Search results for: dynamic modes
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4761

Search results for: dynamic modes

4641 Analysis of a Self-Acting Air Journal Bearing: Effect of Dynamic Deformation of Bump Foil

Authors: H. Bensouilah, H. Boucherit, M. Lahmar

Abstract:

A theoretical investigation on the effects of both steady-state and dynamic deformations of the foils on the dynamic performance characteristics of a self-acting air foil journal bearing operating under small harmonic vibrations is proposed. To take into account the dynamic deformations of foils, the perturbation method is used for determining the gas-film stiffness and damping coefficients for given values of excitation frequency, compressibility number, and compliance factor of the bump foil. The nonlinear stationary Reynolds’ equation is solved by means of the Galerkins’ finite element formulation while the finite differences method are used to solve the first order complex dynamic equations resulting from the perturbation of the nonlinear transient compressible Reynolds’ equation. The stiffness of a bump is uniformly distributed throughout the bearing surface (generation I bearing). It was found that the dynamic properties of the compliant finite length journal bearing are significantly affected by the compliance of foils especially when the dynamic deformation of foils is considered in addition to the static one by applying the principle of superposition.

Keywords: elasto-aerodynamic lubrication, air foil bearing, steady-state deformation, dynamic deformation, stiffness and damping coefficients, perturbation method, fluid-structure interaction, Galerk infinite element method, finite difference method

Procedia PDF Downloads 377
4640 Application of Statistical Linearized Models for Investigations of Digital Dynamic Pulse-Frequency Control Systems

Authors: B. H. Aitchanov, Sh. K. Aitchanova, O. A. Baimuratov

Abstract:

This paper is focused on dynamic pulse-frequency modulation (DPFM) control systems. Currently, the control law based on DPFM control signals is widely used in direct digital control subsystems introduced in the automated control systems of technological processes. Statistical analysis of automatic control systems is reduced to its construction of functional relationships between the statistical characteristics of the errors processes and input processes. Structural and dynamic Volterra models of digital pulse-frequency control systems can be used to develop methods for generating the dependencies, differing accuracy, requiring the amount of information about the statistical characteristics of input processes and computing labor intensity of their use.

Keywords: digital dynamic pulse-frequency control systems, dynamic pulse-frequency modulation, control object, discrete filter, impulse device, microcontroller

Procedia PDF Downloads 471
4639 Relationship between Age, Gender, Anthropometrics Characteristics and Dynamic Balance in Children Age Group between 5 to 12 Years Old at Anand City, Gujarat

Authors: Dhruveshi B. Rana, Nirav P. Vaghela, Jigar N. Mehta

Abstract:

Objective: To assess the relationships among age, gender, anthropometrics and dynamic balance in 5 to 12 years of children in Anand city. Method: Cross-sectional study was conducted. 150 school going children of 5-12 (75-girls, 75-boys) years were recruited from the school of the Anand city-Shivam English Medium school, Veer Vithalbhai Patel school, Adarsh Primary school. Height, weight, arm length, and foot length were measured in 150 children of 5 to 12 years. Dynamic balance was assessed using Time Up and Go Test, Functional Reach Test, Pediatric Balance Scale. Results: Positive relationship (r = 0.58 and r= 0.77) were found between increasing age and FRT and PBS scores. A negative relationship (r = - 0.46) was observed between age of boys and TUG test. Significant gender by age group difference was observed in FRT. Arm length and height has the strongest influence on FRT, and age, height, foot length; and arm length has the strongest influence on PBS. Conclusions: Age and arm length have the strongest relationship with the dynamic balance (FRT, PBS). Dynamic balance ability is directly related to the age. It helps the pediatric therapists in selecting dynamic balance test according to the age.

Keywords: age, gender, anthropometric, dynamic balance

Procedia PDF Downloads 272
4638 Dynamic Variation in Nano-Scale CMOS SRAM Cells Due to LF/RTS Noise and Threshold Voltage

Authors: M. Fadlallah, G. Ghibaudo, C. G. Theodorou

Abstract:

The dynamic variation in memory devices such as the Static Random Access Memory can give errors in read or write operations. In this paper, the effect of low-frequency and random telegraph noise on the dynamic variation of one SRAM cell is detailed. The effect on circuit noise, speed, and length of time of processing is examined, using the Supply Read Retention Voltage and the Read Static Noise Margin. New test run methods are also developed. The obtained results simulation shows the importance of noise caused by dynamic variation, and the impact of Random Telegraph noise on SRAM variability is examined by evaluating the statistical distributions of Random Telegraph noise amplitude in the pull-up, pull-down. The threshold voltage mismatch between neighboring cell transistors due to intrinsic fluctuations typically contributes to larger reductions in static noise margin. Also the contribution of each of the SRAM transistor to total dynamic variation has been identified.

Keywords: low-frequency noise, random telegraph noise, dynamic variation, SRRV

Procedia PDF Downloads 155
4637 Effect of Delay on Supply Side on Market Behavior: A System Dynamic Approach

Authors: M. Khoshab, M. J. Sedigh

Abstract:

Dynamic systems, which in mathematical point of view are those governed by differential equations, are much more difficult to study and to predict their behavior in comparison with static systems which are governed by algebraic equations. Economical systems such as market are among complicated dynamic systems. This paper tries to adopt a very simple mathematical model for market and to study effect of supply and demand function on behavior of the market while the supply side experiences a lag due to production restrictions.

Keywords: dynamic system, lag on supply demand, market stability, supply demand model

Procedia PDF Downloads 278
4636 Longitudinal Static and Dynamic Stability of a Typical Reentry Body in Subsonic Conditions Using Computational Fluid Dynamics

Authors: M. Jathaveda, Joben Leons, G. Vidya

Abstract:

Reentry from orbit is a critical phase in the entry trajectory. For a non-propulsive ballistic entry, static and dynamic stability play an important role in the trajectory, especially for the safe deployment of parachutes, typically at subsonic Mach numbers. Static stability of flight vehicles are being estimated through CFD techniques routinely. Advances in CFD software as well as computational facilities have enabled the estimation of the dynamic stability derivatives also through CFD techniques. Longitudinal static and dynamic stability of a typical reentry body for subsonic Mach number of 0.6 is predicted using commercial software CFD++ and presented here. Steady state simulations are carried out for α = 2° on an unstructured grid using SST k-ω model. Transient simulation using forced oscillation method is used to compute pitch damping derivatives.

Keywords: stability, typical reentry body, subsonic, static and dynamic

Procedia PDF Downloads 87
4635 Spatial Analysis of Park and Ride Users’ Dynamic Accessibility to Train Station: A Case Study in Perth

Authors: Ting (Grace) Lin, Jianhong (Cecilia) Xia, Todd Robinson

Abstract:

Accessibility analysis, examining people’s ability to access facilities and destinations, is a fundamental assessment for transport planning, policy making, and social exclusion research. Dynamic accessibility which measures accessibility in real-time traffic environment has been an advanced accessibility indicator in transport research. It is also a useful indicator to help travelers to understand travel time daily variability, assists traffic engineers to monitor traffic congestions, and finally develop effective strategies in order to mitigate traffic congestions. This research involved real-time traffic information by collecting travel time data with 15-minute interval via the TomTom® API. A framework for measuring dynamic accessibility was then developed based on the gravity theory and accessibility dichotomy theory through space and time interpolation. Finally, the dynamic accessibility can be derived at any given time and location under dynamic accessibility spatial analysis framework.

Keywords: dynamic accessibility, hot spot, transport research, TomTom® API

Procedia PDF Downloads 362
4634 Exploring the Contribution of Dynamic Capabilities to a Firm's Value Creation: The Role of Competitive Strategy

Authors: Mona Rashidirad, Hamid Salimian

Abstract:

Dynamic capabilities, as the most considerable capabilities of firms in the current fast-moving economy may not be sufficient for performance improvement, but their contribution to performance is undeniable. While much of the extant literature investigates the impact of dynamic capabilities on organisational performance, little attention has been devoted to understand whether and how dynamic capabilities create value. Dynamic capabilities as the mirror of competitive strategies should enable firms to search and seize new ideas, integrate and coordinate the firm’s resources and capabilities in order to create value. A careful investigation to the existing knowledge base remains us puzzled regarding the relationship among competitive strategies, dynamic capabilities and value creation. This study thus attempts to fill in this gap by empirically investigating the impact of dynamic capabilities on value creation and the mediating impact of competitive strategy on this relationship. We aim to contribute to dynamic capability view (DCV), in both theoretical and empirical senses, by exploring the impact of dynamic capabilities on firms’ value creation and whether competitive strategy can play any role in strengthening/weakening this relationship. Using a sample of 491 firms in the UK telecommunications market, the results demonstrate that dynamic sensing, learning, integrating and coordinating capabilities play a significant role in firm’s value creation, and competitive strategy mediates the impact of dynamic capabilities on value creation. Adopting DCV, this study investigates whether the value generating from dynamic capabilities depends on firms’ competitive strategy. This study argues a firm’s competitive strategy can mediate its ability to derive value from its dynamic capabilities and it explains the extent a firm’s competitive strategy may influence its value generation. The results of the dynamic capabilities-value relationships support our expectations and justify the non-financial value added of the four dynamic capability processes in a highly turbulent market, such as UK telecommunications. Our analytical findings of the relationship among dynamic capabilities, competitive strategy and value creation provide further evidence of the undeniable role of competitive strategy in deriving value from dynamic capabilities. The results reinforce the argument for the need to consider the mediating impact of organisational contextual factors, such as firm’s competitive strategy to examine how they interact with dynamic capabilities to deliver value. The findings of this study provide significant contributions to theory. Unlike some previous studies which conceptualise dynamic capabilities as a unidimensional construct, this study demonstrates the benefits of understanding the details of the link among the four types of dynamic capabilities, competitive strategy and value creation. In terms of contributions to managerial practices, this research draws attention to the importance of competitive strategy in conjunction with development and deployment of dynamic capabilities to create value. Managers are now equipped with solid empirical evidence which explains why DCV has become essential to firms in today’s business world.

Keywords: dynamic capabilities, resource based theory, value creation, competitive strategy

Procedia PDF Downloads 224
4633 Dynamic Analysis of Double Deck Tunnel

Authors: C. W. Kwak, I. J. Park, D. I. Jang

Abstract:

The importance of cost-wise effective application and construction is getting increase due to the surge of traffic volume in the metropolitan cities. Accordingly, the necessity of the tunnel has large section becomes more critical. Double deck tunnel can be one of the most appropriate solutions to the necessity. The dynamic stability of double deck tunnel is essential against seismic load since it has large section and connection between perimeter lining and interim slab. In this study, 3-dimensional dynamic numerical analysis was conducted based on the Finite Difference Method to investigate the seismic behavior of double deck tunnel. Seismic joint for dynamic stability and the mitigation of seismic impact on the lining was considered in the modeling and analysis. Consequently, the mitigation of acceleration, lining displacement and stress were verified successfully.

Keywords: double deck tunnel, interim slab, 3-dimensional dynamic numerical analysis, seismic joint

Procedia PDF Downloads 367
4632 The Effect of Different Parameters on a Single Invariant Lateral Displacement Distribution to Consider the Higher Modes Effect in a Displacement-Based Pushover Procedure

Authors: Mohamad Amin Amini, Mehdi Poursha

Abstract:

Nonlinear response history analysis (NL-RHA) is a robust analytical tool for estimating the seismic demands of structures responding in the inelastic range. However, because of its conceptual and numerical complications, the nonlinear static procedure (NSP) is being increasingly used as a suitable tool for seismic performance evaluation of structures. The conventional pushover analysis methods presented in various codes (FEMA 356; Eurocode-8; ATC-40), are limited to the first-mode-dominated structures, and cannot take higher modes effect into consideration. Therefore, since more than a decade ago, researchers developed enhanced pushover analysis procedures to take higher modes effect into account. The main objective of this study is to propose an enhanced invariant lateral displacement distribution to take higher modes effect into consideration in performing a displacement-based pushover analysis, whereby a set of laterally applied displacements, rather than forces, is monotonically applied to the structure. For this purpose, the effect of different parameters such as the spectral displacement of ground motion, the modal participation factor, and the effective modal participating mass ratio on the lateral displacement distribution is investigated to find the best distribution. The major simplification of this procedure is that the effect of higher modes is concentrated into a single invariant lateral load distribution. Therefore, only one pushover analysis is sufficient without any need to utilize a modal combination rule for combining the responses. The invariant lateral displacement distribution for pushover analysis is then calculated by combining the modal story displacements using the modal combination rules. The seismic demands resulting from the different procedures are compared to those from the more accurate nonlinear response history analysis (NL-RHA) as a benchmark solution. Two structures of different heights including 10 and 20-story special steel moment resisting frames (MRFs) were selected and evaluated. Twenty ground motion records were used to conduct the NL-RHA. The results show that more accurate responses can be obtained in comparison with the conventional lateral loads when the enhanced modal lateral displacement distributions are used.

Keywords: displacement-based pushover, enhanced lateral load distribution, higher modes effect, nonlinear response history analysis (NL-RHA)

Procedia PDF Downloads 252
4631 Response of Pavement under Temperature and Vehicle Coupled Loading

Authors: Yang Zhong, Mei-Jie Xu

Abstract:

To study the dynamic mechanics response of asphalt pavement under the temperature load and vehicle loading, asphalt pavement was regarded as multilayered elastic half-space system, and theory analysis was conducted by regarding dynamic modulus of asphalt mixture as the parameter. Firstly, based on the dynamic modulus test of asphalt mixture, function relationship between the dynamic modulus of representative asphalt mixture and temperature was obtained. In addition, the analytical solution for thermal stress in the single layer was derived by using Laplace integral transformation and Hankel integral transformation respectively by using thermal equations of equilibrium. The analytical solution of calculation model of thermal stress in asphalt pavement was derived by transfer matrix of thermal stress in multilayer elastic system. Finally, the variation of thermal stress in pavement structure was analyzed. The result shows that there is an obvious difference between the thermal stress based on dynamic modulus and the solution based on static modulus. Therefore, the dynamic change of parameter in asphalt mixture should be taken into consideration when the theoretical analysis is taken out.

Keywords: asphalt pavement, dynamic modulus, integral transformation, transfer matrix, thermal stress

Procedia PDF Downloads 475
4630 Study and Experimental Analysis of a Photovoltaic Pumping System under Three Operating Modes

Authors: Rekioua D., Mohammedi A., Rekioua T., Mehleb Z.

Abstract:

Photovoltaic water pumping systems is considered as one of the most promising areas in photovoltaic applications, the economy and reliability of solar electric power made it an excellent choice for remote water pumping. Two conventional techniques are currently in use; the first is the directly coupled technique and the second is the battery buffered photovoltaic pumping system. In this paper, we present different performances of a three operation modes of photovoltaic pumping system. The aim of this work is to determine the effect of different parameters influencing the photovoltaic pumping system performances, such as pumping head, System configuration and climatic conditions. The obtained results are presented and discussed.

Keywords: batteries charge mode, photovoltaic pumping system, pumping head, submersible pump

Procedia PDF Downloads 483
4629 Inverse Matrix in the Theory of Dynamical Systems

Authors: Renata Masarova, Bohuslava Juhasova, Martin Juhas, Zuzana Sutova

Abstract:

In dynamic system theory a mathematical model is often used to describe their properties. In order to find a transfer matrix of a dynamic system we need to calculate an inverse matrix. The paper contains the fusion of the classical theory and the procedures used in the theory of automated control for calculating the inverse matrix. The final part of the paper models the given problem by the Matlab.

Keywords: dynamic system, transfer matrix, inverse matrix, modeling

Procedia PDF Downloads 496
4628 Influence of a Company’s Dynamic Capabilities on Its Innovation Capabilities

Authors: Lovorka Galetic, Zeljko Vukelic

Abstract:

The advanced concepts of strategic and innovation management in the sphere of company dynamic and innovation capabilities, and achieving their mutual alignment and a synergy effect, are important elements in business today. This paper analyses the theory and empirically investigates the influence of a company’s dynamic capabilities on its innovation capabilities. A new multidimensional model of dynamic capabilities is presented, consisting of five factors appropriate to real time requirements, while innovation capabilities are considered pursuant to the official OECD and Eurostat standards. After examination of dynamic and innovation capabilities indicated their theoretical links, the empirical study testing the model and examining the influence of a company’s dynamic capabilities on its innovation capabilities showed significant results. In the study, a research model was posed to relate company dynamic and innovation capabilities. One side of the model features the variables that are the determinants of dynamic capabilities defined through their factors, while the other side features the determinants of innovation capabilities pursuant to the official standards. With regard to the research model, five hypotheses were set. The study was performed in late 2014 on a representative sample of large and very large Croatian enterprises with a minimum of 250 employees. The research instrument was a questionnaire administered to company top management. For both variables, the position of the company was tested in comparison to industry competitors, on a fivepoint scale. In order to test the hypotheses, correlation tests were performed to determine whether there is a correlation between each individual factor of company dynamic capabilities with the existence of its innovation capabilities, in line with the research model. The results indicate a strong correlation between a company’s possession of dynamic capabilities in terms of their factors, due to the new multi-dimensional model presented in this paper, with its possession of innovation capabilities. Based on the results, all five hypotheses were accepted. Ultimately, it was concluded that there is a strong association between the dynamic and innovation capabilities of a company. 

Keywords: dynamic capabilities, innovation capabilities, competitive advantage, business results

Procedia PDF Downloads 283
4627 Assessing the Effect of Grid Connection of Large-Scale Wind Farms on Power System Small-Signal Angular Stability

Authors: Wenjuan Du, Jingtian Bi, Tong Wang, Haifeng Wang

Abstract:

Grid connection of a large-scale wind farm affects power system small-signal angular stability in two aspects. Firstly, connection of the wind farm brings about the change of load flow and configuration of a power system. Secondly, the dynamic interaction is introduced by the wind farm with the synchronous generators (SGs) in the power system. This paper proposes a method to assess the two aspects of the effect of the wind farm on power system small-signal angular stability. The effect of the change of load flow/system configuration brought about by the wind farm can be examined separately by displacing wind farms with constant power sources, then the effect of the dynamic interaction of the wind farm with the SGs can be also computed individually. Thus, a clearer picture and better understanding on the power system small-signal angular stability as affected by grid connection of the large-scale wind farm are provided. In the paper, an example power system with grid connection of a wind farm is presented to demonstrate the proposed approach.

Keywords: power system small-signal angular stability, power system low-frequency oscillations, electromechanical oscillation modes, wind farms, double fed induction generator (DFIG)

Procedia PDF Downloads 462
4626 Investigation of Dynamic Mechanical Properties of Jute/Carbon Reinforced Composites

Authors: H. Sezgin, O. B. Berkalp, R. Mishra, J. Militky

Abstract:

In the last few decades, due to their advanced properties, there has been an increasing interest in hybrid composite materials. In this study, the effect of different stacking sequences of jute and carbon fabric plies on dynamic mechanical properties of composite laminates were investigated. Vacuum bagging system was used to fabricate the composite samples. Each composite laminate was reinforced with two plies of jute fabric and two plies of carbon fabric by varying the position of layers. Dynamic mechanical analyzer (DMA) was used to examine the dynamic mechanical properties of composite laminates with increasing temperature. Results showed that the composite sample, which has carbon fabric at the outer layers, has the highest storage and loss modulus. Besides, it was observed that glass transition temperature (Tg) of samples are close to each other and at about 75 °C.

Keywords: differential scanning calorimetry dynamic mechanical analysis, textile reinforced composites, thermogravimetric analysis

Procedia PDF Downloads 274
4625 Dynamic Active Earth Pressure on Flexible Cantilever Retaining Wall

Authors: Snehal R. Pathak, Sachin S. Munnoli

Abstract:

Evaluation of dynamic earth pressure on retaining wall is a topic of primary importance. In present paper, dynamic active earth pressure and displacement of flexible cantilever retaining wall has been evaluated analytically using 2-DOF mass-spring-dashpot model by incorporating both wall and backfill properties. The effect of wall flexibility on dynamic active earth pressure and wall displacement are studied and presented in graphical form. The obtained results are then compared with the various conventional methods, experimental analysis and also with PLAXIS analysis. It is observed that the dynamic active earth pressure decreases with increase in the wall flexibility while wall displacement increases linearly with flexibility of the wall. The results obtained by proposed 2-DOF analytical model are found to be more realistic and economical.

Keywords: earth pressure, earthquake, 2-DOF model, Plaxis, retaining walls, wall movement

Procedia PDF Downloads 511
4624 Stability Analysis of Hossack Suspension Systems in High Performance Motorcycles

Authors: Ciro Moreno-Ramirez, Maria Tomas-Rodriguez, Simos A. Evangelou

Abstract:

A motorcycle's front end links the front wheel to the motorcycle's chassis and has two main functions: the front wheel suspension and the vehicle steering. Up to this date, several suspension systems have been developed in order to achieve the best possible front end behavior, being the telescopic fork the most common one and already subjected to several years of study in terms of its kinematics, dynamics, stability and control. A motorcycle telescopic fork suspension model consists of a couple of outer tubes which contain the suspension components (coil springs and dampers) internally and two inner tubes which slide into the outer ones allowing the suspension travel. The outer tubes are attached to the frame through two triple trees which connect the front end to the main frame through the steering bearings and allow the front wheel to turn about the steering axis. This system keeps the front wheel's displacement in a straight line parallel to the steering axis. However, there exist alternative suspension designs that allow different trajectories of the front wheel with the suspension travel. In this contribution, the authors investigate an alternative front suspension system (Hossack suspension) and its influence on the motorcycle nonlinear dynamics to identify and reduce stability risks that a new suspension systems may introduce in the motorcycle dynamics. Based on an existing high-fidelity motorcycle mathematical model, the front end geometry is modified to accommodate a Hossack suspension system. It is characterized by a double wishbone design that varies the front end geometry on certain maneuverings and, consequently, the machine's behavior/response. It consists of a double wishbone structure directly attached to the chassis. In here, the kinematics of this system and its impact on the motorcycle performance/stability are analyzed and compared to the well known telescopic fork suspension system. The framework of this research is the mathematical modelling and numerical simulation. Full stability analyses are performed in order to understand how the motorcycle dynamics may be affected by the newly introduced front end design. This study is carried out by a combination of nonlinear dynamical simulation and root-loci methods. A modal analysis is performed in order to get a deeper understanding of the different modes of oscillation and how the Hossack suspension system affects them. The results show that different kinematic designs of a double wishbone suspension systems do not modify the general motorcycle's stability. The normal modes properties remain unaffected by the new geometrical configurations. However, these normal modes differ from one suspension system to the other. It is seen that the normal modes behaviour depends on various important dynamic parameters, such as the front frame flexibility, the steering damping coefficient and the centre of mass location.

Keywords: nonlinear mechanical systems, motorcycle dynamics, suspension systems, stability

Procedia PDF Downloads 206
4623 Social Processes and Organizational Structures for the Management of Exploration and Exploration within and across Organization Boundaries

Authors: Linda O. N. Nwabunike

Abstract:

The role of internal and external efforts in the management of exploration and exploitation has been highlighted in literature. External ties support ambidexterity at different levels with, for instance: business unit ambidexterity, individual ambidexterity, organizational ambidexterity, and alliance ambidexterity. Recently studies have highlighted the combination of organization, alliance, and acquisition strategies for ambidexterity by conceptualizing ambidexterity across modes of operation. Literature still lacks detailed understanding of how these different processes are combined in the management of ambidexterity across modes of operation. This study plans to propose a conceptual model that illustrates the social processes involved in the management of ambidexterity across modes of operation. Main arguments are integrated from social structures, organizational design, and ambidexterity literature. The framework illustrates that how social capital is promoted by hierarchical relations within the organization and business relations across the boundaries of the organization. Whereby such social relations within and outside the organization are supported by the dual structures of the organization in the coordination of multiple efforts. This paper has potential to contribute to the understanding about how ambidexterity is attained.

Keywords: ambidexterity, coordination, external-ties, social-capital

Procedia PDF Downloads 148
4622 Optimized Dynamic Bayesian Networks and Neural Verifier Test Applied to On-Line Isolated Characters Recognition

Authors: Redouane Tlemsani, Redouane, Belkacem Kouninef, Abdelkader Benyettou

Abstract:

In this paper, our system is a Markovien system which we can see it like a Dynamic Bayesian Networks. One of the major interests of these systems resides in the complete training of the models (topology and parameters) starting from training data. The Bayesian Networks are representing models of dubious knowledge on complex phenomena. They are a union between the theory of probability and the graph theory in order to give effective tools to represent a joined probability distribution on a set of random variables. The representation of knowledge bases on description, by graphs, relations of causality existing between the variables defining the field of study. The theory of Dynamic Bayesian Networks is a generalization of the Bayesians networks to the dynamic processes. Our objective amounts finding the better structure which represents the relationships (dependencies) between the variables of a dynamic bayesian network. In applications in pattern recognition, one will carry out the fixing of the structure which obliges us to admit some strong assumptions (for example independence between some variables).

Keywords: Arabic on line character recognition, dynamic Bayesian network, pattern recognition, networks

Procedia PDF Downloads 591
4621 Sensitivity Parameter Analysis of Negative Moment Dynamic Load Allowance of Continuous T-Girder Bridge

Authors: Fan Yang, Ye-Lu Wang, Yang Zhao

Abstract:

The dynamic load allowance, as an application result of the vehicle-bridge coupled vibration theory, is an important parameter for bridge design and evaluation. Based on the coupled vehicle-bridge vibration theory, the current work establishes a full girder model of a dynamic load allowance, selects a planar five-degree-of-freedom three-axis vehicle model, solves the coupled vehicle-bridge dynamic response using the APDL language in the spatial finite element program ANSYS, selects the pivot point 2 sections as the representative of the negative moment section, and analyzes the effects of parameters such as travel speed, unevenness, vehicle frequency, span diameter, span number and forced displacement of the support on the negative moment dynamic load allowance through orthogonal tests. The influence of parameters such as vehicle speed, unevenness, vehicle frequency, span diameter, span number, and forced displacement of the support on the negative moment dynamic load allowance is analyzed by orthogonal tests, and the influence law of each influencing parameter is summarized. It is found that the effects of vehicle frequency, unevenness, and speed on the negative moment dynamic load allowance are significant, among which vehicle frequency has the greatest effect on the negative moment dynamic load allowance; the effects of span number and span diameter on the negative moment dynamic load allowance are relatively small; the effects of forced displacement of the support on the negative moment dynamic load allowance are negligible.

Keywords: continuous T-girder bridge, dynamic load allowance, sensitivity analysis, vehicle-bridge coupling

Procedia PDF Downloads 134
4620 The Dynamic Metadata Schema in Neutron and Photon Communities: A Case Study of X-Ray Photon Correlation Spectroscopy

Authors: Amir Tosson, Mohammad Reza, Christian Gutt

Abstract:

Metadata stands at the forefront of advancing data management practices within research communities, with particular significance in the realms of neutron and photon scattering. This paper introduces a groundbreaking approach—dynamic metadata schema—within the context of X-ray Photon Correlation Spectroscopy (XPCS). XPCS, a potent technique unravelling nanoscale dynamic processes, serves as an illustrative use case to demonstrate how dynamic metadata can revolutionize data acquisition, sharing, and analysis workflows. This paper explores the challenges encountered by the neutron and photon communities in navigating intricate data landscapes and highlights the prowess of dynamic metadata in addressing these hurdles. Our proposed approach empowers researchers to tailor metadata definitions to the evolving demands of experiments, thereby facilitating streamlined data integration, traceability, and collaborative exploration. Through tangible examples from the XPCS domain, we showcase how embracing dynamic metadata standards bestows advantages, enhancing data reproducibility, interoperability, and the diffusion of knowledge. Ultimately, this paper underscores the transformative potential of dynamic metadata, heralding a paradigm shift in data management within the neutron and photon research communities.

Keywords: metadata, FAIR, data analysis, XPCS, IoT

Procedia PDF Downloads 40
4619 Assessment of Collapse Potential of Degrading SDOF Systems

Authors: Muzaffer Borekci, Murat Serdar Kirçil

Abstract:

Predicting the collapse potential of a structure during earthquakes is an important issue in earthquake engineering. Many researchers proposed different methods to assess the collapse potential of structures under the effect of strong ground motions. However most of them did not consider degradation and softening effect in hysteretic behavior. In this study, collapse potential of SDOF systems caused by dynamic instability with stiffness and strength degradation has been investigated. An equation was proposed for the estimation of collapse period of SDOF system which is a limit value of period for dynamic instability. If period of the considered SDOF system is shorter than the collapse period then the relevant system exhibits dynamic instability and collapse occurs.

Keywords: collapse, degradation, dynamic instability, seismic response

Procedia PDF Downloads 362
4618 Damage of Laminated Corrugated Sandwich Panels under Inclined Impact Loading

Authors: Muhammad Kamran, Xue Pu, Naveed Ahmed

Abstract:

Sandwich foam structures are efficient in impact energy absorption and making components lightweight; however their efficient use require a detailed understanding of its mechanical response. In this study, the foam core, laminated facings’ sandwich panel with internal triangular rib configuration is impacted by a spherical steel projectile at different angles using ABAQUS finite element package and damage mechanics is studied. Laminated ribs’ structure is sub-divided into three formations; all zeros, all 45 and optimized combination of zeros and 45 degrees. Impact velocity is varied from 250 m/s to 500 m/s with an increment of 50 m/s. The impact damage can significantly demolish the structural integrity and energy absorption due to fiber breakage, matrix cracking, and de-bonding. Macroscopic fracture study of the panel and core along with load-displacement responses and failure modes are the key parameters in the design of smart ballistic resistant structures. Ballistic impact characteristics of panels are studied on different speed, different inclination angles and its dependency on the base, and core materials, ribs formation, and cross-sectional spaces among them are determined. Impact momentum, penetration and kinetic energy absorption data and curves are compiled to predict the first and proximity impact in an effort to enhance the dynamic energy absorption.

Keywords: dynamic energy absorption, proximity impact, sandwich panels, impact momentum

Procedia PDF Downloads 370
4617 Relationship between Dynamic Balance and Explosive Leg Power in Young Female Gymnasts

Authors: A. Aleksic-Veljkovic, K. Herodek, M. Bratic, M. Mitic

Abstract:

The aim of this study was to investigate the relationship between variables of dynamic balance and countermovement jump in young, female gymnasts. A single-group design was used. Forty-seven young, female gymnasts (Mean±SD; age: 8-12 years, height: 42.88±10.38 cm, mass: 35.59±8.15 kg; body mass index: 17.18±1.62 kg/m2; training hours per week: 15-18 h/week) performed measurements of dynamic balance and countermovement jump with and without arm swing. Significant, but small to medium associations were observed between variables of balance and height of the jump in both protocols of the countermovement jump ranging from r = +0.313 to +0.426. No significant associations were observed between variables of dynamic balance and relative power and peak power of countermovement jump with or without arm swings. The data indicate that dynamic balance and leg power imply that balance and power are independent of each other and may have to be tested and trained complementarily in young gymnasts.

Keywords: artistic gymnastics, countermovement jump, jump height, testing

Procedia PDF Downloads 375
4616 Correlates of Modes of Transportation to Work among Working Adults in Ernakulam District, Kerala

Authors: Anjaly Joseph, Elezebeth Mathews

Abstract:

Transportation and urban planning is the least recognised area for physical activity promotion in India, unlike developed regions. Identifying the preferred transportation modalities and factors associated with it is essential to address these lacunae. The objective of the study was to assess the prevalence of modes of transportation to work, and its correlates among working adults in Ernakulam District, Kerala. A cross sectional study was conducted among 350 working individuals in the age group of 18-60 years, selected through multi-staged stratified random sampling in Ernakulam district of Kerala. The inclusion criteria were working individuals 18-60 years, workplace at a distance of more than 1 km from the home and who worked five or more days a week. Pregnant women/women on maternity leave and drivers (taxi drivers, autorickshaw drivers, and lorry drivers) were excluded. An interview schedule was used to capture the modes of transportation namely, public, private and active transportation, socio demographic details, travel behaviour, anthropometric measurements and health status. Nearly two-thirds (64 percent) of them used private transportation to work, while active commuters were only 6.6 percent. The correlates identified for active commuting compared to other modes were low socio-economic status (OR=0.22, CI=0.5-0.85) and presence of a driving license (OR=4.95, CI= 1.59-15.45). The correlates identified for public transportation compared to private transportation were female gender (OR= 17.79, CI= 6.26-50.31), low income (OR=0.33, CI= 0.11-0.93), being unmarried (OR=5.19, CI=1.46-8.37), presence of no or only one private vehicle in the house (OR=4.23, CI=1.24-20.54) and presence of convenient public transportation facility to workplace (OR=3.97, CI= 1.66-9.47). The association between body mass index (BMI) and public transportation were explored and found that public transport users had lesser BMI than private commuters (OR=2.30, CI=1.23-4.29). Policies that encourage active and public transportation needs to be introduced such as discouraging private vehicle through taxes, introduction of convenient and safe public transportation facility, walking/cycling paths, and paid parking facility.

Keywords: active transportation, correlates, India, public transportation, transportation modes

Procedia PDF Downloads 146
4615 Open Consent And Artificial Intelligence For Health Research in South Africa

Authors: Amy Gooden

Abstract:

Various modes of consent have been utilized in health research, but open consent has not been explored in South Africa’s AI research context. Open consent entails the sharing of data without assurances of privacy and may be seen as an attempt to marry open science with informed consent. Because all potential uses of data are unknown, it has been questioned whether consent can be informed. Instead of trying to adapt existing modes of consent, why not adopt a new perspective? This is what open consent proposes and what this research will explore in AI health research in South Africa.

Keywords: artificial intelligence, consent, health, law, research, South Africa

Procedia PDF Downloads 131
4614 Implication of Soil and Seismic Ground Motion Variability on Dynamic Pile Group Impedance for Bridges

Authors: Muhammad Tariq Chaudhary

Abstract:

Bridges constitute a vital link in a transportation system and their functionality after an earthquake is critical in reducing disruption to social and economic activities of the society. Bridges supported on pile foundations are commonly used in many earthquake-prone regions. In order to properly design or investigate the performance of such structures, it is imperative that the effect of soil-foundation-structure interaction be properly taken into account. This study focused on the influence of soil and seismic ground motion variability on the dynamic impedance of pile-group foundations typically used for medium-span (about 30 m) urban viaduct bridges. Soil profiles corresponding to various AASHTO soil classes were selected from actual data of such bridges and / or from the literature. The selected soil profiles were subjected to 1-D wave propagation analysis to determine effective values of soil shear modulus and damping ratio for a suite of properly selected actual seismic ground motions varying in PGA from 0.01g to 0.64g, and having variable velocity and frequency content. The effective values of the soil parameters were then employed to determine the dynamic impedance of pile groups in horizontal, vertical and rocking modes in various soil profiles. Pile diameter was kept constant for bridges in various soil profiles while pile length and number of piles were changed based on AASHTO design requirements for various soil profiles and earthquake ground motions. Conclusions were drawn regarding variability in effective soil shear modulus, soil damping, shear wave velocity and pile group impedance for various soil profiles and ground motions and its implications for design and evaluation of pile-supported bridges. It was found that even though the effective soil parameters underwent drastic variation with increasing PGA, the pile group impedance was not affected much in properly designed pile foundations due to the corresponding increase in pile length or increase in a number of piles or both when subjected to increasing PGA or founded in weaker soil profiles.

Keywords: bridge, pile foundation, dynamic foundation impedance, soil profile, shear wave velocity, seismic ground motion, seismic wave propagation

Procedia PDF Downloads 302
4613 Dynamic Gabor Filter Facial Features-Based Recognition of Emotion in Video Sequences

Authors: T. Hari Prasath, P. Ithaya Rani

Abstract:

In the world of visual technology, recognizing emotions from the face images is a challenging task. Several related methods have not utilized the dynamic facial features effectively for high performance. This paper proposes a method for emotions recognition using dynamic facial features with high performance. Initially, local features are captured by Gabor filter with different scale and orientations in each frame for finding the position and scale of face part from different backgrounds. The Gabor features are sent to the ensemble classifier for detecting Gabor facial features. The region of dynamic features is captured from the Gabor facial features in the consecutive frames which represent the dynamic variations of facial appearances. In each region of dynamic features is normalized using Z-score normalization method which is further encoded into binary pattern features with the help of threshold values. The binary features are passed to Multi-class AdaBoost classifier algorithm with the well-trained database contain happiness, sadness, surprise, fear, anger, disgust, and neutral expressions to classify the discriminative dynamic features for emotions recognition. The developed method is deployed on the Ryerson Multimedia Research Lab and Cohn-Kanade databases and they show significant performance improvement owing to their dynamic features when compared with the existing methods.

Keywords: detecting face, Gabor filter, multi-class AdaBoost classifier, Z-score normalization

Procedia PDF Downloads 252
4612 Modeling of Foundation-Soil Interaction Problem by Using Reduced Soil Shear Modulus

Authors: Yesim Tumsek, Erkan Celebi

Abstract:

In order to simulate the infinite soil medium for soil-foundation interaction problem, the essential geotechnical parameter on which the foundation stiffness depends, is the value of soil shear modulus. This parameter directly affects the site and structural response of the considered model under earthquake ground motions. Strain-dependent shear modulus under cycling loads makes difficult to estimate the accurate value in computation of foundation stiffness for the successful dynamic soil-structure interaction analysis. The aim of this study is to discuss in detail how to use the appropriate value of soil shear modulus in the computational analyses and to evaluate the effect of the variation in shear modulus with strain on the impedance functions used in the sub-structure method for idealizing the soil-foundation interaction problem. Herein, the impedance functions compose of springs and dashpots to represent the frequency-dependent stiffness and damping characteristics at the soil-foundation interface. Earthquake-induced vibration energy is dissipated into soil by both radiation and hysteretic damping. Therefore, flexible-base system damping, as well as the variability in shear strengths, should be considered in the calculation of impedance functions for achievement a more realistic dynamic soil-foundation interaction model. In this study, it has been written a Matlab code for addressing these purposes. The case-study example chosen for the analysis is considered as a 4-story reinforced concrete building structure located in Istanbul consisting of shear walls and moment resisting frames with a total height of 12m from the basement level. The foundation system composes of two different sized strip footings on clayey soil with different plasticity (Herein, PI=13 and 16). In the first stage of this study, the shear modulus reduction factor was not considered in the MATLAB algorithm. The static stiffness, dynamic stiffness modifiers and embedment correction factors of two rigid rectangular foundations measuring 2m wide by 17m long below the moment frames and 7m wide by 17m long below the shear walls are obtained for translation and rocking vibrational modes. Afterwards, the dynamic impedance functions of those have been calculated for reduced shear modulus through the developed Matlab code. The embedment effect of the foundation is also considered in these analyses. It can easy to see from the analysis results that the strain induced in soil will depend on the extent of the earthquake demand. It is clearly observed that when the strain range increases, the dynamic stiffness of the foundation medium decreases dramatically. The overall response of the structure can be affected considerably because of the degradation in soil stiffness even for a moderate earthquake. Therefore, it is very important to arrive at the corrected dynamic shear modulus for earthquake analysis including soil-structure interaction.

Keywords: clay soil, impedance functions, soil-foundation interaction, sub-structure approach, reduced shear modulus

Procedia PDF Downloads 248