Search results for: reaction diffusion equation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5236

Search results for: reaction diffusion equation

5116 A Novel Method for Solving Nonlinear Whitham–Broer–Kaup Equation System

Authors: Ayda Nikkar, Roghayye Ahmadiasl

Abstract:

In this letter, a new analytical method called homotopy perturbation method, which does not need small parameter in the equation is implemented for solving the nonlinear Whitham–Broer–Kaup (WBK) partial differential equation. In this method, a homotopy is introduced to be constructed for the equation. The initial approximations can be freely chosen with possible unknown constants which can be determined by imposing the boundary and initial conditions. Comparison of the results with those of exact solution has led us to significant consequences. The results reveal that the HPM is very effective, convenient and quite accurate to systems of nonlinear equations. It is predicted that the HPM can be found widely applicable in engineering.

Keywords: homotopy perturbation method, Whitham–Broer–Kaup (WBK) equation, Modified Boussinesq, Approximate Long Wave

Procedia PDF Downloads 283
5115 Reaction Kinetics for the Pyrolysis of Urea Phosphate

Authors: P. A. Broodryk, A. F. Van Der Merwe, H. W. J. P. Neomagus

Abstract:

The production of the clear liquid fertilizer ammonium polyphosphate (APP) is best achieved by the pyrolysis of urea phosphate, as it produces a product that is free from any of the impurities present in the raw phosphoric acid it was made from. This is a multiphase, multi-step reaction that produces carbon dioxide and ammonia as gasses and ammonium polyphosphate as liquid products. The polyphosphate chain length affects the solubility and thus the applicability of the product as liquid fertiliser, thus proper control of the reaction conditions is thus required for the use of this reaction in the production of fertilisers. This study investigates the reaction kinetics of the aforementioned reaction, describing a mathematical model for the kinetics of the reaction along with the accompanying rate constants. The reaction is initially exothermic, producing only carbon dioxide as a gas product and ammonium diphosphate, at higher temperatures the reaction becomes endothermic, producing ammonia gas as an additional by-product and longer chain polyphosphates, which when condensed too far becomes highly water insoluble. The aim of this study was to (i) characterise the pyrolysis reaction of urea phosphate by determining the mechanisms and the associated kinetic constants, and (ii) to determine the optimum conditions for ammonium diphosphate production. A qualitative investigation was also done to find the rate of hydrolysis of APP as this provides an estimate of the shelf life of an APP clear liquid fertiliser solution.

Keywords: ammonium polyphosphate, kinetics, pyrolysis, urea phosphate

Procedia PDF Downloads 134
5114 Fuzzy Inference Based Modelling of Perception Reaction Time of Drivers

Authors: U. Chattaraj, K. Dhusiya, M. Raviteja

Abstract:

Perception reaction time of drivers is an outcome of human thought process, which is vague and approximate in nature and also varies from driver to driver. So, in this study a fuzzy logic based model for prediction of the same has been presented, which seems suitable. The control factors, like, age, experience, intensity of driving of the driver, speed of the vehicle and distance of stimulus have been considered as premise variables in the model, in which the perception reaction time is the consequence variable. Results show that the model is able to explain the impacts of the control factors on perception reaction time properly.

Keywords: driver, fuzzy logic, perception reaction time, premise variable

Procedia PDF Downloads 277
5113 Batch Kinetic, Isotherm and Thermodynamic Studies of Copper (II) Removal from Wastewater Using HDL as Adsorbent

Authors: Nadjet Taoualit, Zoubida Chemat, Djamel-Eddine Hadj-Boussaad

Abstract:

This study aims the removal of copper Cu (II) contained in wastewater by adsorption on a perfect synthesized mud. It is the materials Hydroxides Double Lamellar, HDL, prepared and synthesized by co-precipitation method at constant pH, which requires a simple titration assembly, with an inexpensive and available material in the laboratory, and also allows us better control of the composition of the reaction medium, and gives well crystallized products. A characterization of the adsorbent proved essential. Thus a range of physic-chemical analysis was performed including: FTIR spectroscopy, X-ray diffraction… The adsorption of copper ions was investigated in dispersed medium (batch). A systematic study of various parameters (amount of support, contact time, initial copper concentration, temperature, pH…) was performed. Adsorption kinetic data were tested using pseudo-first order, pseudo-second order, Bangham's equation and intra-particle diffusion models. The equilibrium data were analyzed using Langmuir, Freundlich, Tempkin and other isotherm models at different doses of HDL. The thermodynamics parameters were evaluated at different temperatures. The results have established good potentiality for the HDL to be used as a sorbent for the removal of Copper from wastewater.

Keywords: adsoption, copper, HDL, isotherm

Procedia PDF Downloads 258
5112 Modelling and Simulation of Diffusion Effect on the Glycol Dehydration Unit of a Natural Gas Plant

Authors: M. Wigwe, J. G Akpa, E. N Wami

Abstract:

Mathematical models of the absorber of a glycol dehydration facility was developed using the principles of conservation of mass and energy. Models which predict variation of the water content of gas in mole fraction, variation of gas and liquid temperatures across the parking height were developed. These models contain contributions from bulk and diffusion flows. The effect of diffusion on the process occurring in the absorber was studied in this work. The models were validated using the initial conditions in the plant data from Company W TEG unit in Nigeria. The results obtained showed that the effect of diffusion was noticed between z=0 and z=0.004 m. A deviation from plant data of 0% was observed for the gas water content at a residence time of 20 seconds, at z=0.004 m. Similarly, deviations of 1.584% and 2.844% were observed for the gas and TEG temperatures.

Keywords: separations, absorption, simulation, dehydration, water content, triethylene glycol

Procedia PDF Downloads 475
5111 Dissolution Leaching Kinetics of Ulexite in Sodium Dihydrogen Phosphate Solutions

Authors: Emine Teke, Soner Kuşlu, Sabri Çolak, Turan Çalban

Abstract:

The aim of the present study was to investigate the dissolution kinetics of ulexite in sodium dihydrogen phosphate in a mechanical agitation system and also to declare an alternative reactant to produce the boric acid. Reaction temperature, concentration of sodium dihydrogen phosphate, stirring speed, solid-liquid ratio, and ulexite particle size were selected as parameters. The experimental results were successfully correlated by using linear regression and a statistical program. Dissolution curves were evaluated in order to test the shrinking core models for solid-fluid systems. It was observed that increase in the reaction temperature and decrease in the solid/liquid ratio causes an increase in the dissolution rate of ulexite. The activation energy was found to be 36.4 kJ/mol. The leaching of ulexite was controlled by diffusion through the ash (or product) layer.

Keywords: ulexite, sodium dihydrogen phosphate, leaching kinetics, boron

Procedia PDF Downloads 287
5110 A Posteriori Analysis of the Spectral Element Discretization of Heat Equation

Authors: Chor Nejmeddine, Ines Ben Omrane, Mohamed Abdelwahed

Abstract:

In this paper, we present a posteriori analysis of the discretization of the heat equation by spectral element method. We apply Euler's implicit scheme in time and spectral method in space. We propose two families of error indicators, both of which are built from the residual of the equation and we prove that they satisfy some optimal estimates. We present some numerical results which are coherent with the theoretical ones.

Keywords: heat equation, spectral elements discretization, error indicators, Euler

Procedia PDF Downloads 282
5109 Effect of Minerals in Middlings on the Reactivity of Gasification-Coke by Blending a Large Proportion of Long Flame Coal

Authors: Jianjun Wu, Fanhui Guo, Yixin Zhang

Abstract:

In this study, gasification-coke were produced by blending the middlings (MC), and coking coal (CC) and a large proportion of long flame coal (Shenfu coal, SC), the effects of blending ratio were investigated. Mineral evolution and crystalline order obtained by XRD methods were reproduced within reasonable accuracy. Structure characteristics of partially gasification-coke such as surface area and porosity were determined using the N₂ adsorption and mercury porosimetry. Experimental data of gasification-coke was dominated by the TGA results provided trend, reactivity differences between gasification-cokes are discussed in terms of structure characteristic, crystallinity, and alkali index (AI). The first-order reaction equation was suitable for the gasification reaction kinetics of CO₂ atmosphere which was represented by the volumetric reaction model with linear correlation coefficient above 0.985. The differences in the microporous structure of gasification-coke and catalysis caused by the minerals in parent coals were supposed to be the main factors which affect its reactivity. The addition of MC made the samples enriched with a large amount of ash causing a higher surface area and a lower crystalline order to gasification-coke which was beneficial to gasification reaction. The higher SiO₂ and Al₂O₃ contents, causing a decreasing AI value and increasing activation energy, which reduced the gasification reaction activity. It was found that the increasing amount of MC got a better performance on the coke gasification reactivity by blending > 30% SC with this coking process.

Keywords: low-rank coal, middlings, structure characteristic, mineral evolution, alkali index, gasification-coke, gasification kinetics

Procedia PDF Downloads 154
5108 Mathematical and Numerical Analysis of a Nonlinear Cross Diffusion System

Authors: Hassan Al Salman

Abstract:

We consider a nonlinear parabolic cross diffusion model arising in applied mathematics. A fully practical piecewise linear finite element approximation of the model is studied. By using entropy-type inequalities and compactness arguments, existence of a global weak solution is proved. Providing further regularity of the solution of the model, some uniqueness results and error estimates are established. Finally, some numerical experiments are performed.

Keywords: cross diffusion model, entropy-type inequality, finite element approximation, numerical analysis

Procedia PDF Downloads 364
5107 CFD Analysis of Multi-Phase Reacting Transport Phenomena in Discharge Process of Non-Aqueous Lithium-Air Battery

Authors: Jinliang Yuan, Jong-Sung Yu, Bengt Sundén

Abstract:

A computational fluid dynamics (CFD) model is developed for rechargeable non-aqueous electrolyte lithium-air batteries with a partial opening for oxygen supply to the cathode. Multi-phase transport phenomena occurred in the battery are considered, including dissolved lithium ions and oxygen gas in the liquid electrolyte, solid-phase electron transfer in the porous functional materials and liquid-phase charge transport in the electrolyte. These transport processes are coupled with the electrochemical reactions at the active surfaces, and effects of discharge reaction-generated solid Li2O2 on the transport properties and the electrochemical reaction rate are evaluated and implemented in the model. The predicted results are discussed and analyzed in terms of the spatial and transient distribution of various parameters, such as local oxygen concentration, reaction rate, variable solid Li2O2 volume fraction and porosity, as well as the effective diffusion coefficients. It is found that the effect of the solid Li2O2 product deposited at the solid active surfaces is significant on the transport phenomena and the overall battery performance.

Keywords: Computational Fluid Dynamics (CFD), modeling, multi-phase, transport phenomena, lithium-air battery

Procedia PDF Downloads 424
5106 Approximate Solution to Non-Linear Schrödinger Equation with Harmonic Oscillator by Elzaki Decomposition Method

Authors: Emad K. Jaradat, Ala’a Al-Faqih

Abstract:

Nonlinear Schrödinger equations are regularly experienced in numerous parts of science and designing. Varieties of analytical methods have been proposed for solving these equations. In this work, we construct an approximate solution for the nonlinear Schrodinger equations, with harmonic oscillator potential, by Elzaki Decomposition Method (EDM). To illustrate the effects of harmonic oscillator on the behavior wave function, nonlinear Schrodinger equation in one and two dimensions is provided. The results show that, it is more perfectly convenient and easy to apply the EDM in one- and two-dimensional Schrodinger equation.

Keywords: non-linear Schrodinger equation, Elzaki decomposition method, harmonic oscillator, one and two-dimensional Schrodinger equation

Procedia PDF Downloads 167
5105 Relativistic Energy Analysis for Some q Deformed Shape Invariant Potentials in D Dimensions Using SUSYQM Approach

Authors: A. Suparmi, C. Cari, M. Yunianto, B. N. Pratiwi

Abstract:

D-dimensional Dirac equations of q-deformed shape invariant potentials were solved using supersymmetric quantum mechanics (SUSY QM) in the case of exact spin symmetry. The D dimensional radial Dirac equation for shape invariant potential reduces to one-dimensional Schrodinger type equation by an appropriate variable and parameter change. The relativistic energy spectra were analyzed by using SUSY QM and shape invariant properties from radial D dimensional Dirac equation that have reduced to one dimensional Schrodinger type equation. The SUSY operator was used to generate the D dimensional relativistic radial wave functions, the relativistic energy equation reduced to the non-relativistic energy in the non-relativistic limit.

Keywords: D-dimensional dirac equation, non-central potential, SUSY QM, radial wave function

Procedia PDF Downloads 326
5104 Research of the Activation Energy of Conductivity in P-I-N SiC Structures Fabricated by Doping with Aluminum Using the Low-Temperature Diffusion Method

Authors: Ilkham Gafurovich Atabaev, Khimmatali Nomozovich Juraev

Abstract:

The activation energy of conductivity in p-i-n SiC structures fabricated by doping with Aluminum using the new low-temperature diffusion method is investigated. In this method, diffusion is stimulated by the flux of carbon and silicon vacancies created by surface oxidation. The activation energy of conductivity in the p - layer is 0.25 eV and it is close to the ionization energy of Aluminum in 4H-SiC from 0.21 to 0.27 eV for the hexagonal and cubic positions of aluminum in the silicon sublattice for weakly doped crystals. The conductivity of the i-layer (measured in the reverse biased diode) shows 2 activation energies: 0.02 eV and 0.62 eV. Apparently, the 0.62 eV level is a deep trap level and it is a complex of Aluminum with a vacancy. According to the published data, an analogous level system (with activation energies of 0.05, 0.07, 0.09 and 0.67 eV) was observed in the ion Aluminum doped 4H-SiC samples.

Keywords: activation energy, aluminum, low temperature diffusion, SiC

Procedia PDF Downloads 255
5103 A Mathematical Equation to Calculate Stock Price of Different Growth Model

Authors: Weiping Liu

Abstract:

This paper presents an equation to calculate stock prices of different growth model. This equation is mathematically derived by using discounted cash flow method. It has the advantages of being very easy to use and very accurate. It can still be used even when the first stage is lengthy. This equation is more generalized because it can be used for all the three popular stock price models. It can be programmed into financial calculator or electronic spreadsheets. In addition, it can be extended to a multistage model. It is more versatile and efficient than the traditional methods.

Keywords: stock price, multistage model, different growth model, discounted cash flow method

Procedia PDF Downloads 378
5102 Effectiveness Factor for Non-Catalytic Gas-Solid Pyrolysis Reaction for Biomass Pellet Under Power Law Kinetics

Authors: Haseen Siddiqui, Sanjay M. Mahajani

Abstract:

Various important reactions in chemical and metallurgical industries fall in the category of gas-solid reactions. These reactions can be categorized as catalytic and non-catalytic gas-solid reactions. In gas-solid reaction systems, heat and mass transfer limitations put an appreciable influence on the rate of the reaction. The consequences can be unavoidable for overlooking such effects while collecting the reaction rate data for the design of the reactor. Pyrolysis reaction comes in this category that involves the production of gases due to the interaction of heat and solid substance. Pyrolysis is also an important step in the gasification process and therefore, the gasification reactivity majorly influenced by the pyrolysis process that produces the char, as a feed for the gasification process. Therefore, in the present study, a non-isothermal transient 1-D model is developed for a single biomass pellet to investigate the effect of heat and mass transfer limitations on the rate of pyrolysis reaction. The obtained set of partial differential equations are firstly discretized using the concept of ‘method of lines’ to obtain a set of ordinary differential equation with respect to time. These equations are solved, then, using MATLAB ode solver ode15s. The model is capable of incorporating structural changes, porosity variation, variation in various thermal properties and various pellet shapes. The model is used to analyze the effectiveness factor for different values of Lewis number and heat of reaction (G factor). Lewis number includes the effect of thermal conductivity of the solid pellet. Higher the Lewis number, the higher will be the thermal conductivity of the solid. The effectiveness factor was found to be decreasing with decreasing Lewis number due to the fact that smaller Lewis numbers retard the rate of heat transfer inside the pellet owing to a lower rate of pyrolysis reaction. G factor includes the effect of the heat of reaction. Since the pyrolysis reaction is endothermic in nature, the G factor takes negative values. The more the negative value higher will be endothermic nature of the pyrolysis reaction. The effectiveness factor was found to be decreasing with more negative values of the G factor. This behavior can be attributed to the fact that more negative value of G factor would result in more energy consumption by the reaction owing to a larger temperature gradient inside the pellet. Further, the analytical expressions are also derived for gas and solid concentrations and effectiveness factor for two limiting cases of the general model developed. The two limiting cases of the model are categorized as the homogeneous model and unreacted shrinking core model.

Keywords: effectiveness factor, G-factor, homogeneous model, lewis number, non-catalytic, shrinking core model

Procedia PDF Downloads 111
5101 Evaluation of Esters Production by Oleic Acid Epoxidation Reaction

Authors: Flavio A. F. Da Ponte, Jackson Q. Malveira, Monica C. G. Albuquerque

Abstract:

In recent years a worldwide interest in renewable resources from the biomass has spurred the industry. In this work the chemical structure of oleic acid chains was modified by homogeneous and heterogeneous catalysis in order to produce esters. The homogeneous epoxidation was carried out at H2O2 to oleic acid unsaturation molar ratio of 20:1. The reaction temperature was 338 K and reaction time 16 h. Formic acid was used as catalyst. For heterogeneous catalysis reaction temperature was 343 K and reaction time 24 h. The esters production was carried out by heterogeneous catalysis of the epoxidized oleic acid and butanol using Mg/SBA-15 as catalyst. The resulting products were confirmed by NMR (1H and 13C) and FTIR spectroscopy. The products were characterized before and after each reaction. The catalysts were characterized by X-ray diffraction, X-ray fluorescence, thermogravimetric analysis (TGA) and BET surface areas. The results were satisfactory for the bioproducts formed.

Keywords: acid oleic, bioproduct, esters, epoxidation

Procedia PDF Downloads 330
5100 Kinetics and Mechanism of Oxidation of Dimethylglyoxime Chromium (III) Complex by Periodate

Authors: Ahmed A. Abdel-Khalek, Reham A. Mohamed

Abstract:

The kinetics of oxidation of binary complex [CrIII(DMG)2(H2O)4 ]+ to Cr(VI) by periodate has been investigated spectrophotometrically where, [DMG= Dimethylglyoxime] at 370nm under pseudo first order reaction conditions in aqueous medium over 20- 40ºC range, PH 2-3, and I=0.07 mol dm-3. The reaction is first order with respect to both [IO4-] and Cr(III), and the reaction increased with PH increased. Thermodymanic activation parameters have been calculated. It is suggested that electron transfer proceeds through an inner sphere mechanism via coordination of IO4- to Cr (III). The reaction obeys the following rate law Rate= {k1 K5+ k2 K6 K2 } [Cr III (DMG)2(H2O)4 ]+ [H5IO6].

Keywords: chromium, dimethylglyoxime, kinetics, oxidation, periodate

Procedia PDF Downloads 394
5099 Ag Nanoparticle/Melamine Sulfonic Acid Supported on Alumina: Efficient Catalytic System in Synthesis of Dihydropyrimidines

Authors: Parya Nasehi, Mohammad Kazem Mohammadi

Abstract:

3,4-dihydropyrimidin-2(1H)-thiones were synthesized in the presence of Ag nanoparticle/melamine sulfonic acid (MSA) supported on alumina. The reaction was carried out at 110 oC for 20 min under solvent free conditions. This method have some advantages such as good yield, mild reaction conditions, ease of operation and work up, short reaction time and high product purity.

Keywords: nanoparticle melamine sulfonic acid, Al2O3, Biginelli reaction, 3, 4-dihydropyrimidin-2(1H, solvent free

Procedia PDF Downloads 488
5098 Modification of Fick’s First Law by Introducing the Time Delay

Authors: H. Namazi, H. T. N. Kuan

Abstract:

Fick's first law relates the diffusive flux to the concentration field, by postulating that the flux goes from regions of high concentration to regions of low concentration, with a magnitude that is proportional to the concentration gradient (spatial derivative). It is clear that the diffusion of flux cannot be instantaneous and should be some time delay in this propagation. But Fick’s first law doesn’t consider this delay which results in some errors especially when there is a considerable time delay in the process. In this paper, we introduce a time delay to Fick’s first law. By this modification, we consider that the diffusion of flux cannot be instantaneous. In order to verify this claim an application sample in fluid diffusion is discussed and the results of modified Fick’s first law, Fick’s first law and the experimental results are compared. The results of this comparison stand for the accuracy of the modified model. The modified model can be used in any application where the time delay has considerable value and neglecting its effect reflects in undesirable results.

Keywords: Fick's first law, flux, diffusion, time delay, modified Fick’s first law

Procedia PDF Downloads 380
5097 A Numerical Study on the Influence of CO2 Dilution on Combustion Characteristics of a Turbulent Diffusion Flame

Authors: Yasaman Tohidi, Rouzbeh Riazi, Shidvash Vakilipour, Masoud Mohammadi

Abstract:

The objective of the present study is to numerically investigate the effect of CO2 replacement of N2 in air stream on the flame characteristics of the CH4 turbulent diffusion flame. The Open source Field Operation and Manipulation (OpenFOAM) has been used as the computational tool. In this regard, laminar flamelet and modified k-ε models have been utilized as combustion and turbulence models, respectively. Results reveal that the presence of CO2 in air stream changes the flame shape and maximum flame temperature. Also, CO2 dilution causes an increment in CO mass fraction.

Keywords: CH4 diffusion flame, CO2 dilution, OpenFOAM, turbulent flame

Procedia PDF Downloads 252
5096 A Rational Strategy to Maximize the Value-Added Products by Selectively Converting Components of Inferior Heavy Oil

Authors: Kashan Bashir, Salah Naji Ahmed Sufyan, Mirza Umar Baig

Abstract:

In this study, n-dodecane, tetralin, decalin, and tetramethybenzene (TMBE) were used as model compounds of alkanes, naphthenic-aromatic, cycloalkanes and alkyl-benzenes presented in hydro-diesel. The catalytic cracking properties of four model compounds over Y zeolite catalyst (Y-Cat.) and ZSM-5 zeolite catalysts (ZSM-5-Cat.) were probed. The experiment results revealed that high conversion of macromolecular paraffin and naphthenic aromatics were achieved over Y-Cat, whereas its low cracking activity of intermediate products micromolecules paraffin and olefin and high activity of hydride transfer reaction goes against the production of value-added products (light olefin and gasoline). In contrast, despite the fact that the hydride transfer reaction was greatly inhabited over ZSM-5-Cat, the low conversion of macromolecules was observed attributed to diffusion limitations. Interestingly, the mixed catalyst compensates for the shortcomings of the two catalysts, and a “relay reaction” between Y-Cat and ZSM-5-Cat was proposed. Specifically, the added Y-Cat acts as a “pre-cracking booster site” and promotes macromolecules conversion. The addition of ZSM-5-Cat not only significantly suppresses the hydride transfer reaction but also contributes to the cracking of immediate products paraffin and olefin into ethylene and propylene, resulting in a high yield of alkyl-benzene (gasoline), ethylene, and propylene with a low yield of naphthalene (LCO) and coke. The catalytic cracking evaluation experiments of mixed hydro-LCO were also performed to further clarify the “relay reaction” above, showing the highest yield of LPG and gasoline over mixed catalyst. The results indicate that the Y-cat and ZSM-5-cat have a synergistic effect on the conversion of hydro-diesel and corresponding value-added product yield and selective coke yield.

Keywords: synergistic effect, hydro-diesel cracking, FCC, zeolite catalyst, ethylene and propylene

Procedia PDF Downloads 45
5095 Scientific Development as Diffusion on a Social Network: An Empirical Case Study

Authors: Anna Keuchenius

Abstract:

Broadly speaking, scientific development is studied in either a qualitative manner with a focus on the behavior and interpretations of academics, such as the sociology of science and science studies or in a quantitative manner with a focus on the analysis of publications, such as scientometrics and bibliometrics. Both come with a different set of methodologies and few cross-references. This paper contributes to the bridging of this divide, by on the on hand approaching the process of scientific progress from a qualitative sociological angle and using on the other hand quantitative and computational techniques. As a case study, we analyze the diffusion of Granovetter's hypothesis from his 1973 paper 'On The Strength of Weak Ties.' A network is constructed of all scientists that have referenced this particular paper, with directed edges to all other researchers that are concurrently referenced with Granovetter's 1973 paper. Studying the structure and growth of this network over time, it is found that Granovetter's hypothesis is used by distinct communities of scientists, each with their own key-narrative into which the hypothesis is fit. The diffusion within the communities shares similarities with the diffusion of an innovation in which innovators, early adopters, and an early-late majority can clearly be distinguished. Furthermore, the network structure shows that each community is clustered around one or few hub scientists that are disproportionately often referenced and seem largely responsible for carrying the hypothesis into their scientific subfield. The larger implication of this case study is that the diffusion of scientific hypotheses and ideas are not the spreading of well-defined objects over a network. Rather, the diffusion is a process in which the object itself dynamically changes in concurrence with its spread. Therefore it is argued that the methodology presented in this paper has potential beyond the scientific domain, in the study of diffusion of other not well-defined objects, such as opinions, behavior, and ideas.

Keywords: diffusion of innovations, network analysis, scientific development, sociology of science

Procedia PDF Downloads 291
5094 Water Diffusivity in Amorphous Epoxy Resins: An Autonomous Basin Climbing-Based Simulation Method

Authors: Betim Bahtiri, B. Arash, R. Rolfes

Abstract:

Epoxy-based materials are frequently exposed to high-humidity environments in many engineering applications. As a result, their material properties would be degraded by water absorption. A full characterization of the material properties under hygrothermal conditions requires time- and cost-consuming experimental tests. To gain insights into the physics of diffusion mechanisms, atomistic simulations have been shown to be effective tools. Concerning the diffusion of water in polymers, spatial trajectories of water molecules are obtained from molecular dynamics (MD) simulations allowing the interpretation of diffusion pathways at the nanoscale in a polymer network. Conventional MD simulations of water diffusion in amorphous polymers lead to discrepancies at low temperatures due to the short timescales of the simulations. In the proposed model, this issue is solved by using a combined scheme of autonomous basin climbing (ABC) with kinetic Monte Carlo and reactive MD simulations to investigate the diffusivity of water molecules in epoxy resins across a wide range of temperatures. It is shown that the proposed simulation framework estimates kinetic properties of water diffusion in epoxy resins that are consistent with experimental observations and provide a predictive tool for investigating the diffusion of small molecules in other amorphous polymers.

Keywords: epoxy resins, water diffusion, autonomous basin climbing, kinetic Monte Carlo, reactive molecular dynamics

Procedia PDF Downloads 47
5093 Recovery of Hydrogen Converter Efficiency Affected by Poisoning of Catalyst with Increasing of Temperature

Authors: Enayat Enayati, Reza Behtash

Abstract:

The purpose of the H2 removal system is to reduce a content of hydrogen and other combustibles in the CO2 feed owing to avoid developing a possible explosive condition in the synthesis. In order to reduce the possibility of forming an explosive gas mixture in the synthesis as much as possible, the hydrogen percent in the fresh CO2, will be removed in hydrogen converter. Therefore the partly compressed CO2/Air mixture is led through Hydrogen converter (Reactor) where the H2, present in the CO2, is reduced by catalytic combustion to values less than 50 ppm (vol). According the following exothermic chemical reaction: 2H2 + O2 → 2H2O + Heat. The catalyst in hydrogen converter consist of platinum on a aluminum oxide carrier. Low catalyst activity maybe due to catalyst poisoning. This will result in an increase of the hydrogen content in the CO2 to the synthesis. It is advised to shut down the plant when the outlet of hydrogen converter increased above 100 ppm, to prevent undesirable gas composition in the plant. Replacement of catalyst will be time exhausting and costly so as to prevent this, we increase the inlet temperature of hydrogen converter according to following Arrhenius' equation: K=K0e (-E_a/RT) K is rate constant of a chemical reaction where K0 is the pre-exponential factor, E_a is the activation energy, and R is the universal gas constant. Increment of inlet temperature of hydrogen converter caused to increase the rate constant of chemical reaction and so declining the amount of hydrogen from 125 ppm to 70 ppm.

Keywords: catalyst, converter, poisoning, temperature

Procedia PDF Downloads 793
5092 Energy Conservation and H-Theorem for the Enskog-Vlasov Equation

Authors: Eugene Benilov, Mikhail Benilov

Abstract:

The Enskog-Vlasov (EV) equation is a widely used semi-phenomenological model of gas/liquid phase transitions. We show that it does not generally conserve energy, although there exists a restriction on its coefficients for which it does. Furthermore, if an energy-preserving version of the EV equation satisfies an H-theorem as well, it can be used to rigorously derive the so-called Maxwell construction which determines the parameters of liquid-vapor equilibria. Finally, we show that the EV model provides an accurate description of the thermodynamics of noble fluids, and there exists a version simple enough for use in applications.

Keywords: Enskog collision integral, hard spheres, kinetic equation, phase transition

Procedia PDF Downloads 124
5091 Scenario Based Reaction Time Analysis for Seafarers

Authors: Umut Tac, Leyla Tavacioglu, Pelin Bolat

Abstract:

Human factor has been one of the elements that cause vulnerabilities which can be resulted with accidents in maritime transportation. When the roots of human factor based accidents are analyzed, gaps in performing cognitive abilities (reaction time, attention, memory…) are faced as the main reasons for the vulnerabilities in complex environment of maritime systems. Thus cognitive processes in maritime systems have arisen important subject that should be investigated comprehensively. At this point, neurocognitive tests such as reaction time analysis tests have been used as coherent tools that enable us to make valid assessments for cognitive status. In this respect, the aim of this study is to evaluate the reaction time (response time or latency) of seafarers due to their occupational experience and age. For this study, reaction time for different maneuverers has been taken while the participants were performing a sea voyage through a simulator which was run up with a certain scenario. After collecting the data for reaction time, a statistical analyze has been done to understand the relation between occupational experience and cognitive abilities.

Keywords: cognitive abilities, human factor, neurocognitive test battery, reaction time

Procedia PDF Downloads 282
5090 Numerical Solution of Manning's Equation in Rectangular Channels

Authors: Abdulrahman Abdulrahman

Abstract:

When the Manning equation is used, a unique value of normal depth in the uniform flow exists for a given channel geometry, discharge, roughness, and slope. Depending on the value of normal depth relative to the critical depth, the flow type (supercritical or subcritical) for a given characteristic of channel conditions is determined whether or not flow is uniform. There is no general solution of Manning's equation for determining the flow depth for a given flow rate, because the area of cross section and the hydraulic radius produce a complicated function of depth. The familiar solution of normal depth for a rectangular channel involves 1) a trial-and-error solution; 2) constructing a non-dimensional graph; 3) preparing tables involving non-dimensional parameters. Author in this paper has derived semi-analytical solution to Manning's equation for determining the flow depth given the flow rate in rectangular open channel. The solution was derived by expressing Manning's equation in non-dimensional form, then expanding this form using Maclaurin's series. In order to simplify the solution, terms containing power up to 4 have been considered. The resulted equation is a quartic equation with a standard form, where its solution was obtained by resolving this into two quadratic factors. The proposed solution for Manning's equation is valid over a large range of parameters, and its maximum error is within -1.586%.

Keywords: channel design, civil engineering, hydraulic engineering, open channel flow, Manning's equation, normal depth, uniform flow

Procedia PDF Downloads 191
5089 Robustness Conditions for the Establishment of Stationary Patterns of Drosophila Segmentation Gene Expression

Authors: Ekaterina M. Myasnikova, Andrey A. Makashov, Alexander V. Spirov

Abstract:

First manifestation of a segmentation pattern in the early Drosophila development is the formation of expression domains (along with the main embryo axis) of genes belonging to the trunk gene class. Highly variable expression of genes from gap family in early Drosophila embryo is strongly reduced by the start of gastrulation due to the gene cross-regulation. The dynamics of gene expression is described by a gene circuit model for a system of four gap genes. It is shown that for the formation of a steep and stationary border by the model it is necessary that there existed a nucleus (modeling point) in which the gene expression level is constant in time and hence is described by a stationary equation. All the rest genes expressed in this nucleus are in a dynamic equilibrium. The mechanism of border formation associated with the existence of a stationary nucleus is also confirmed by the experiment. An important advantage of this approach is that properties of the system in a stationary nucleus are described by algebraic equations and can be easily handled analytically. Thus we explicitly characterize the cross-regulation properties necessary for the robustness and formulate the conditions providing this effect through the properties of the initial input data. It is shown that our formally derived conditions are satisfied for the previously published model solutions.

Keywords: drosophila, gap genes, reaction-diffusion model, robustness

Procedia PDF Downloads 343
5088 Electrochemical Behavior of Iron (III) Complexes with Catechol at Different pH

Authors: K. M. Salim Reza, M. Hafiz Mia, M. A. Aziz, M. A. Motin, M. M. Rahman, M. A. Hasem

Abstract:

The redox behavior of Fe (III) in presence of Catechol (Cc) has been carried out in buffer solution of different pH, scan rate, variation of Fe (III) concentration and Cc concentration. Uncoordinated Fe(III) or Cc has been found to undergo reversible electrode reaction whereas coordinated Fe-Cc is irreversible. The peak positions of the voltammogram of Fe- Cc shifted with respect to that of free Fe (III) or Cc and also developed a new peak at 0.12 V. The peak current of Fe-Cc decreases significantly compared with that of free Fe(III) or Cc in the same experimental conditions. These behaviors ascribed the formation of complex of Fe with Cc. The complex was formed either by the addition of Cc into Fe(III) or by the addition of Fe(III) into Cc. The effect of pH of Fe-Cc complex was studied by varying pH from 2 to 8.5. The electro chemical oxidation of Fe-Cc is facilitated in lower pH media. The slope of the plots of anodic peak current, Ep against pH of Fe-Cc complexe is 30 mV, indicates that the oxidation of Fe-Cc complexes proceeded via the 2e−/2H+ processes. The proportionality of the anodic and cathodic peak currents with square root of scan rate of suggests that the peak current of the different complexes at each redox reaction is controlled by diffusion process.

Keywords: cyclic voltammetry, Fe-Cc Complex, pH effect, redox interaction

Procedia PDF Downloads 337
5087 A New Approach on the Synthesis of Zinc Borates by Ultrasonic Method and Determination of the Zinc Oxide and Boric Acid Optimum Molar Ratio

Authors: A. Ersan, A. S. Kipcak, M. Yildirim, A. M. Erayvaz, E. M. Derun, S. Piskin, N. Tugrul

Abstract:

Zinc borates are used as a multi-functional flame retardant additive for its high dehydration temperature. In this study, a new method of ultrasonic mixing was used in the synthesis of zinc borates. The reactants of zinc oxide (ZnO) and boric acid (H3BO3) were used at the constant reaction parameters of 90°C reaction temperature and 55 min of reaction time. Several molar ratios of ZnO:H3BO3 (1:1, 1:2, 1:3, 1:4, and 1:5) were conducted for the determination of the optimum reaction ratio. Prior to the synthesis, the characterization of the synthesized zinc borates were made by X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR). From the results Zinc Oxide Borate Hydrate [Zn3B6O12.3.5H2O], were synthesized optimum at the molar ratio of 1:3, with a reaction efficiency of 95.2%.

Keywords: zinc borates, ultrasonic mixing, XRD, FT-IR, reaction efficiency

Procedia PDF Downloads 326