Search results for: phasor measurement unit
4635 A Study on the Functional Safety Analysis of Stage Control System Based on International Electronical Committee 61508-2
Authors: Youn-Sung Kim, Hye-Mi Kim, Sang-Hoon Seo, Jaden Cha
Abstract:
This International standard IEC 61508 sets out a generic approach for all safety lifecycle activities for systems comprised of electrical/electronic/programmable electronic (E/E/PE) elements that are used to perform safety functions. The control unit in stage control system is safety related facilities to control state and speed for stage system running, and it performs safety-critical function by stage control system. The controller unit is part of safety loops corresponding to the IEC 61508 and classified as logic part in the safety loop. In this paper, we analyze using FMEDA (Failure Mode Effect and Diagnostic Analysis) to verification for fault tolerance methods and functional safety of control unit. Moreover, we determined SIL (Safety Integrity Level) for control unit according to the safety requirements defined in IEC 61508-2 based on an analyzed functional safety.Keywords: safety function, failure mode effect, IEC 61508-2, diagnostic analysis, stage control system
Procedia PDF Downloads 2784634 Quantifying Parallelism of Vectors Is the Quantification of Distributed N-Party Entanglement
Authors: Shreya Banerjee, Prasanta K. Panigrahi
Abstract:
The three-way distributive entanglement is shown to be related to the parallelism of vectors. Using a measurement-based approach a set of 2−dimensional vectors is formed, representing the post-measurement states of one of the parties. These vectors originate at the same point and have an angular distance between them. The area spanned by a pair of such vectors is a measure of the entanglement of formation. This leads to a geometrical manifestation of the 3−tangle in 2−dimensions, from inequality in the area which generalizes for n− qubits to reveal that the n− tangle also has a planar structure. Quantifying the genuine n−party entanglement in every 1|(n − 1) bi-partition it is shown that the genuine n−way entanglement does not manifest in n− tangle. A new quantity geometrically similar to 3−tangle is then introduced that represents the genuine n− way entanglement. Extending the formalism to 3− qutrits, the nonlocality without entanglement can be seen to arise from a condition under which the post-measurement state vectors of a separable state show parallelism. A connection to nontrivial sum uncertainty relation analogous to Maccone and Pati uncertainty relation is then presented using decomposition of post-measurement state vectors along parallel and perpendicular direction of the pre-measurement state vectors. This study opens a novel way to understand multiparty entanglement in qubit and qudit systems.Keywords: Geometry of quantum entanglement, Multipartite and distributive entanglement, Parallelism of vectors , Tangle
Procedia PDF Downloads 1544633 A Comparative Study of Black Carbon Emission Characteristics from Marine Diesel Engines Using Light Absorption Method
Authors: Dongguk Im, Gunfeel Moon, Younwoo Nam, Kangwoo Chun
Abstract:
Recognition of the needs about protecting environment throughout worldwide is widespread. In the shipping industry, International Maritime Organization (IMO) has been regulating pollutants emitted from ships by MARPOL 73/78. Recently, the Marine Environment Protection Committee (MEPC) of IMO, at its 68th session, approved the definition of Black Carbon (BC) specified by the following physical properties (light absorption, refractory, insolubility and morphology). The committee also agreed to the need for a protocol for any voluntary measurement studies to identify the most appropriate measurement methods. Filter Smoke Number (FSN) based on light absorption is categorized as one of the IMO relevant BC measurement methods. EUROMOT provided a FSN measurement data (measured by smoke meter) of 31 different engines (low, medium and high speed marine engines) of member companies at the 3rd International Council on Clean Transportation (ICCT) workshop on marine BC. From the comparison of FSN, the results indicated that BC emission from low speed marine diesel engines was ranged from 0.009 to 0.179 FSN and it from medium and high speed marine diesel engine was ranged 0.012 to 3.2 FSN. In consideration of measured the low FSN from low speed engine, an experimental study was conducted using both a low speed marine diesel engine (2 stroke, power of 7,400 kW at 129 rpm) and a high speed marine diesel engine (4 stroke, power of 403 kW at 1,800 rpm) under E3 test cycle. The results revealed that FSN was ranged from 0.01 to 0.16 and 1.09 to 1.35 for low and high speed engines, respectively. The measurement equipment (smoke meter) ranges from 0 to 10 FSN. Considering measurement range of it, FSN values from low speed engines are near the detection limit (0.002 FSN or ~0.02 mg/m3). From these results, it seems to be modulated the measurement range of the measurement equipment (smoke meter) for enhancing measurement accuracy of marine BC and evaluation on performance of BC abatement technologies.Keywords: black carbon, filter smoke number, international maritime organization, marine diesel engine (two and four stroke), particulate matter
Procedia PDF Downloads 2764632 Mike Hat: Coloured-Tape-in-Hat as a Head Circumference Measuring Instrument for Early Detection of Hydrocephalus in an Infant
Authors: Nyimas Annissa Mutiara Andini
Abstract:
Every year, children develop hydrocephalus during the first year of life. If it is not treated, hydrocephalus can lead to brain damage, a loss in mental and physical abilities, and even death. To be treated, first, we have to do a proper diagnosis using some examinations especially to detect hydrocephalus earlier. One of the examination that could be done is using a head circumference measurement. Increased head circumference is a first and main sign of hydrocephalus, especially in infant (0-1 year age). Head circumference is a measurement of a child's head largest area. In this measurement, we want to get the distance from above the eyebrows and ears and around the back of the head using a measurement tape. If the head circumference of an infant is larger than normal, this infant might potentially suffer hydrocephalus. If early diagnosis and timely treatment of hydrocephalus could be done most children can recover successfully. There are some problems with early detection of hydrocephalus using regular tape for head circumference measurement. One of the problem is the infant’s comfort. We need to make the infant feel comfort along the head circumference measurement to get a proper result of the examination. For that, we can use a helpful stuff, like a hat. This paper is aimed to describe the possibility of using a head circumference measuring instrument for early detection of hydrocephalus in an infant with a mike hat, coloured-tape-in-hat. In the first life, infants’ head size is about 35 centimeters. First three months after that infants will gain 2 centimeters each month. The second three months, infant’s head circumference will increase 1 cm each month. And for the six months later, the rate is 0.5 cm per month, and end up with an average of 47 centimeters. This formula is compared to the WHO’s head circumference growth chart. The shape of this tape-in-hat is alike an upper arm measurement. This tape-in-hat diameter is about 47 centimeters. It contains twelve different colours range by age. If it is out of the normal colour, the infant potentially suffers hydrocephalus. This examination should be done monthly. If in two times of measurement there still in the same range abnormal of head circumference, or a rapid growth of the head circumference size, the infant should be referred to a pediatrician. There are the pink hat for girls and blue hat for boys. Based on this paper, we know that this measurement can be used to help early detection of hydrocephalus in an infant.Keywords: head circumference, hydrocephalus, infant, mike hat
Procedia PDF Downloads 2664631 The Effect of Measurement Distribution on System Identification and Detection of Behavior of Nonlinearities of Data
Authors: Mohammad Javad Mollakazemi, Farhad Asadi, Aref Ghafouri
Abstract:
In this paper, we considered and applied parametric modeling for some experimental data of dynamical system. In this study, we investigated the different distribution of output measurement from some dynamical systems. Also, with variance processing in experimental data we obtained the region of nonlinearity in experimental data and then identification of output section is applied in different situation and data distribution. Finally, the effect of the spanning the measurement such as variance to identification and limitation of this approach is explained.Keywords: Gaussian process, nonlinearity distribution, particle filter, system identification
Procedia PDF Downloads 5164630 Packaging Improvement for Unit Cell Vanadium Redox Flow Battery (V-RFB)
Authors: A. C. Khor, M. R. Mohamed, M. H. Sulaiman, M. R. Daud
Abstract:
Packaging for vanadium redox flow battery is one of the key elements for successful implementation of flow battery in the electrical energy storage system. Usually the bulky battery size and low energy densities make this technology not available for mobility application. Therefore RFB with improved packaging size and energy capacity are highly desirable. This paper focuses on the study of packaging improvement for unit cell V-RFB to the application on Series Hybrid Electric Vehicle. Two different designs of 25 cm2 and 100 cm2 unit cell V-RFB at same current density are used for the sample in this investigation. Further suggestions on packaging improvement are highlighted.Keywords: electric vehicle, redox flow battery, packaging, vanadium
Procedia PDF Downloads 4334629 Modal Dynamic Analysis of a Mechanism with Deformable Elements from an Oil Pump Unit Structure
Authors: N. Dumitru, S. Dumitru, C. Copilusi, N. Ploscaru
Abstract:
On this research, experimental analyses have been performed in order to determine the oil pump mechanism dynamics and stability from an oil unit mechanical structure. The experimental tests were focused on the vibrations which occur inside of the rod element during functionality of the oil pump unit. The oil pump mechanism dynamic parameters were measured and also determined through numerical computations. Entire research is based on the oil pump unit mechanical system virtual prototyping. For a complete analysis of the mechanism, the frequency dynamic response was identified, mainly for the mechanism driven element, based on two methods: processing and virtual simulations with MSC Adams aid and experimental analysis. In fact, through this research, a complete methodology is presented where numerical simulations of a mechanism with deformed elements are developed on a dynamic mode and these can be correlated with experimental tests.Keywords: modal dynamic analysis, oil pump, vibrations, flexible elements, frequency response
Procedia PDF Downloads 3194628 Measuring the Height of a Person in Closed Circuit Television Video Footage Using 3D Human Body Model
Authors: Dojoon Jung, Kiwoong Moon, Joong Lee
Abstract:
The height of criminals is one of the important clues that can determine the scope of the suspect's search or exclude the suspect from the search target. Although measuring the height of criminals by video alone is limited by various reasons, the 3D data of the scene and the Closed Circuit Television (CCTV) footage are matched, the height of the criminal can be measured. However, it is still difficult to measure the height of CCTV footage in the non-contact type measurement method because of variables such as position, posture, and head shape of criminals. In this paper, we propose a method of matching the CCTV footage with the 3D data on the crime scene and measuring the height of the person using the 3D human body model in the matched data. In the proposed method, the height is measured by using 3D human model in various scenes of the person in the CCTV footage, and the measurement value of the target person is corrected by the measurement error of the replay CCTV footage of the reference person. We tested for 20 people's walking CCTV footage captured from an indoor and an outdoor and corrected the measurement values with 5 reference persons. Experimental results show that the measurement error (true value-measured value) average is 0.45 cm, and this method is effective for the measurement of the person's height in CCTV footage.Keywords: human height, CCTV footage, 2D/3D matching, 3D human body model
Procedia PDF Downloads 2484627 Dynamic Foot Pressure Measurement System Using Optical Sensors
Authors: Tanapon Keatsamarn, Chuchart Pintavirooj
Abstract:
Foot pressure measurement provides necessary information for diagnosis diseases, foot insole design, disorder prevention and other application. In this paper, dynamic foot pressure measurement is presented for pressure measuring with high resolution and accuracy. The dynamic foot pressure measurement system consists of hardware and software system. The hardware system uses a transparent acrylic plate and uses steel as the base. The glossy white paper is placed on the top of the transparent acrylic plate and covering with a black acrylic on the system to block external light. Lighting from LED strip entering around the transparent acrylic plate. The optical sensors, the digital cameras, are underneath the acrylic plate facing upwards. They have connected with software system to process and record foot pressure video in avi file. Visual Studio 2017 is used for software system using OpenCV library.Keywords: foot, foot pressure, image processing, optical sensors
Procedia PDF Downloads 2474626 Digital Encoder Based Power Frequency Deviation Measurement
Authors: Syed Javed Arif, Mohd Ayyub Khan, Saleem Anwar Khan
Abstract:
In this paper, a simple method is presented for measurement of power frequency deviations. A phase locked loop (PLL) is used to multiply the signal under test by a factor of 100. The number of pulses in this pulse train signal is counted over a stable known period, using decade driving assemblies (DDAs) and flip-flops. These signals are combined using logic gates and then passed through decade counters to give a unique combination of pulses or levels, which are further encoded. These pulses are equally suitable for both control applications and display units. The experimental circuit developed gives a resolution of 1 Hz within the measurement period of 20 ms. The proposed circuit is also simulated in Verilog Hardware Description Language (VHDL) and implemented using Field Programing Gate Arrays (FPGAs). A Mixed signal Oscilloscope (MSO) is used to observe the results of FPGA implementation. These results are compared with the results of the proposed circuit of discrete components. The proposed system is useful for frequency deviation measurement and control in power systems.Keywords: frequency measurement, digital control, phase locked loop, encoder, Verilog HDL
Procedia PDF Downloads 1784625 W-WING: Aeroelastic Demonstrator for Experimental Investigation into Whirl Flutter
Authors: Jiri Cecrdle
Abstract:
This paper describes the concept of the W-WING whirl flutter aeroelastic demonstrator. Whirl flutter is the specific case of flutter that accounts for the additional dynamic and aerodynamic influences of the engine rotating parts. The instability is driven by motion-induced unsteady aerodynamic propeller forces and moments acting in the propeller plane. Whirl flutter instability is a serious problem that may cause the unstable vibration of a propeller mounting, leading to the failure of an engine installation or an entire wing. The complicated physical principle of whirl flutter required the experimental validation of the analytically gained results. W-WING aeroelastic demonstrator has been designed and developed at Czech Aerospace Research Centre (VZLU) Prague, Czechia. The demonstrator represents the wing and engine of the twin turboprop commuter aircraft. Contrary to the most of past demonstrators, it includes a powered motor and thrusting propeller. It allows the changes of the main structural parameters influencing the whirl flutter stability characteristics. Propeller blades are adjustable at standstill. The demonstrator is instrumented by strain gauges, accelerometers, revolution-counting impulse sensor, sensor of airflow velocity, and the thrust measurement unit. Measurement is supported by the in house program providing the data storage and real-time depiction in the time domain as well as pre-processing into the form of the power spectral densities. The engine is linked with a servo-drive unit, which enables maintaining of the propeller revolutions (constant or controlled rate ramp) and monitoring of immediate revolutions and power. Furthermore, the program manages the aerodynamic excitation of the demonstrator by the aileron flapping (constant, sweep, impulse). Finally, it provides the safety guard to prevent any structural failure of the demonstrator hardware. In addition, LMS TestLab system is used for the measurement of the structure response and for the data assessment by means of the FFT- and OMA-based methods. The demonstrator is intended for the experimental investigations in the VZLU 3m-diameter low-speed wind tunnel. The measurement variant of the model is defined by the structural parameters: pitch and yaw attachment stiffness, pitch and yaw hinge stations, balance weight station, propeller type (duralumin or steel blades), and finally, angle of attack of the propeller blade 75% section (). The excitation is provided either by the airflow turbulence or by means of the aerodynamic excitation by the aileron flapping using a frequency harmonic sweep. The experimental results are planned to be utilized for validation of analytical methods and software tools in the frame of development of the new complex multi-blade twin-rotor propulsion system for the new generation regional aircraft. Experimental campaigns will include measurements of aerodynamic derivatives and measurements of stability boundaries for various configurations of the demonstrator.Keywords: aeroelasticity, flutter, whirl flutter, W WING demonstrator
Procedia PDF Downloads 964624 Characteristics of New Town Planning between Neighborhood Unit and New Urbanism in Korea
Authors: In Su Na, Dongyeon Seo, Hwanyong Kim
Abstract:
This research focuses on new town planning methodology in aspects of Neighborhood Unit Formula and New Urbanism. In Korea, there were built many new towns since 1980’s. The urban design concepts also shifted variously in land use, transportation, open spaces and architectural design. This research aims to find out urban design planning and factors in each new town planning through comparison of four new town cases in aspects of land use, transportation and building design of metropolitan area of Seoul. In conclusion the recent new town has created an area with a unique place that has not been seen in the early new town, and it has a certain aspect that is in line with the planning principles of New Urbanism.Keywords: compact city, neighborhood unit formula, new town planning, new urbanism
Procedia PDF Downloads 3074623 Relative Depth Dose Profile and Peak Scatter Factors Measurement for Co-60 Teletherapy Machine Using Chemical Dosimetry
Authors: O. Moussous, T. Medjadj
Abstract:
The suitability of a Fricke dosimeter for the measurement of a relative depth dose profile and the peak scatter factors was studied. The measurements were carried out in the secondary standard dosimetry laboratory at CRNA Algiers using a collimated 60Co gamma source teletherapy machine. The measurements were performed for different field sizes at the phantom front face, at a fixed source-to-phantom distance of 80 cm. The dose measurements were performed by first placing the dosimeters free-in-air at the distance-source-detector (DSD) of 80.5 cm from the source. Additional measurements were made with the phantom in place. The water phantom type Med-Tec 40x40x40 cm for vertical beam was used in this work as scattering martial. The phantom was placed on the irradiation bench of the cobalt unit at the SSD of 80 cm from the beam focus and the centre of the field coincided with the geometric centre of the dosimeters placed at the depth in water of 5 mm Relative depth dose profile and Peak scatter factors measurements were carried out using our Fricke system. This was intercompared with similar measurements by ionization chamber under identical conditions. There is a good agreement between the relative percentage depth–dose profiles and the PSF values measured by both systems using a water phantom.Keywords: Fricke dosimeter, depth–dose profiles, peak scatter factors, DSD
Procedia PDF Downloads 2524622 Characterization of the MOSkin Dosimeter for Accumulated Dose Assessment in Computed Tomography
Authors: Lenon M. Pereira, Helen J. Khoury, Marcos E. A. Andrade, Dean L. Cutajar, Vinicius S. M. Barros, Anatoly B. Rozenfeld
Abstract:
With the increase of beam widths and the advent of multiple-slice and helical scanners, concerns related to the current dose measurement protocols and instrumentation in computed tomography (CT) have arisen. The current methodology of dose evaluation, which is based on the measurement of the integral of a single slice dose profile using a 100 mm long cylinder ionization chamber (Ca,100 and CPPMA, 100), has been shown to be inadequate for wide beams as it does not collect enough of the scatter-tails to make an accurate measurement. In addition, a long ionization chamber does not offer a good representation of the dose profile when tube current modulation is used. An alternative approach has been suggested by translating smaller detectors through the beam plane and assessing the accumulated dose trough the integral of the dose profile, which can be done for any arbitrary length in phantoms or in the air. For this purpose, a MOSFET dosimeter of small dosimetric volume was used. One of its recently designed versions is known as the MOSkin, which is developed by the Centre for Medical Radiation Physics at the University of Wollongong, and measures the radiation dose at a water equivalent depth of 0.07 mm, allowing the evaluation of skin dose when placed at the surface, or internal point doses when placed within a phantom. Thus, the aim of this research was to characterize the response of the MOSkin dosimeter for X-ray CT beams and to evaluate its application for the accumulated dose assessment. Initially, tests using an industrial x-ray unit were carried out at the Laboratory of Ionization Radiation Metrology (LMRI) of Federal University of Pernambuco, in order to investigate the sensitivity, energy dependence, angular dependence, and reproducibility of the dose response for the device for the standard radiation qualities RQT 8, RQT 9 and RQT 10. Finally, the MOSkin was used for the accumulated dose evaluation of scans using a Philips Brilliance 6 CT unit, with comparisons made between the CPPMA,100 value assessed with a pencil ionization chamber (PTW Freiburg TW 30009). Both dosimeters were placed in the center of a PMMA head phantom (diameter of 16 cm) and exposed in the axial mode with collimation of 9 mm, 250 mAs and 120 kV. The results have shown that the MOSkin response was linear with doses in the CT range and reproducible (98.52%). The sensitivity for a single MOSkin in mV/cGy was as follows: 9.208, 7.691 and 6.723 for the RQT 8, RQT 9 and RQT 10 beams qualities respectively. The energy dependence varied up to a factor of ±1.19 among those energies and angular dependence was not greater than 7.78% within the angle range from 0 to 90 degrees. The accumulated dose and the CPMMA, 100 value were 3,97 and 3,79 cGy respectively, which were statistically equivalent within the 95% confidence level. The MOSkin was shown to be a good alternative for CT dose profile measurements and more than adequate to provide accumulated dose assessments for CT procedures.Keywords: computed tomography dosimetry, MOSFET, MOSkin, semiconductor dosimetry
Procedia PDF Downloads 3114621 Role of Water Supply in the Functioning of the MLDB Systems
Authors: Ramanpreet Kaur, Upasana Sharma
Abstract:
The purpose of this paper is to address the challenges faced by MLDB system at the piston foundry plant due to interruption in supply of water. For the MLDB system to work in Model, two sub-units must be connected to the robotic main unit. The system cannot function without robotics and water supply by the fan (WSF). Insufficient water supply is the cause of system failure. The system operates at top performance using two sub-units. If one sub-unit fails, the system capacity is reduced. Priority of repair is given to the main unit i.e. Robotic and WSF. To solve the problem, semi-Markov process and regenerative point technique are used. Relevant graphs are also included to particular case.Keywords: MLDB system, robotic, semi-Markov process, regenerative point technique
Procedia PDF Downloads 774620 Testing of Electronic Control Unit Communication Interface
Authors: Petr Šimek, Kamil Kostruk
Abstract:
This paper deals with the problem of testing the Electronic Control Unit (ECU) for the specified function validation. Modern ECUs have many functions which need to be tested. This process requires tracking between the test and the specification. The technique discussed in this paper explores the system for automating this process. The paper focuses in its chapter IV on the introduction to the problem in general, then it describes the proposed test system concept and its principle. It looks at how the process of the ECU interface specification file for automated interface testing and test tracking works. In the end, the future possible development of the project is discussed.Keywords: electronic control unit testing, embedded system, test generate, test automation, process automation, CAN bus, ethernet
Procedia PDF Downloads 1124619 Study of a Developed Model Describing a Vacuum Membrane Distillation Unit Coupled to Solar Energy
Authors: Fatma Khaled, Khaoula Hidouri, Bechir Chaouachi
Abstract:
Desalination using solar energy coupled with membrane techniques such as vacuum membrane distillation (VMD) is considered as an interesting alternative for the production of pure water. During this work, a developed model of a polytetrafluoroethylene (PTFE) hollow fiber membrane module of a VMD unit of seawater was carried out. This simulation leads to establishing a comparison between the effects of two different equations of the vaporization latent heat on the membrane surface temperature and on the unit productivity. Besides, in order to study the effect of putting membrane modules in series on the outlet fluid temperature and on the productivity of the process, a simulation was executed.Keywords: vacuum membrane distillation, membrane module, membrane temperature, productivity
Procedia PDF Downloads 1924618 Validity of a Timing System in the Alpine Ski Field: A Magnet-Based Timing System Using the Magnetometer Built into an Inertial Measurement Units
Authors: Carla Pérez-Chirinos Buxadé, Bruno Fernández-Valdés, Mónica Morral-Yepes, Sílvia Tuyà Viñas, Josep Maria Padullés Riu, Gerard Moras Feliu
Abstract:
There is a long way to explore all the possible applications inertial measurement units (IMUs) have in the sports field. The aim of this study was to evaluate the validity of a new application on the use of these wearable sensors, specifically it was to evaluate a magnet-based timing system (M-BTS) for timing gate-to-gate in an alpine ski slalom using the magnetometer embedded in an IMU. This was a validation study. The criterion validity of time measured by the M-BTS was assessed using the 95% error range against actual time obtained from photocells. The experiment was carried out with first-and second-year junior skiers performing a ski slalom on a ski training slope. Eight alpine skiers (17.4 ± 0.8 years, 176.4 ± 4.9 cm, 67.7 ± 2.0 kg, 128.8 ± 26.6 slalom FIS-Points) participated in the study. An IMU device was attached to the skier’s lower back. Skiers performed a 40-gate slalom from which four gates were assessed. The M-BTS consisted of placing four bar magnets buried into the snow surface on the inner side of each gate’s turning pole; the magnetometer built into the IMU detected the peak-shaped magnetic field when passing near the magnets at a certain speed. Four magnetic peaks were detected. The time compressed between peaks was calculated. Three inter-gate times were obtained for each system: photocells and M-BTS. The total time was defined as the time sum of the inter-gate times. The 95% error interval for the total time was 0.050 s for the ski slalom. The M-BTS is valid for timing gate-to-gate in an alpine ski slalom. Inter-gate times can provide additional data for analyzing a skier’s performance, such as asymmetries between left and right foot.Keywords: gate crossing time, inertial measurement unit, timing system, wearable sensor
Procedia PDF Downloads 1844617 Effects of Jigsaw Strategy on Senior Secondary School Students’ Achievement in Ecology in Maitagari, Jigawa State, Nigeriaind Out the Effect of Jigsaw Strategy on Students’ Achievement in Ecology
Authors: Ozoji Bernadette, Sa’Ad-Abdullahi Abdulhafiz, Izundu Chike Leo
Abstract:
The study investigated the effect of Jigsaw strategy on senior secondary school students’ achievement in Maitagari, Jigawa State, Nigeria. The pre-test, post-test quasi experimental design was employed in the study. The sample for the study comprised 120 students from two public schools from the study area. An instrument namely, Ecological Achievement Test (EAT) was used to collect data from students. The data were analyzed using SPSS version 26.0. The EAT was validated by two experts, one, in Science Education unit and the other in Research, Measurement and Evaluation unit, both in the Faculty of Education, University of Jos, Nigeria. The reliability coefficient of the EAT was established as 0.85 using Kuder Richardson Formular 20. Mean and standard deviation were used to answer two research questions while Analysis of Covariance was used to test two hypotheses that guided the study. Results showed that students taught using jigsaw strategy achieved significantly better than their counterparts taught using the conventional method in ecology. Furthermore, it was revealed that gender had no significant influence on achievement of students exposed to jigsaw strategy. It was concluded that jigsaw strategy was effective in improving students’ achievement in ecology. The study recommended that teachers should incorporate jigsaw strategy into science classrooms for improved achievement outcome and gender equality.Keywords: achievement, ecology, jigsaw strategy, lecture strategy
Procedia PDF Downloads 1204616 Operational Excellence Performance in Pharmaceutical Quality Control Labs: An Empirical Investigation of the Effectiveness and Efficiency Relation
Authors: Stephan Koehler, Thomas Friedli
Abstract:
Performance measurement has evolved over time from a unidimensional short-term efficiency focused approach into a balanced multidimensional approach. Today, integrated performance measurement frameworks are often used to avoid local optimization and to encourage continuous improvement of an organization. In literature, the multidimensional characteristic of performance measurement is often described by competitive priorities. At the same time, on the highest abstraction level an effectiveness and efficiency dimension of performance measurement can be distinguished. This paper aims at a better understanding of the composition of effectiveness and efficiency and their relation in pharmaceutical quality control labs. The research comprises a lab-specific operationalization of effectiveness and efficiency and examines how the two dimensions are interlinked. The basis for the analysis represents a database of the University of St. Gallen including a divers set of 40 different pharmaceutical quality control labs. The research provides empirical evidence that labs with a high effectiveness also accompany a high efficiency. Lab effectiveness explains 29.5 % of the variance in lab efficiency. In addition, labs with an above median operational excellence performance have a statistically significantly higher lab effectiveness and lab efficiency compared to the below median performing labs.Keywords: empirical study, operational excellence, performance measurement, pharmaceutical quality control lab
Procedia PDF Downloads 1614615 Design and Implementation of a Fan Coil Unit Controller Based on the Duty Ratio Fuzzy Method
Authors: Liang Zhao, Jili Zhang, Kai Li
Abstract:
A microcontroller-based fan coil unit (FCU) fuzzy controller is designed and implemented in this paper. The controller employs the concept of duty ratio on the electric valve control, which could make full use of the cooling and dehumidifying capacity of the FCU when the valve is off. The traditional control method and its limitations are analyzed. The hardware and software design processes are introduced in detail. The experimental results show that the proposed method is more energy efficient compared to the traditional controlling strategy. Furthermore, a more comfortable room condition could be achieved by the proposed method. The proposed low-cost FCU fuzzy controller deserves to be widely used in engineering applications.Keywords: fan coil unit, duty ratio, fuzzy controller, experiment
Procedia PDF Downloads 3394614 Use of a Relief Mobile Unit in the Humanitarian Cause
Authors: Stephani Ferreira da Silva Manso, Regina M. M. Dias Chiquetano
Abstract:
This article aims to present a research on one of the main aspects of response in humanitarian causes: agility of operations. Brazil is among the 10 countries with the highest number of people affected by disasters.The main types of disasters in Brazil include floods and mass movements. Focusing on a nongovernmental organization that began in the conflicts of First and Second World Wars, arriving in Brazil in 1984. In 2017, the organization has activated their emergency response mobile unit to reach families following flooding that affected around 9,000 people. In partnership with Truckvan, the mobile unit, has 45 m² of floor space and is divided into three compartments each designed to meet the main needs of the population: the first will be used to prepare hot meals, the second to washing and drying of clothes, and the third for the accomplishment of psychological support. This option will be available for situations where there are more than one thousand victims who are sheltered, even temporarily, and demand immediate care, which will be identified through the National Emergency Plan. In this way, the actions that were already done as donation of blankets, clothes, hygiene kits, among others, will be enhanced. Studies show that one of the biggest difficulties in responding to the disaster is in the first few hours after the disaster. This study aimed to show the organization's innovative results and to propose improvement actions in transportation focused on humanitarian aid as the concepts developed in the manufacture and adaptation of the mobile unit to the rescue environment. Thus, the principles of this humanitarian aid bus are very effective.Keywords: disasters, humanitarian cause, relief, unit mobile
Procedia PDF Downloads 1904613 Urban Runoff Modeling of Ungauged Volcanic Catchment in Madinah, Western Saudi Arabia
Authors: Fahad Alahmadi, Norhan Abd Rahman, Mohammad Abdulrazzak, Zulikifli Yusop
Abstract:
Runoff prediction of ungauged catchment is still a challenging task especially in arid regions with a unique land cover such as volcanic basalt rocks where geological weathering and fractures are highly significant. In this study, Bathan catchment in Madinah western Saudi Arabia was selected for analysis. The aim of this paper is to evaluate different rainfall loss methods; soil conservation Services curve number (SCS-CN), green-ampt and initial-constant rate. Different direct runoff methods were evaluated: soil conservation services dimensionless unit hydrograph (SCS-UH), Snyder unit hydrograph and Clark unit hydrograph. The study showed the superiority of SCS-CN loss method and Clark unit hydrograph method for ungauged catchment where there is no observed runoff data.Keywords: urban runoff modelling, arid regions, ungauged catchments, volcanic rocks, Madinah, Saudi Arabia
Procedia PDF Downloads 4054612 Investigation of the Level of Physical and Mental Health of Patients Undergoing in Chronic or Transient Hemodialysis at Artificial Kidney Unit
Authors: Styliani Kotrotsiou, Evagelia Kotrotsiou, Fani Mokia, Theodosis Paralikas, Konstantinos Tsaras
Abstract:
Objective: The objective of this study was the investigation of the mental health of patients undergoing chronic or transient hemodialysis at Artificial Kidney Unit, as well as its relationship to the demographic characteristic of patients. Material and Method: The study took place in Larisa during the month of December in 2016 and the sample was composed of 60 patients undergoing in chronic or transient hemodialysis at Artificial Kidney Unit of the University General Hospital of Larisa. For the investigation of the physical and mental health of patients who participated in the study, the tool measurement << General Health Questionnaire- 28 >> (GHQ-28) was used. The questionnaires were administered with the interview method during the hemodialysis. This survey is designed for the existence or not of a mental disorder. It examines four factors (physical symptoms, anxiety, social dysfunction and depression). Results: The hemodialysis patients gave the following scores: -to the physical symptoms, women showed a higher average value than men (1,16 ± 1,26 against 0,49 ± 0,93), -at the anxiety scale, it seems that women are superior to men (1,68 ± 1,20 against 0,90 ± 1,22), -at the social dysfunction scale, the elderly patients ( > 65 years old) were presented a with higher average (2,59), and -at the depression scale, patients with a higher average value were those who lived in non-urban areas. The appearance of mental disorder, in relation to patient characteristics, did not show significant statistical correlation. The sex, the age and the place of residence affect more the assessment of mental health, while education did not seem to have any significant effect on the other. Conclusions: The hemodialysis process can significantly affect the patient’s Quality of Life and it can bring adverse changes in lifestyle, affecting the physical, social and psychological state of the individual. For that reason, hemodialysis should be aimed not only at extending life but in upgrading the Quality of Life.Keywords: hemodialysis, chronic kidney disease, depression, social dysfunction, physical condition
Procedia PDF Downloads 1644611 A Condition-Based Maintenance Policy for Multi-Unit Systems Subject to Deterioration
Authors: Nooshin Salari, Viliam Makis
Abstract:
In this paper, we propose a condition-based maintenance policy for multi-unit systems considering the existence of economic dependency among units. We consider a system composed of N identical units, where each unit deteriorates independently. Deterioration process of each unit is modeled as a three-state continuous time homogeneous Markov chain with two working states and a failure state. The average production rate of units varies in different working states and demand rate of the system is constant. Units are inspected at equidistant time epochs, and decision regarding performing maintenance is determined by the number of units in the failure state. If the total number of units in the failure state exceeds a critical level, maintenance is initiated, where units in failed state are replaced correctively and deteriorated state units are maintained preventively. Our objective is to determine the optimal number of failed units to initiate maintenance minimizing the long run expected average cost per unit time. The problem is formulated and solved in the semi-Markov decision process (SMDP) framework. A numerical example is developed to demonstrate the proposed policy and the comparison with the corrective maintenance policy is presented.Keywords: reliability, maintenance optimization, semi-Markov decision process, production
Procedia PDF Downloads 1654610 Experimental Investigation of Cup Anemometer under Static and Dynamic Wind Direction Changes: Evaluation of Directional Sensitivity
Authors: Vaibhav Rana, Nicholas Balaresque
Abstract:
The 3-cup anemometer is the most commonly used instrument for wind speed measurement and, consequently, for the wind resource assessment. Though the cup anemometer shows accurate measurement under quasi-static conditions, there is uncertainty in the measurement when subjected to field measurement. Sensitivity to the angle of attacks with respect to horizontal plane, dynamic response, and non-linear behavior in calibration due to friction. The presented work aimed to identify the sensitivity of anemometer to non-horizontal flow. The cup anemometer was investigated under low wind speed wind tunnel, first under the static flow direction changes and second under the dynamic direction changes, at a different angle of attacks, under the similar conditions of reference wind tunnel speeds. The cup anemometer response under both conditions was evaluated and compared. The results showed the anemometer under dynamic wind direction changes is highly sensitive compared to static conditions.Keywords: wind energy, cup anemometer, directional sensitivity, dynamic behavior, wind tunnel
Procedia PDF Downloads 1484609 An Absolute Femtosecond Rangefinder for Metrological Support in Coordinate Measurements
Authors: Denis A. Sokolov, Andrey V. Mazurkevich
Abstract:
In the modern world, there is an increasing demand for highly precise measurements in various fields, such as aircraft, shipbuilding, and rocket engineering. This has resulted in the development of appropriate measuring instruments that are capable of measuring the coordinates of objects within a range of up to 100 meters, with an accuracy of up to one micron. The calibration process for such optoelectronic measuring devices (trackers and total stations) involves comparing the measurement results from these devices to a reference measurement based on a linear or spatial basis. The reference used in such measurements could be a reference base or a reference range finder with the capability to measure angle increments (EDM). The base would serve as a set of reference points for this purpose. The concept of the EDM for replicating the unit of measurement has been implemented on a mobile platform, which allows for angular changes in the direction of laser radiation in two planes. To determine the distance to an object, a high-precision interferometer with its own design is employed. The laser radiation travels to the corner reflectors, which form a spatial reference with precisely known positions. When the femtosecond pulses from the reference arm and the measuring arm coincide, an interference signal is created, repeating at the frequency of the laser pulses. The distance between reference points determined by interference signals is calculated in accordance with recommendations from the International Bureau of Weights and Measures for the indirect measurement of time of light passage according to the definition of a meter. This distance is D/2 = c/2nF, approximately 2.5 meters, where c is the speed of light in a vacuum, n is the refractive index of a medium, and F is the frequency of femtosecond pulse repetition. The achieved uncertainty of type A measurement of the distance to reflectors 64 m (N•D/2, where N is an integer) away and spaced apart relative to each other at a distance of 1 m does not exceed 5 microns. The angular uncertainty is calculated theoretically since standard high-precision ring encoders will be used and are not a focus of research in this study. The Type B uncertainty components are not taken into account either, as the components that contribute most do not depend on the selected coordinate measuring method. This technology is being explored in the context of laboratory applications under controlled environmental conditions, where it is possible to achieve an advantage in terms of accuracy. In general, the EDM tests showed high accuracy, and theoretical calculations and experimental studies on an EDM prototype have shown that the uncertainty type A of distance measurements to reflectors can be less than 1 micrometer. The results of this research will be utilized to develop a highly accurate mobile absolute range finder designed for the calibration of high-precision laser trackers and laser rangefinders, as well as other equipment, using a 64 meter laboratory comparator as a reference.Keywords: femtosecond laser, pulse correlation, interferometer, laser absolute range finder, coordinate measurement
Procedia PDF Downloads 594608 Experimental Research on the Effect of Activating Temperature on Combustion and Nox Emission Characteristics of Pulverized Coal in a Novel Purification-combustion Reaction System
Authors: Ziqu Ouyang, Kun Su
Abstract:
A novel efficient and clean coal combustion system, namely the purification-combustion system, was designed by the Institute of Engineering Thermal Physics, Chinese Academy of Science, in 2022. Among them, the purification system was composed of a mesothermal activating unit and a hyperthermal reductive unit, and the combustion system was composed of a mild combustion system. In the purification-combustion system, the deep in-situ removal of coal-N could be realized by matching the temperature and atmosphere in each unit, and thus the NOx emission was controlled effectively. To acquire the methods for realizing the efficient and clean coal combustion, this study investigated the effect of the activating temperature (including 822 °C, 858 °C, 933 °C, 991 °C), which was the key factor affecting the system operation, on combustion and NOx emission characteristics of pulverized coal in a 30 kW purification-combustion test bench. The research result turned out that the activating temperature affected the combustion and NOx emission characteristics significantly. As the activating temperature increased, the temperature increased first and then decreased in the mild combustion unit, and the temperature change in the lower part was much higher than that in the upper part. Moreover, the main combustion region was always located at the top of the unit under different activating temperatures, and the combustion intensity along the unit was weakened gradually. Increasing the activating temperature excessively could destroy the reductive atmosphere early in the upper part of the unit, which wasn’t conducive to the full removal of coal-N in the reductive coal char. As the activating temperature increased, the combustion efficiency increased first and then decreased, while the NOx emission decreased first and then increased, illustrating that increasing the activating temperature properly promoted the efficient and clean coal combustion, but there was a limit to its growth. In this study, the optimal activating temperature was 858 °C. Hence, this research illustrated that increasing the activating temperature properly could realize the mutual matching of improving the combustion efficiency and reducing the NOx emission, and thus guaranteed the clean and efficient coal combustion well.Keywords: activating temperature, combustion characteristics, nox emission, purification-combustion system
Procedia PDF Downloads 894607 High Efficiency Electrolyte Lithium Battery and RF Characterization
Authors: Wei Quan, Liu Chao, Mohammed N. Afsar
Abstract:
The dielectric properties and ionic conductivity of novel "ceramic state" polymer electrolytes for high capacity lithium battery are characterized by radio-frequency and Microwave methods in two broad frequency ranges from 50 Hz to 20 KHz and 4 GHz to 40 GHz. This innovative solid polymer electrolyte which is highly ionic conductive (10-3 S/cm at room temperature) from -40 oC to +150 oC and can be used in any battery application. Such polymer exhibits properties more like a ceramic rather than polymer. The various applied measurement methods produced accurate dielectric results for comprehensive analysis of electrochemical properties and ion transportation mechanism of this newly invented polymer electrolyte. Two techniques and instruments employing air gap measurement by capacitance bridge and inwave guide measurement by vector network analyzer are applied to measure the complex dielectric spectra. The complex dielectric spectra are used to determine the complex alternating current electrical conductivity and thus the ionic conductivity.Keywords: polymer electrolyte, dielectric permittivity, lithium battery, ionic relaxation, microwave measurement
Procedia PDF Downloads 4784606 Diagnosis of Intermittent High Vibration Peaks in Industrial Gas Turbine Using Advanced Vibrations Analysis
Authors: Abubakar Rashid, Muhammad Saad, Faheem Ahmed
Abstract:
This paper provides a comprehensive study pertaining to diagnosis of intermittent high vibrations on an industrial gas turbine using detailed vibrations analysis, followed by its rectification. Engro Polymer & Chemicals Limited, a Chlor-Vinyl complex located in Pakistan has a captive combined cycle power plant having two 28 MW gas turbines (make Hitachi) & one 15 MW steam turbine. In 2018, the organization faced an issue of high vibrations on one of the gas turbines. These high vibration peaks appeared intermittently on both compressor’s drive end (DE) & turbine’s non-drive end (NDE) bearing. The amplitude of high vibration peaks was between 150-170% on the DE bearing & 200-300% on the NDE bearing from baseline values. In one of these episodes, the gas turbine got tripped on “High Vibrations Trip” logic actuated at 155µm. Limited instrumentation is available on the machine, which is monitored with GE Bently Nevada 3300 system having two proximity probes installed at Turbine NDE, Compressor DE &at Generator DE & NDE bearings. Machine’s transient ramp-up & steady state data was collected using ADRE SXP & DSPI 408. Since only 01 key phasor is installed at Turbine high speed shaft, a derived drive key phasor was configured in ADRE to obtain low speed shaft rpm required for data analysis. By analyzing the Bode plots, Shaft center line plot, Polar plot & orbit plots; rubbing was evident on Turbine’s NDE along with increased bearing clearance of Turbine’s NDE radial bearing. The subject bearing was then inspected & heavy deposition of carbonized coke was found on the labyrinth seals of bearing housing with clear rubbing marks on shaft & housing covering at 20-25 degrees on the inner radius of labyrinth seals. The collected coke sample was tested in laboratory & found to be the residue of lube oil in the bearing housing. After detailed inspection & cleaning of shaft journal area & bearing housing, new radial bearing was installed. Before assembling the bearing housing, cleaning of bearing cooling & sealing air lines was also carried out as inadequate flow of cooling & sealing air can accelerate coke formation in bearing housing. The machine was then taken back online & data was collected again using ADRE SXP & DSPI 408 for health analysis. The vibrations were found in acceptable zone as per ISO standard 7919-3 while all other parameters were also within vendor defined range. As a learning from subject case, revised operating & maintenance regime has also been proposed to enhance machine’s reliability.Keywords: ADRE, bearing, gas turbine, GE Bently Nevada, Hitachi, vibration
Procedia PDF Downloads 146