATO) Advanced Regional Civil Emergency Coordination Pilot (ARCECP) with twenty-three organizations in Bosnia and Herzegovina, Croatia, Macedonia, and Montenegro. The intended effect of the model implementation is to enable communities to answer two key questions: 'Have we measurably improved crisis information management capabilities as a result of this effort?' and, 'As a result, are we more resilient?'

Keywords: disaster, interoperability, measurement, resilience

Procedia PDF Downloads 143
19466 Support Vector Regression Combined with Different Optimization Algorithms to Predict Global Solar Radiation on Horizontal Surfaces in Algeria

Authors: Laidi Maamar, Achwak Madani, Abdellah El Ahdj Abdellah

Abstract:

The aim of this work is to use Support Vector regression (SVR) combined with dragonfly, firefly, Bee Colony and particle swarm Optimization algorithm to predict global solar radiation on horizontal surfaces in some cities in Algeria. Combining these optimization algorithms with SVR aims principally to enhance accuracy by fine-tuning the parameters, speeding up the convergence of the SVR model, and exploring a larger search space efficiently; these parameters are the regularization parameter (C), kernel parameters, and epsilon parameter. By doing so, the aim is to improve the generalization and predictive accuracy of the SVR model. Overall, the aim is to leverage the strengths of both SVR and optimization algorithms to create a more powerful and effective regression model for various cities and under different climate conditions. Results demonstrate close agreement between predicted and measured data in terms of different metrics. In summary, SVM has proven to be a valuable tool in modeling global solar radiation, offering accurate predictions and demonstrating versatility when combined with other algorithms or used in hybrid forecasting models.

Keywords: support vector regression (SVR), optimization algorithms, global solar radiation prediction, hybrid forecasting models

Procedia PDF Downloads 35
19465 Simulation-Based Optimization of a Non-Uniform Piezoelectric Energy Harvester with Stack Boundary

Authors: Alireza Keshmiri, Shahriar Bagheri, Nan Wu

Abstract:

This research presents an analytical model for the development of an energy harvester with piezoelectric rings stacked at the boundary of the structure based on the Adomian decomposition method. The model is applied to geometrically non-uniform beams to derive the steady-state dynamic response of the structure subjected to base motion excitation and efficiently harvest the subsequent vibrational energy. The in-plane polarization of the piezoelectric rings is employed to enhance the electrical power output. A parametric study for the proposed energy harvester with various design parameters is done to prepare the dataset required for optimization. Finally, simulation-based optimization technique helps to find the optimum structural design with maximum efficiency. To solve the optimization problem, an artificial neural network is first trained to replace the simulation model, and then, a genetic algorithm is employed to find the optimized design variables. Higher geometrical non-uniformity and length of the beam lowers the structure natural frequency and generates a larger power output.

Keywords: piezoelectricity, energy harvesting, simulation-based optimization, artificial neural network, genetic algorithm

Procedia PDF Downloads 123
19464 A Resource Optimization Strategy for CPU (Central Processing Unit) Intensive Applications

Authors: Junjie Peng, Jinbao Chen, Shuai Kong, Danxu Liu

Abstract:

On the basis of traditional resource allocation strategies, the usage of resources on physical servers in cloud data center is great uncertain. It will cause waste of resources if the assignment of tasks is not enough. On the contrary, it will cause overload if the assignment of tasks is too much. This is especially obvious when the applications are the same type because of its resource preferences. Considering CPU intensive application is one of the most common types of application in the cloud, we studied the optimization strategy for CPU intensive applications on the same server. We used resource preferences to analyze the case that multiple CPU intensive applications run simultaneously, and put forward a model which can predict the execution time for CPU intensive applications which run simultaneously. Based on the prediction model, we proposed the method to select the appropriate number of applications for a machine. Experiments show that the model can predict the execution time accurately for CPU intensive applications. To improve the execution efficiency of applications, we propose a scheduling model based on priority for CPU intensive applications. Extensive experiments verify the validity of the scheduling model.

Keywords: cloud computing, CPU intensive applications, resource optimization, strategy

Procedia PDF Downloads 278